Skip to main content
Log in

Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Ethnic fermented foods are known for their unique aroma, flavour, taste, texture and other sensory properties preferred by every ethnic community in this world culturally as parts of their eatables. Some beneficial microorganisms associated with fermented foods have several functional properties and health-promoting benefits. Bacteriocins are the secondary metabolites produced by the microorganisms mostly lactic acid bacteria present in the fermented foods which can act as lantibiotics against the pathogen bacteria. Several studies have been conducted regarding the isolation and characterization of potent strains as well as their association with different types of bacteriocins. Collective information regarding the gene organizations responsible for the potent effect of bacteriocins as lantibiotics, mode of action on pathogen bacterial cells is not yet available. This review focuses on the gene organizations, pathways include for bacteriocin and their mode of action for various classes of bacteriocins produced by lactic acid bacteria in some ethnic fermented foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adopted from Cheigh et al., 2005)

Fig. 2

(adopted from Halami, 2019; Iftime et al., 2015; Mathur et al., 2017; Xin et al., 2016; Xu et al., 2020a, 2020b)

Similar content being viewed by others

References

  • Abanoz HS, Kunduhoglu B. Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria. Food Science of Animal Resources. 38: 1064-1079 (2018)

    Google Scholar 

  • Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiology Reviews. 42: 805-28 (2018)

    CAS  PubMed  Google Scholar 

  • Akkoc N, Ghamat A, Akcelik M. Optimisation of bacteriocin production of Lactococcus lactis subsp. lactis MA23, a strain isolated from Boza. International Journal of Dairy Technology. 64: 425-32 (2011)

    CAS  Google Scholar 

  • Alizadeh AM, Hashempour-Baltork F, Alizadeh-Sani M, Maleki M, Azizi-Lalabad M, Khosravi-Darani K. Inhibition of Clostridium (C.) botulinum and its toxins by probiotic bacteria and their metabolites: an update review. Quality Assurance and Safety of Crops & Foods. 12: 59-68 (2020)

    CAS  Google Scholar 

  • Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology. 100: 2939-2951 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  • An Y, Wang Y, Liang X, Yi H, Zuo Z, Xu X, Zhang D, Yu C, Han X. Purification and partial characterization of M1-UVs300, a novel bacteriocin produced by Lactobacillus plantarum isolated from fermented sausage. Food Control. 81: 211-217 (2017)

    CAS  Google Scholar 

  • Ashaolu TJ, Reale A. A holistic review on Euro-Asian lactic acid bacteria fermented cereals and vegetables. Microorganisms. 8: 1176. https://doi.org/10.3390/microorganisms8081176 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Baños A, Ariza JJ, Nuñez C, Gil-Martínez L, García-López JD, Martínez-Bueno M, Valdivia E. Effects of Enterococcus faecalis UGRA10 and the enterocin AS-48 against the fish pathogen Lactococcus garvieae. Studies in vitro and in vivo. Food Microbiology. 77: 69-77 (2019)

    PubMed  Google Scholar 

  • Barbour A, Wescombe P, Smith L. Evolution of lantibiotic salivaricins: New weapons to fight infectious diseases. Trends in Microbiology. 28: 578-93 (2020)

    CAS  PubMed  Google Scholar 

  • Bédard F, Hammami R, Zirah S, Rebuffat S, Fliss I, Biron E. Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof. Scientific Reports. 8: 9029. https://doi.org/10.1038/s41598-018-27225-3 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhutia MO, Thapa N, Shangpliang HNK, Tamang JP. Metataxonomic profiling of bacterial communities and their predictive functional profiles in traditionally preserved meat products of Sikkim state in India. Food Research International. 140: 110002. https://doi.org/10.1016/j.foodres.2020.110002 (2021)

    Article  CAS  Google Scholar 

  • Biscola V, Todorov SD, Capuano VS, Abriouel H, Gálvez A, Franco BD. Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Science. 93: 607-613 (2013)

    CAS  PubMed  Google Scholar 

  • Biswas K, Upadhayay S, Rapsang GF, Joshi SR. Antibacterial and synergistic activity against β-Lactamase-producing nosocomial bacteria by bacteriocin of LAB isolated from lesser known traditionally fermented products of India. HAYATI Journal of Biosciences. 24: 87-95 (2017)

