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Abstract
The present study was conducted to assess the context specificity of latent inhibition (LI) in the snail Cornu aspersum, using 
the appetitive Pavlovian Conditioning procedure of tentacle lowering. Snails experienced an odorous conditioned stimulus 
(CS) without any consequence before being conditioned with food. The conditioned stimulus preexposure occurred in the 
same context than the conditioning and the test context or in the different context. The study was performed in two replicas 
in which the photoperiod was defined by level of illumination and time of day (circadian replica) or was defined only by light 
(light replica). Both replicas showed that the CS preexposure in the same context as conditioning produced a delay in the 
acquisition of the conditioned response (CR). However, when the CS preexposure took place in a different context than the 
conditioning context, an equivalent level of CR as that observed in controls without preexposition to CS was shown. These 
results are congruent with context specificity of LI and they provide the first evidence of this phenomenon in terrestrial 
mollusks. Learning processes and theories involved in this phenomenon are also debated in the paper.
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Introduction

In appetitive Pavlovian Conditioning, a CS becomes asso-
ciated with the taste and/or the nutritive properties of an 
Unconditioned Stimulus (US), usually food. It is possible to 
modulate the strength of this association by manipulating 
the variables effective in standard conditioning paradigms. 
One of the most relevant variables is the experience with the 
CS previous to conditioning. When the conditioned stimulus 
(CS) is repeatedly exposed to a neutral stimulus subsequent 
conditioning is retarded when that stimulus is used as a CS 
(Lubow and Weiner 2010). This phenomenon, named Latent 
Inhibition (LI), has been explained by two basic approaches: 
one is based on failure in the CS-US acquisition (Acquisition 
models) and the other on the CS-US association retrieval 
(Retrieval models). In addition, as with several other learn-
ing phenomena, LI shows contextual specificity (Hall and 
Honey 1989) and this effect is predicted by both theoretical 
accounts.

The effect of context on learning phenomena has been 
studied mainly in vertebrate animals, for example: habitu-
ation (e.g., Siegel 1977; see Dissegna et  al. 2021 for a 
review), negative transfer (e.g., Swartzentruber and Bouton 
1986), renewal (e.g., Bernal-Gamboa et al. 2012; Bouton and 
Bolles 1979; Mesich et al. 2021) or overshadowing (Kwok 
and Boakes 2017). However, very little has been said in the 
literature about this issue in invertebrate species (Howard 
et al. 2017, perception of contextual size illusions in honey 
bees; McComb et al. 2002, renewal in Lymnaea stagnalis; 
Loy et al. 2020, renewal in terrestrial snails; Hermitte et al. 
1999; Predreira et al. 1995, 1996; Pereyra et al. 2000; Tom-
sic et al. 1998, context specificity of habituation in crabs; 
Reyes-Jiménez et al. 2020, 2021, effect of the context speci-
ficity of habituation in earth worms; Lau et al. 2013; Rankin 
2000, effect of the context specificity of habituation in C. 
elegans; see Dissegna et al. 2021 for a review).

Specifically, much evidence has been reported in ver-
tebrate species in the study of LI, including humans (e.g., 
Ginton et al. 1975; Lubow and Moore 1959; Silver 1973; 
Zalstein-Orda and Lubow 1995), rodents (e.g., Hall and 
Pearce 1979; Kiernan and Westbrook 1993; Lubow et al. 
1968; Reiss and Wagner 1972), fishes (e.g., Ferrari and 
Chivers 2006; Mitchell et  al. 2011; Shishimi 1985) or 
amphibians (Daneri and Muzio 2015; Ferrari and Chivers 
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2009, 2011; Gonzalo et al. 2013). Moreover, against Lubow 
and Weiner’s (2010) claim that the hippocampus is essential 
for LI to occur, this phenomenon has also been observed in 
invertebrate species with a simpler nervous system, such as 
crustaceans (e.g., Acquistapace et al. 2003) insects (e.g., 
Abramson et al. 2005; Abramson and Bitterman 1986; Ben-
nett et al. 2021; Bitterman et al. 1983; Chandra et al. 2000, 
2001, 2010; Cook et al. 2019; Fernández et al. 2012; Jacob 
et al. 2021; Petersen 2017) or gastropods (e.g., Escobar et al. 
2014; Loy et al. 2006).

