Skip to main content

Advertisement

Log in

High frequencies of circulating Tfh-Th17 cells in myasthenia gravis patients

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Recent studies show that the frequencies of circulating follicullar helper T (cTfh) cells are significantly higher in myasthenia gravis (MG) patients compared with healthy controls (HC). And, they are positively correlated with levels of serum anti-acetylcholine receptor antibody (anti-AchR Ab). It is unclear whether cTfh cell subset frequencies are altered and what role they play in MG patients. In order to clarify this, we examined the frequencies of cTfh cell counterparts, their subsets, and circulating plasmablasts in MG patients by flow cytometry. We determined the concentrations of serum anti-AChR Ab by enzyme-linked immunosorbent assay (ELISA). We assayed the function of cTfh cell subsets by flow cytometry and real-time polymerase chain reaction (RT-PCR). We found higher frequencies of cTfh cell counterparts, cTfh-Th17 cells, and plasmablasts in MG patients compared with HC. The frequencies of cTfh cell counterparts and cTfh-Th17 cells were positively correlated with the frequencies of plasmablasts and the concentrations of anti-AChR Ab in MG patients. Functional assays showed that activated cTfh-Th17 cells highly expressed key molecular features of Tfh cells including ICOS, PD-1, and IL-21. Results indicate that, just like cTfh cell counterparts, cTfh-Th17 cells may play a role in the immunopathogenesis and the production of anti-AChR Ab of MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang L, Zhang Y, He M (2017) Clinical predictors for the prognosis of myasthenia gravis. BMC Neurol 17:77

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kang SY, Oh JH, Song SK, Lee JS, Choi JC, Kang JH (2015) Both binding and blocking antibodies correlate with disease severity in myasthenia gravis. Neurol Sci 36:1167–1171

    Article  PubMed  Google Scholar 

  3. Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P (2013) The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 12:875–884

    Article  CAS  PubMed  Google Scholar 

  4. Cavalcante P, Le Panse R, Berrih-Aknin S, Maggi L, Antozzi C, Baggi F, Bernasconi P, Mantegazza R (2011) The thymus in myasthenia gravis: site of "innate autoimmunity"? Muscle Nerve 44:467–484

    Article  PubMed  Google Scholar 

  5. Li Y, Chen P, Ding L, Luo C, Wang H, Chen Z, Su C, Feng H, Huang X, Xia W, Liu W (2015) Clinical outcome and predictive factors of irradiation-associated myasthenia gravis exacerbation in thymomatous patients. Neurol Sci 36:2121–2127

    Article  PubMed  Google Scholar 

  6. Onodera H (2005) The role of the thymus in the pathogenesis of myasthenia gravis. Tohoku J Exp Med 207:87–98

    Article  CAS  PubMed  Google Scholar 

  7. Tao X, Wang W, Jing F, Wang Z, Chen Y, Wei D, Huang X (2017) Long-term efficacy and side effects of low-dose tacrolimus for the treatment of myasthenia gravis. Neurol Sci 38:325–330

    Article  PubMed  Google Scholar 

  8. Braz N, Rocha NP, Vieira E, Gomez RS, Barbosa IG, Malheiro OB, Kakehasi AM, Teixeira AL (2017) Negative impact of high cumulative glucocorticoid dose on bone metabolism of patients with myasthenia gravis. Neurol Sci [Epub ahead of print]

  9. Sonett JR, Magee MJ, Gorenstein L (2017) Thymectomy and myasthenia gravis: a history of surgical passion and scientific excellence. J Thorac Cardiovasc Surg [Epub ahead of print]

  10. Chavele KM, Merry E, Ehrenstein MR (2015) Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J Immunol 194:2482–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663

    Article  CAS  PubMed  Google Scholar 

  12. Craft JE (2012) Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol 8:337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG (2009) Follicular helper T cells: lineage and location. Immunity 30:324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, Roberts IS, Copley RR, Bell JI, Cornall RJ, Goodnow CC (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435:452–458

    Article  CAS  PubMed  Google Scholar 

  15. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 103:9970–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, Schwartzberg PL, Cook MC, Walters GD, Vinuesa CG (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206:561–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji YR, Kim HJ, Yu DH, Bae KB, Park SJ, Yi JK, Kim N, Park SJ, Oh KB, Hwang SS, Lee S, Kim SH, Kim MO, Lee JW, Ryoo ZY (2012) Enforced expression of roquin protein in T cells exacerbates the incidence and severity of experimental arthritis. J Biol Chem 287:42269–42277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vinuesa CG, Cook MC (2011) Blood relatives of follicular helper T cells. Immunity 34:10–12

    Article  CAS  PubMed  Google Scholar 

  19. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, Manku H, Vyse TJ, Roncador G, Huttley GA, Goodnow CC, Vinuesa CG, Cook MC (2010) Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum 62:234–244

    Article  CAS  PubMed  Google Scholar 

  20. Fan X, Jiang Y, Han J, Liu J, Wei Y, Jiang X, Jin T (2016) Circulating memory T follicular helper cells in patients with Neuromyelitis Optica/Neuromyelitis Optica Spectrum disorders. Mediat Inflamm 2016:3678152