    Google Scholar 

  • Bourdichon F, Laulund S,Tenning P. Inventory of microbial species with a rationale: a comparison of the IDF/EFFCA inventory of microbial food cultures with the EFSA Biohazard Panel qualified presumption of safety. FEMS Microbiology Letters. 366(5): 1-6 (2019)

    Google Scholar 

  • Butorac K, Banić M, Novak J, Pavunc AL, Uroić K, Durgo K, Oršolić N, Kukolj M, Radović S, Scalabrin S, Žučko J, Starčević A, Šušković J, Kos B. The functional capacity of plantaricin-producing Lactobacillus plantarum SF9C and S-layer-carrying Lactobacillus brevis SF9B to withstand gastrointestinal transit. Microbial Cell Factories. 19: 106. https://doi.org/10.1186/s12934-020-01365-6 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao S, Du R, Zhao F, Xiao H, Han Y, Zhou Z. The mode of action of bacteriocin CHQS, a high antibacterial activity bacteriocin produced by Enterococcus faecalis TG2. Food Control. 96: 470-8 (2019)

    CAS  Google Scholar 

  • Cavicchioli VQ, Todorov SD, Iliev I, Ivanova I, Drider D, Nero LA. Physiological and molecular insights of bacteriocin production by Enterococcus hirae ST57ACC from Brazilian artisanal cheese. Brazilian Journal of Microbiology. 50: 369-377 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakicherla A, Ecale Zhou CL, Dang ML, Rodriguez V, Hansen JN, Zemla A. SpaK/SpaR two-component system characterized by a structure-driven domain-fusion method and in vitro phosphorylation studies. PLOS Computational Biology. 5: e1000401. https://doi.org/10.1371/journal.pcbi.1000401 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary A, Bhalla S, Patiyal S, Raghava GPS, Sahni G. FermFooDb: A database of bioactive peptides derived from fermented foods. Heliyon. 8, 7: e06668 (2021).https://doi.org/10.1016/j.heliyon.2021.e06668.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheigh CI, Pyun YR. Nisin biosynthesis and its properties. Biotechnology Letters. 27: 1641-1648 (2005)

    CAS  PubMed  Google Scholar 

  • Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, Abert-Vian M. Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science and Emerging Technologies. 41: 357-77 (2017)

    CAS  Google Scholar 

  • Chen YS, Wu HC, Kuo CY, Chen YW, Ho S, Yanagida F. Leucocin C-607, a novel bacteriocin from the multiple-bacteriocin-producing Leuconostoc pseudomesenteroides 607 isolated from persimmon. Probiotics and Antimicrobial Proteins. 10: 148-56 (2018)

    CAS  PubMed  Google Scholar 

  • Chi H, Holo H. Synergistic antimicrobial activity between the broad spectrum bacteriocin garvicin KS and nisin, farnesol and polymyxin B against Gram-positive and Gram-negative bacteria. Current Microbiology. 75: 272-7 (2018)

    CAS  PubMed  Google Scholar 

  • Choeisoongnern T, Sivamaruthi BS, Sirilun S, Peerajan S, Choiset Y, Rabesona H, Haertlé T, Chaiyasut C. Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products. Food Science and Technology. 40: 571-579 (2020)

    Google Scholar 

  • Choi HJ, Cheigh CI, Kim SB, Pyun YR. Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. Journal of Applied Microbiology. 88: 563-571 (2000)

    CAS  PubMed  Google Scholar 

  • Colombo NS, Chalón MC, Navarro SA, Bellomio A. Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Current Genetics. 64: 345-51 (2018)

    Google Scholar 

  • Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Comprehensive Reviews in Food Science and Food Safety. 20: 863-99 (2021)

    CAS  PubMed  Google Scholar 

  • Das S, Tamang JP. Changes in microbial communities and their predictive functionalities during fermentation of toddy, an alcoholic beverage of India. Microbiological Research. 248: 126769 (2021)

    CAS  PubMed  Google Scholar 

  • Dávila-Aviña JE, Solís-Soto LY, Rojas-Verde G, Salas NA. Sustainability and challenges of minimally processed foods. In: Siddiqui M., Rahman M. (eds) Minimally Processed Foods. Food Engineering Series. Springer, Cambridge. https://doi.org/10.1007/978-3-319-10677-9_12 (2015)