A considerable amount of literature has been published 
on context specificity of LI in vertebrates (e.g., Archer et al. 
1986; Hall and Channell 1985; Hall and Honey 1989; Lovi-
bond et al. 1984; Miller et al. 2015; Miguez et al. 2018; 
Molero-Chamizo 2018; Westbrook et al. 2000). However, 
the only evidence of context specificity of LI in invertebrates 
has recently been found by Jacob et al. (2021) in Drosophila 
melanogaster. In this study, it was shown that flies preex-
posed to the CS in a different context than conditioning 
and the test context reached equivalent levels of CR as flies 
which were preexposed to a different stimulus than the CS 
(Jacob et al. 2021).

The aim of the present paper is to study the context speci-
ficity of LI in the snail Cornu aspersum. The tentacle low-
ering procedure was employed because it is a robust appe-
titive Pavlovian preparation and has been used in several 
studies such as simple conditioning (Ungless 1998, 2001); 
LI, overshadowing, second-order conditioning and sensory 
preconditioning (Loy et al. 2006); conditioned inhibition 
(Acebes et al. 2009); blocking (Acebes et al. 2012; Prados 
et al. 2013); spontaneous recovery and reinstatement (Álva-
rez et al. 2014); and renewal (Loy et al. 2020). According 
to the stimulus employed as context, the work reported here 
was made in two different replicas. In the first one, the cir-
cadian replica, the context used was photoperiod (defined by 
the hour of the day and the lighting) as found in the study of 
Loy et al. (2020). In the second one, the light replica, only 
light was used as context. The second replica was carried out 
to find out whether the same results as the circadian replica 
should be observed with a simpler procedure, as the element 
“hour of the day” is eliminated and the experiment is carried 
out in fewer hours.

Method

The present study was designed to determine the context 
specificity of LI in snail Cornu aspersum. Subjects were 
divided in four groups according to the stimulus preexposure 
and the preexposure context. Moreover, two replicas were 
created on the basis of context stimulus: photoperiod (the 
circadian replica) and light (the light replica). In both rep-
licas, it was expected that subjects which were preexposed 

to the CS1 in the same context as conditioning would show 
a delay in the conditioning acquisition, congruent with LI. 
In addition, subjects preexposed to the CS1 in a different 
context than the conditioning context were expected to show 
the acquisition of the CS-US association, congruent with 
context specificity of LI.

Subjects and housing

The subjects used in this study were the common snails 
Cornu aspersum, which were collected from the wild in a 
garden from the small town of Noreña (Asturias). They lived 
grouped among the garden stones and their food was the 
green leaves of the ferns present in their habitat. They were 
manually collected from their habitat and taken directly to 
the laboratory, where they were maintained and prepared for 
each experimental replica.

52 adult snails were employed, with a mean shell diam-
eter of 25.94 mm (range 20–32 mm) for the circadian rep-
lica, whereas 53 adult snails with a mean shell diameter 
of 29.06 mm (range 22–33 mm) were used for the light 
replica. Snails were individually housed in plastic cages 
(50 × 50 × 100 mm) with air holes. The house boxes were 
placed in a room with a constant temperature of 22 ºC and 
a reversed 12 light/dark cycle, starting at 06:00 am. They 
were given access to a small amount of water and ad libitum 
food, which was composed of corn grains for poultry, and 
prior to the start of the experiment, they were food-deprived 
for 10 days. At the end of the experiment, snails were given 
food ad libitum (corn grains) and placed back into the wild, 
but in a different garden, 50 km away from the place where 
they were collected to avoid their recapture.