    Google Scholar 

  21. Fan X, Jin T, Zhao S, Liu C, Han J, Jiang X, Jiang Y (2015) Circulating CCR7+ICOS+ memory T follicular helper cells in patients with multiple sclerosis. PLoS One 10:e134523

    Google Scholar 

  22. Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, Qiu L, Ouyang J (2013) Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J Neuroimmunol 256:55–61

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Liu S, Chang T, Xu J, Zhang C, Tian F, Sun Y, Song C, Yi W, Lin H, Li Z, Yang K (2016) Intrathymic Tfh/B cells interaction leads to ectopic GCs formation and anti-AChR antibody production: central role in triggering MG occurrence. Mol Neurobiol 53:120–131

    Article  CAS  PubMed  Google Scholar 

  24. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H (2011) Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Romme CJ, Bornsen L, Ratzer R, Piehl F, Khademi M, Olsson T, Sorensen PS, Sellebjerg F (2013) Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One 8:e57820

    Article  Google Scholar 

  26. Che Y, Qiu J, Jin T, Yin F, Li M, Jiang Y (2016) Circulating memory T follicular helper subsets, Tfh2 and Tfh17, participate in the pathogenesis of Guillain-Barre syndrome. Sci Rep 6:20963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8:475–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, Sallusto F, Tangye SG, Mackay CR (2011) CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J Immunol 186:5556–5568

    Article  CAS  PubMed  Google Scholar 

  29. Xu H, Li X, Liu D, Li J, Zhang X, Chen X, Hou S, Peng L, Xu C, Liu W, Zhang L, Qi H (2013) Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496:523–527

    Article  CAS  PubMed  Google Scholar 

  30. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, Lao C, Crotty S (2011) ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentebibel SE, Schmitt N, Banchereau J, Ueno H (2011) Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4+ T-cell subset specialized for B-cell help outside germinal centers. Proc Natl Acad Sci USA 108:E488–E497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paulos CM, Carpenito C, Plesa G, Suhoski MM, Varela-Rohena A, Golovina TN, Carroll RG, Riley JL, June CH (2010) The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl med 2:55r-78r

  33. Cubas RA, Mudd JC, Savoye AL, Perreau M, van Grevenynghe J, Metcalf T, Connick E, Meditz A, Freeman GJ, Abesada-Terk GJ, Jacobson JM, Brooks AD, Crotty S, Estes JD, Pantaleo G, Lederman MM, Haddad EK (2013) Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med 19:494–499

    Article  CAS  PubMed  Google Scholar 

  34. He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, Sun X, Vandenberg K, Rockman S, Ding Y, Zhu L, Wei W, Wang C, Karnowski A, Belz GT, Ghali JR, Cook MC, Riminton DS, Veillette A, Schwartzberg PL, Mackay F, Brink R, Tangye SG, Vinuesa CG, Mackay CR, Li Z, Yu D (2013) Circulating precursor CCR7(lo)PD-1(hi) CXCR5(+) CD4(+) T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39:770–781

    Article  CAS  PubMed  Google Scholar 

  35. Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner KM, Smyth MJ, Nutt SL, Tarlinton DM (2010) IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med 207:365–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crotty S, Johnston RJ, Schoenberger SP (2010) Effectors and memories: Bcl-6 and blimp-1 in T and B lymphocyte differentiation. Nat Immunol 11:114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arroyo-Villa I, Bautista-Caro MB, Balsa A, Aguado-Acin P, Bonilla-Hernan MG, Plasencia C, Villalba A, Nuno L, Puig-Kroger A, Martin-Mola E, Miranda-Carus ME (2014) Constitutively altered frequencies of circulating follicullar helper T cell counterparts and their subsets in rheumatoid arthritis. Arthritis Res Ther 16:500

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vinuesa CG, Fagarasan S, Dong C (2013) New territory for T follicular helper cells. Immunity 39:417–420

    Article  CAS  PubMed  Google Scholar 

  39. Le Panse R, Bismuth J, Cizeron-Clairac G, Weiss JM, Cufi P, Dartevelle P, De Rosbo NK, Berrih-Aknin S (2010) Thymic remodeling associated with hyperplasia in myasthenia gravis. Autoimmunity 43:401–412

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 81301069 and 31270952). The authors would like to thank all the participants of this study and thank Dr. Austin Cape for careful reading and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuyi Li.

Ethics declarations

Compliance with ethical standards

Ethics Committee of the Faculty of Tangdu Hospital gave permission for this research. All the experimental methods in this research were carried out in accordance with the approved guidelines. All the experimental protocols in this research were approved by Ethics Committee of the Faculty of Tangdu Hospital. All patients and healthy volunteers had written informed consent, and all peripheral blood samples were used only for research purpose.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, M., Ye, Y. et al. High frequencies of circulating Tfh-Th17 cells in myasthenia gravis patients. Neurol Sci 38, 1599–1608 (2017). https://doi.org/10.1007/s10072-017-3009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3009-3

Keywords

Navigation