    Google Scholar 

  • Dickman R, Mitchell, SA, Figueiredo, AM, Hansen, DF, Tabor AB. Molecular recognition of lipid II by lantibiotics: synthesis and conformational studies of analogues of nisin and mutacin rings A and B. The Journal of Organic Chemistry. 84: 11493-11512 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet (-) microbe (-) host interaction. Microorganisms. 7: 19.https://doi.org/10.3390/microorganisms7010019 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients. 11(8): 1806. https://doi.org/10.3390/nu11081806 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Drider D, Fimland G, Héchard Y, McMullen LM, Prévost, H. The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews. 70: 564-582 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duperthuy M. Antimicrobial peptides: virulence and resistance modulation in Gram-negative bacteria. Microorganisms. 8: 280. https://doi.org/10.3390/microorganisms8020280 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • El-Gendy AO, Brede DA, Essam TM, Amin MA, Ahmed SH, Holo H, Nes IF, Shamikh YI. Purification and characterization of bacteriocins-like inhibitory substances from food isolated Enterococcus faecalis OS13 with activity against nosocomial enterococci. Scientific Reports. 11: 3795. https://doi.org/10.1038/s41598-021-83357-z (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PloS One. 8: e64010 (2013)

    PubMed  PubMed Central  Google Scholar 

  • Gaggia F, Di Gioia D, Baffoni L, Biavati B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends in Food Science and Technology. 22: 58-66 (2011)

    Google Scholar 

  • Gao Y, Li D, Liu S, Zhang L. Garviecin LG34, a novel bacteriocin produced by Lactococcus garvieae isolated from traditional Chinese fermented cucumber. Food Control. 50: 896-900 (2015)

    CAS  Google Scholar 

  • Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms. 9: 349. https://doi.org/10.3390/microorganisms9020349 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gutierrez E, O’Connor PM, Saalbach G, Walsh CJ, Hegarty JW, Guinane CM, Mayer MJ, Narbad A, Cotter PD. First evidence of production of the lantibiotic nisin P. Scientific Report. 10: 3738. https://doi.org/10.1038/s41598-020-60623-0 (2020)

    Article  CAS  Google Scholar 

  • Geiger C, Spieß T, Korn SM, Kötter P, Entian KD. Specificity of subtilin-mediated activation of histidine kinase SpaK. Applied and Environmental Microbiology. 83: e00781-17. https://doi.org/10.1128/AEM.00781-17 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel A, Halami PM, Tamang JP. Genome analysis of Lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Frontiers in Microbiology. 11: 40. https://doi.org/10.3389/fmicb.2020.00040 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Golneshin A, Gor MC, Williamson N, Vezina B, Van TT, May BK, Smith AT. Discovery and characterisation of circular bacteriocin plantacyclin B21AG from Lactiplantibacillus plantarum B21. Heliyon. 6: e04715. https://doi.org/10.1016/j.heliyon.2020.e04715 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong HS, Meng XC, Wang H. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1. 0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control. 21: 89-96 (2010)

    CAS  Google Scholar 

  • Goyal C, Malik RK, Pradhan D. Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. Journal of Food Science and Technology. 55: 3683-3692 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gratia A. Sur un remarquable exemple d'antagonisme entre deux souches de coilbacille. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales. 93: 1040-1042 (1925)

    Google Scholar 

  • Gutiérrez-Cortés C, Suarez H, Buitrago G, Nero LA, Todorov SD. Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Annals of Microbiology. 68: 383-398 (2018)

    Google Scholar 

  • Halami PM. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity. Microbial Pathogenesis. 128: 139-46 (2019)

    CAS  PubMed  Google Scholar 

  • Hammi I, Amensag K, Ennahar S, Delalande F, Marchioni E, Cianferani S, Belkhou R. Native production of pediocin PA-1 by Enterococcus faecium E16 isolated from goats' cheese. Journal of Food & Nutrition Research. 58: 1-8 (2019)

    CAS  Google Scholar 

  • Han EJ, Lee NK, Choi SY, Paik HD. Bacteriocin KC24 produced by Lactococcus lactis KC24 from kimchi and its antilisterial effect in UHT milk. Journal of Dairy Science. 96: 101-104 (2013)

    CAS  PubMed  Google Scholar 

  • Hashim H, Sikandar S, Khan MA, Qurashi AW. 3. Bacteriocin: the avenues of innovation towards applied microbiology. Pure and Applied Biology (PAB). 8: 460-78 (2019)