Apparatus and stimuli

The experimental set was a plastic perforated surface (390 
× 360 mm; 5.5 mm diameter holes, roughly 2 mm apart 
from one to another) placed 65 mm above the surface of a 
table and the experimental room was maintained at 22 ºC. 
The context stimuli were two types of lights to reproduce 
the light/dark context in both replicates of the experiment. 
A white light (LED 5.5 W) was used as the light context, 
whereas a red light (LED 3 W) was used as the dark con-
text, given that prior research established the snail’s spec-
tral sensitivity range in 390–580 nm (Barker 2006), which 
is lower than the red light range (620–750 nm), so the red 
light cannot be perceived by snails. By contrast, the red light 
is perceived by humans and the use of this light allows us 
to observe the response of the subject properly. Also, two 
solutions, one obtained from mango and another one from 
coconut (oil brand La Casa de Los Aromas, 2 ml/L of dis-
tilled water) were used as the CSs, and carrot was used as 
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the US. The pieces of carrot had a mean diameter of 27 mm 
(range 22–29 mm) and were 1 mm thick.

Procedure

In this experiment, tentacle lowering was measured as the 
CR by one observer, who was not aware of the group to 
which each subject belonged. This measure consisted of 
counting in real time the number of times the left tentacle 
descended below an imaginary line, drawn horizontally just 
above the head of the snail (Ungless 1998, 2001).

Snails were randomly divided into four groups based on 
the context in which subjects received the preexposure and 
the kind of stimulus presented during the preexposure. Sub-
jects from same context-preexposure group were preexposed 
to the odour used during conditioning (CS1) in the same 
context as the conditioning and the tests. On the contrary, 
subjects from different context-preexposure group were pre-
exposed to the CS1, but in a different context than the con-
ditioning and the tests. From same context-no preexposure 
group, subjects were preexposed to a different odour from 
that used during conditioning (CS2) in the same context as 
the conditioning and the tests. Finally, subjects from differ-
ent context-no preexposure group were preexposed to the 
CS2 in the different context. The role of the odours was not 
counterbalanced, so the odour of mango was used as CS1 
and the odour of coconut was used as CS2.

In addition, this experiment was carried in two repli-
cas: the circadian replica, in which the photoperiod was 
used as context, determined by the hour of the day and 
the illumination level; and the light replica, in which only 
light was used as context. In both replicas, the context 
was counterbalanced so, for half of the subjects in each 
group, the conditioning and the tests were made in the 
light context and for the other half, they were made in the 

dark context. The circadian replica was started at 8:00 a.m. 
and 8:00 p.m. and finished at 13:00 p.m. and 01:00 a.m., 
respectively, and the light replica started at 8:00 a.m. and 
finished at 13:00 p.m. At the beginning of each trial, snails 
were sprayed with fresh water to induce their activity and 
at the end of each trial they were returned to their home 
boxes without any access to the stimuli used throughout 
the experimental phases.

	 i.	 Pre-Test
		    In this phase, the tentacle lowering response was 

measured for each subject individually. Based on the 
group to which they belonged, snails were exposed to 
CS1 or CS2 for 2 min. This odour was placed below 
the perforated surface in a dish containing four cotton 
pads and each one was impregnated with 2 ml of the 
solution.

	 ii.	 Preexposure
		    During the preexposure phase, the odour (CS1 or 

CS2) was presented for 2 min. The odour was placed in 
the same way as pre-test and 6 trials were made during 
the day with an intertrial interval (ITI) of 58 min.

	 iii.	 Conditioning and Test

In the conditioning phase, all the groups were exposed 
to CS1 paired with access to food (US) for 2 min. A piece 
of carrot was placed in front of snail whereas the odour 
was placed in the same way as in the previous phases. 3 
trials were performed during the day with an ITI of 58 min 
(see Fig. 1).

On a different day than the conditioning phase, the test 
was carried out in the same way as the pre-test, using the 
same context as conditioning. The conditioning-test cycle 
was made 3 times, so conditioning was repeated 9 times 
and the test 3 times. The experimental design is summa-
rized in Table 1.

Fig. 1   Conditioning Phase. 
Panel A shows the experimental 
setting and how conditioning 
was performed in groups. Panel 
B shows a snail eating during 
conditioning
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Statistical analysis

The number of times that subjects lowered the left tentacle 
during the pre-tests and tests was measured. One-way analy-
sis of variance was used in the pre-test analysis. Also, the 
repeated-measures ANOVAs were carried out to observe 
if there were any differences in the counterbalanced train-
ing context and to analyse the main results shown in Fig. 2. 
Finally, the differences among the groups observed in test 
2 were compared using the Univariate ANOVA and the 

Bonferroni pairwise comparisons. These analyses were 
taken into account for each replica of the study. In addition, 
the level of significance used was α = 0.05 and the effect 
sizes for ANOVAs were reported as partial Eta-square (η2

p). 
Data management and analysis was performed using SPSS 
v21 (SPSS Inc., Chicago, IL, USA).

Results

Figure 2 shows the tentacle lowering mean for each group in 
the three conditioning tests. Panel A presents the results of 
the circadian replica, whereas Panel B provides the results 
of the light replica. As can be seen from Panel A, all groups 
showed an equivalent level of conditioning throughout the 
three tests except for the group same context-preexposure. 
This group presented a lower conditioning level than the 
rest of the groups in the first two tests, this difference being 
higher in test 2. Nevertheless, CR for the same context-pre-
exposure group increased during test 3, showing an equiva-
lent level of conditioning to the other groups. This descrip-
tion was corroborated by the statistical analyses. The same 
effect was observed in Panel B, but during test 1 the CR of 
the of same context-no preexpsoure group was higher than 
the CR for the rest of the groups. However, this difference 
was not significant as the statistical analyses show.

The first set of analyses examined the effect of context 
counterbalancing to see if there were any significant differ-
ences in the CR between-subjects which received the con-
ditioning and the tests in the light context and the subjects 
which received the conditioning and the tests in the dark 
context. A repeated-measures ANOVA was carried out with 
the pre-test and the tests as the within-subjects factor and 
the preexposure context (if the preexposure was made in 
the same context as conditioning or in the different context), 
the stimulus preexposure (the CS1 preexposure or CS2 pre-
exposure) and the training context (if the conditioning and 
the tests were performed in the light or in the dark context) 
as the between-subjects factors.

Table 1   Experimental design for both replicas

*  CS1 was a mango solution, CS2 was a coconut solution, US was a piece of carrot. The abbreviation Sa indicates “same context” used through-
out all the experimental treatment and the abbreviation “Di” indicates the different context (the contextual cue was the photoperiod in the circa-
dian replica and light was the contextual cue in the light replica). Also, the light and the dark contexts were counterbalanced, so for half of the 
subjects Sa was the dark context and Di was the light context and for the other half Sa was the light context and Di was the dark context. The 
symbol “ + ” indicates that stimuli were presented simultaneously

Groups Pre-Test (Day 1) Preexposure (Day 2) Conditioning (Days 
3–5-7)

Test (Days 4–6-8)

Same context preexposure (Sa) CS1 (Sa) CS1

Different context preexposure (Di) CS1 (Di) CS1 (Sa) CS1 + US (Sa) CS1

Same context no preexposure (Sa) CS2 (Sa) CS2

Different context no preexposure (Di) CS2 (Di) CS2
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Fig. 2   Experimental Results. This figure represents the mean number 
of tentacle-lowering responses (CR) made by the different groups: 
same context-preexposure, different context-preexposure, same con-
text-no preexposure and different context-no preexposure throughout 
the three experimental tests for the circadian variant (panel A) and 
the light variant (panel B). Vertical bars represent SEMs
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In the circadian replica, the effect of the training con-
text was significant [ANOVA: F1, 44 = 6.786, P = 0.012, 
η2

p = 0.134], but there were no significant interactions 
between the training context and the other factors, neither 
with the stimulus preexposure [ANOVA: F1, 44 = 0.710, 
P = 0.404, η2

p = 0.016] nor with the preexposure context 
[ANOVA: F1, 44 = 1.721, P = 0.196, η2

p = 0.038]. Also, the 
second-degree interaction was not significant [ANOVA: 
F1, 44 = 0.676, P = 0.415, η2

p = 0.015]. These results reflect 
higher means in one context than in the other but, since they 
are counterbalanced, the effect was offset and it did not affect 
the validity of the results. Thus, the data were collapsed.

In the light replica, the analyses did not show a signifi-
cant effect of the training context [ANOVA: F1, 45 = 0.336, 
P = 0.565, η2

p = 0.007]. Also, there were no significant dif-
ferences in the interaction of the training context with the 
stimulus preexposure [ANOVA: F1, 45 = 0.926, P = 0.341, 
η2

p = 0.020], the interaction with the preexposure con-
text [ANOVA: F1, 45 = 0.098, P = 0.755, η2

p = 0.002] and 
in the second-degree interaction [ANOVA: F1, 45 = 0.015, 
P = 0.902, η2

p = 0.000]. As in the circadian replica, these 
data were collapsed.

The second set of analyses was made to find out whether 
there was a preference for one of the odours during the pre-
test for each experimental replica. One-factor ANOVA was 
made with the pre-test as dependent variable and the four 
groups as independent variable. In both replicas, there were 
no significant differences in the preference for one odour: 
the circadian replica [ANOVA: F3, 48 = 1.004, P = 0.399, 
η2

p = 0.059] and the light replica [ANOVA: F3, 49= 1.439, 
P = 0.243, η2

p = 0.081].
Then, several analyses were performed to examine the 

data represented in Fig. 2. For each replica, a repeated-meas-
ures ANOVA was carried out with the tests as the within-
subjects factor, whereas the preexposure context and the 
stimulus preexposure were the between-subjects factors.

In the circadian replica, the analysis indicated a signifi-
cant effect of the tests [ANOVA: F2, 96 = 10.743, P < 0.001, 
η2

p = 0.183], but not of the stimulus preexposure [ANOVA: 
F1, 48 = 0.247, P = 0.621, η2

p = 0.005] or of the preexposure 
context [ANOVA: F1, 48 = 0.001, P = 0.979, η2

p = 0.000]. 
Moreover, it showed a significant effect of the interactions 
between the tests and the stimulus preexposure [ANOVA: 
F2, 96 = 5.057, P = 0.009, η2

p = 0.095], the tests and the 
preexposure context [ANOVA: F2, 96 = 3.619, P = 0.032, 
η2

p = 0.070], and the preexposure context with the stimulus 
preexposure [ANOVA: F1, 48 = 5.928, P = 0.019, η2

p = 0.110]. 
Nevertheless, the second-degree interaction was not signifi-
cant [ANOVA: F2, 96 = 2.091, P = 0.129, η2

p = 0.042].
For the light replica, the statistical analyses presented 

a significant effect of the tests [ANOVA: F2, 98 = 20.667, 
P < 0.001, η2

p = 0.297] and the stimulus preexposure 
[ANOVA: F1, 49 = 9.771, P = 0.003, η2

p = 0.166], but not 

a significant effect of the preexposure context [ANOVA: 
F1, 49 = 0.748, P = 0.391, η2

p = 0.015]. In addition, the analy-
ses of the interactions showed a significant effect between 
the preexposure context and the stimulus preexposure 
[ANOVA: F1, 49 = 16.508, P < 0.001, η2

p = 0.252] and the 
preexposure context with the tests [ANOVA: F2, 98 = 3.119, 
P = 0.049, η2

p = 0.060], but not for the interaction between 
the preexposure and the tests [ANOVA: F 2, 98 = 0.850, 
P = 0.410, η2

p = 0.017] or for the second-degree interaction 
[ANOVA: F 2, 98 = 2.393, P = 0.108, η2

p = 0.047].
The results for both experimental replicas suggested that 

subjects showed different CR levels depending on the stimu-
lus preexposed (CS1 or CS2) and the context of the preex-
posure phase (light or dark context). According to Fig. 2, in 
both panels (A and B), which represent the circadian and the 
light replicas, respectively, the main differences among the 
groups were observed in test 2. So, an analysis of the effect 
of the test was carried out with the Bonferroni pairwise com-
parisons to corroborate this issue.

In both replicas, it was shown that there existed signifi-
cant differences between test 1 and test 2 (circadian replica: 
test1 MDS 5.34 ± 0.28, test2 MDS 6.13 ± 0.34, P = 0.026; 
light replica test1 MDS 3.96 ± 0.35, test2 MDS 5.26 ± 0.28, 
P < 0.001) and test 1 and test 3 (circadian replica test1 MDS 
5.34 ± 0.28, test3 MDS 6.92 ± 0.28, P < 0.001; light replica 
test1 MDS 3.96 ± 0.35, test3 MDS 5.83 ± 0.28, P < 0.001). 
Nevertheless, there were no significant differences between 
test 2 and test 3 (circadian replica test2 MDS 6.13 ± 0.34, 
test3 MDS 6.92 ± 0.28, P = 0.117; light replica test2 MDS 
5.26 ± 0.28, test3 MDS 5.83 ± 0.28, P = 0.055).

These results supported the idea that the main differences 
among the groups take place in test 2. The results shown in 
test 2 were analysed with a Univariate ANOVA for each rep-
lica. The context preexposure and the stimulus preexposure 
were the between-subjects factors.

The analysis of test 2 in the circadian replica did not show 
a significant effect of the preexposure context [ANOVA: 
F1, 48 = 1.234, P = 0.272, η2

p = 0.025] or the stimulus pre-
exposure [ANOVA: F1, 48 = 3.183, P = 0.081, η2

p = 0.062]. 
However, it showed significant differences in the interac-
tion between them [ANOVA: F1, 48 = 7.314, P = 0.009, 
η2

p = 0.132].
In the light replica, a significant effect of the preexposure 

context was revealed [ANOVA: F1, 49 = 7.304, P = 0.009, 
η2

p = 0.130] as well as in the stimulus preexposure [ANOVA: 
F1, 49 = 13.457, P < 0.001, η2

p = 0.215]. Furthermore, as in 
the circadian replica, the effect of the interaction between 
them was significant [ANOVA: F1, 49 = 16.571, P < 0.001, 
η2

p = 0.253].
In test 2, both replicas showed a significant effect of 

the interaction between the preexposure context and the 
stimulus preexposure. This interaction was analysed 
with the Bonferroni pairwise comparisons. It showed 
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significant differences between same context—preexpo-
sure group and same context—no preexposure group (cir-
cadian replica: MDS 4.36 ± 0.55, MDS 7.21 ± 0.82 respec-
tively, P = 0.002; light replica: MDS 2.96 ± 0.47, MDS 
6.36 ± 0.34 respectively, P < 0.001) in which the tentacle-
lowering mean of same context—preexposure group was 
lower than the tentacle-lowering mean of same context- no 
preexposure group. These results indicated that there were 
not equivalent CR in the same context-preexposure groups 
with respect to those that received another CS and it is 
congruent with the LI effect.

In addition, there were significant differences in the 
tentacle-lowering mean between same context-preex-
posure group and different context-preexposure group 
(circadian replica: MDS 4.36 ± 0.55, 6.79 ± 0.54 respec-
tively, P = 0.007; light replica: MDS 2.96 ± 0.47, MDS 
5.93 ± 0.56, respectively P < 0.001), so the results suggest 
that there was an effect of the context involved in the LI 
performance, which is congruent with context specificity 
of LI.

However, the analyses did not show significant differences 
(circadian replica P = 0.536; light replica P = 0.779) between 
the tentacle-lowering mean of the different context—preex-
posure group and the mean of the different context—no pre-
exposure group (circadian replica: MDS 6.79 ± 0.54, MDS 
6.2 ± 0.44; light replica: MDS 5.93 ± 0.56, MDS 5.75 ± 0.33, 
respectively). These results indicate that there were equiva-
lent conditioning levels in the different context-preexposure 
groups with respect to those that received another CS.

Also, there were no significant differences (circadian 
replica P = 0.286; light replica P = 0.343) between the same 
context-no preexposure and different context- no preexpo-
sure (circadian replica: MDS 7.21 ± 0.82, MDS 6.2 ± 0.44; 
light replica MDS 6.36 ± 0.34, MDS 5.75 ± 0.33, respec-
tively). These results indicate that there were equivalent 
conditioning levels in both control groups.

According to Fig. 2 and the statistical analyses for both 
experimental replicas, during test 1 and test 2 subjects which 
were preexposed to the CS1 in the same context as the con-
ditioning and the tests presented a lower CR, in contrast 
with subjects which were preexposed to the CS2 or were 
preexposed to CS1 but in a different context. These differ-
ences among the groups were significant in test 2. Finally, 
the differences disappeared in test 3 as all the groups showed 
an equivalent CR. The results of these experiments support 
the idea that subjects from the group same context- preex-
posure exhibited a conditioning acquisition delay, which can 
be interpreted as LI. Also, subjects from the group different 
context-preexposure showed an attenuation of LI phenom-
enon produced by a context change (the context specific-
ity of LI). This effect takes place regardless of the replica. 
Therefore, both context cues (the photoperiod or the light) 
were equally effective.

General discussion

The purpose of the current study was to determine the con-
text specificity of LI in the snail Cornu aspersum, using 
the Pavlovian Conditioning of tentacle lowering proce-
dure. The experiment presented here had two replicas: the 
circadian replica, in which the photoperiod (determined 
by the hour of the day and the illumination) was used as 
context; and the light replica, in which only the light was 
used as context. The second one (the light replica) was 
performed to reproduce the results observed in the circa-
dian replica and simplify the procedure.

The study has found that subjects which were preex-
posed to the CS1 in the same context as the conditioning 
and the tests showed the lowest CR mean during the tests 
1 and 2. Nevertheless, in test 3, these subjects reached an 
equivalent conditioning level as the rest of the groups. 
These results showed a delay of the conditioning acquisi-
tion which can be considered an instance of LI phenom-
enon. The second major finding was that subjects which 
were preexposed to the CS1 in a different context than the 
conditioning and the tests showed an equivalent level of 
CR throughout the three tests as subjects which were pre-
exposed to the CS2. In addition, during the first two tests, 
these subjects presented a higher CR level than subjects 
which were preexposed to the CS1 in the same context as 
the conditioning and the tests. These results support the 
idea that a context change during the preexposure of the 
CS1 affects LI. The present study is, therefore, the first 
attested evidence about context specificity of LI in terres-
trial mollusks and can be added to the only study we are 
aware of that found contextual specificity of LI in an inver-
tebrate species (Jacob et al. 2021). The results obtained in 
both experimental replicas (the circadian replica and the 
light replica) show that the use of the photoperiod or the 
light as context produces an equivalent context specific-
ity. Nevertheless, the use of the light as context offers a 
simpler experimental procedure.

The results of LI and their context specificity observed 
in these experimental replicas may be explained by several 
learning theories. On the one hand, the Acquisition models 
suggest that the CS preexposure reduces the associative 
strength of this stimulus with the US during condition-
ing. Therefore, failure in the acquisition of the CS-US 
association is produced (e.g., Lubow et al. 1976, 1981; 
Mackintosh 1975; McLaren et al. 1989; Pearce and Hall 
1980; Wagner 1978, 1981; see Serra and De la Casa 1989 
for a review). Moreover, the Wagner account (1978, 1981) 
offers an explanation for the context specificity of LI and 
it shows that, during the CS preexposure, this stimulus 
is paired with the context and reduces the associative 
strength of the CS to establish other associations, which 
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causes the failure in the acquisition of the CS-US associa-
tion. However, if the preexposure is performed in a differ-
ent context than conditioning, the CS recovers its associa-
tive strength during the conditioning phase and the failure 
in the acquisition of the CS-US association does not occur.

On the other hand, the Retrieval models predict that the 
CS-US association will be acquired during the condition-
ing phase, but the CS preexposure will interfere in the per-
formance CS-US association, giving a failure in memory 
retrieval. In addition, this interference is modulated by the 
context so, if the CS preexposure takes place in a different 
context than conditioning context, this interference does not 
happen and the memory of the CS-US association is recov-
ered (e.g., Bouton 1993; Miller et al. 1986; Escobar and 
Miller 2010; Schmajuk et al. 1996; Weiner 1990; see Lubow 
and Weiner 2010 for a review).

According to the literature, several studies about the con-
text effect in learning phenomena suggest that the associa-
tion between the context and the US is not enough to explain 
the phenomenon. For example, a conditioned suppression 
study showed that an association between the context and the 
US is not necessary for the influence of the context over the 
CS performance to occur (see Bouton and King 1983, 1986). 
However, our study was not specifically designed to evaluate 
which of these models better explains the present results. For 
example, no test was included to measure the conditioning 
level of the contexts and no tests in a third context (a neutral 
context) were included either, which would have allowed us 
to discern between the Wagner account (1978, 1981) and 
the Retrieval models.

Prior studies have noted the importance of neural mecha-
nisms involved in the LI performance. For example, in the 
attentional model of Schmajuk (1987) it is suggested that 
the hippocampus is involved in several psychological pro-
cesses such as the inhibition of the response or the retrieval 
of contextual information which are necessary for LI to 
occur (Schmajuk 1987). This has been confirmed by exten-
sive research using humans and other vertebrate species, 
such as rodents (e.g.,Solomon and Moore 1975; Puga et al. 
2007; Weiner 1990). Furthermore, it has been shown that 
other brain areas are involved in LI such as the ventral coch-
lear nucleus, the perirhinal cortex, the accumbens nucleus, 
the entorhinal cortex (Puga et al. 2007; Weiner 2003) the 
mesolimbic system (e.g., Weiner 1990) or the parabrachial 
nucleus (e.g., Gasalla et al. 2016). However, in recent years, 
the research on LI has developed considerably, providing 
relevant evidence for this phenomenon taking place in sim-
ple animals without these nervous structures, including the 
first evidence about context specificity of LI in the insect 
Drosophila melanogaster (Jacob et al. 2021).

One limitation of the present study and other investiga-
tions based on Classical Conditioning procedures is that they 
are susceptible to be confused with the effects of habituation 

and sensitization, which call in question the LI evidence in 
invertebrates (Lubow and Weiner 2010). Even though no 
test has been performed to rule out these alternative explana-
tions for these experiments, a similar procedure (Loy et al.’s 
(2006) Experiment 1) showed an absence of habituation 
effects after 6 unreinforced exposures to CS by the unpaired 
group (Fig. 1A, p. 307). Therefore, it is difficult to explain 
the results of the present analysis by a phenomenon other 
than LI.

In addition to this, the studies of LI in invertebrates could 
reinforce research on neuromodulators which could be pre-
sent in both vertebrate and in invertebrate animals (e.g., Van 
Damme et al. 2020). Thus, to understand complex learning 
phenomena as LI, it is necessary to broaden the range of 
both learning procedures and subject species.
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