    CAS  Google Scholar 

  • Hernández-González JC, Martínez-Tapia A, Lazcano-Hernández G, García-Pérez BE, Castrejón-Jiménez NS. Bacteriocins from lactic acid bacteria: a powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals. 11: 979. https://doi.org/10.3390/ani11040979 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Holzapfel WH, Wood BJB. Lactic Acid Bacteria: Biodiversity and Taxonomy. Wiley-Blackwell. ISBN-10 : 9781444333831 (2014)

  • Hu Y, Liu X, Shan C, Xia X, Wang Y, Dong M, Zhou J. Novel bacteriocin produced by Lactobacillus alimentarius FM-MM4 from a traditional Chinese fermented meat Nanx Wudl: Purification, identification and antimicrobial characteristics. Food Control. 77: 290-297 (2017)

    CAS  Google Scholar 

  • Hwang IC, Oh JK, Kim SH, Oh S, Kang DK. Isolation and characterization of an anti-listerial bacteriocin from Leuconostoc lactis SD501. Korean Journal for Food Science of Animal Resources. 38: 1008 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Iftime D, Jasyk M, Kulik A, Imhoff JF, Stegmann E, Wohlleben W, Süssmuth RD, Weber T. Streptocollin, a type IV lanthipeptide produced by Streptomyces collinus Tü 365. ChemBioChem. 16: 2615-23 (2015)

    CAS  PubMed  Google Scholar 

  • Islam MR, Nagao JI, Zendo T, Sonomoto K. Antimicrobial mechanism of lantibiotics. Biochemical Society Transactions. 40: 1528-1533 (2012)

    CAS  PubMed  Google Scholar 

  • Islam R, Hossain MN, Alam MK, Uddin ME, Rony MH, Imran MA, Alam MF. Antibacterial activity of lactic acid bacteria and extraction of bacteriocin protein. Advances in Bioscience and Biotechnology. 11: 49-59 (2020)

    CAS  Google Scholar 

  • Jacob F, Lwoff A, Siminovitch A, Wollman E. Definition of some terms relative to lysogeny. Annales de l'Institut Pasteur. 84: 222-224 (1953)

    CAS  PubMed  Google Scholar 

  • Jans C, Bugnard J, Njage PM, Lacroix C, Meile L. Lactic acid bacteria diversity of African raw and fermented camel milk products reveals a highly competitive, potentially health-threatening predominant microflora. LWT-Food Science and Technology. 47: 371-379 (2012)

    CAS  Google Scholar 

  • Johnson E, Jung YG, Jin Y, Jayabalan R, Yang SH, Suh JW. Bacteriocins as food preservatives: challenges and emerging horizons. Critical Reviews in Food Science and Nutrition. 58: 2743-2767 (2019)

    Google Scholar 

  • Jones L. Dehydroamino acid chemical biology: an example of functional group interconversion on proteins. RSC Chemical Biology. 1: 298-304 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaškonienė V, Stankevičius M, Bimbiraitė-Survilienė K, Naujokaitytė, G, Šernienė, L, Mulkytė K, Malakauskas M, Maruška A. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology. 101: 1323-1335 (2017)

    PubMed  Google Scholar 

  • Kassaa IA, Rafei R, Moukhtar M, Zaylaa M, Gharsallaoui A, Asehraou A, El Omari K, Shahin A, Hamze M, Chihib NE. LABiocin database: a new database designed specifically for Lactic Acid Bacteria bacteriocins. International Journal of Antimicrobial Agents. 54: 771-9 (2019)

    CAS  PubMed  Google Scholar 

  • Kasuga G, Tanaka M, Harada Y, Nagashima H, Yamato T, Wakimoto A, Arakawa K, Kawai Y, Kok J, Masuda T. Homologous expression and characterization of gassericin T and gassericin S, a novel class IIb bacteriocin produced by Lactobacillus gasseri LA327. Applied and Environmental Microbiology. 85: e02815-18. https://doi.org/10.1128/AEM.02815-18 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharnaior P, Tamang JP. Bacterial and fungal communities and their predictive functional profiles in kinema, a naturally fermented soybean food of India, Nepal and Bhutan. Food Research International. 140: 110055. https://doi.org/10.1016/j.foodres.2020.110055 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim WJ, Kang SS. Inhibitory effect of bacteriocin-producing Lactobacillus brevis DF01 and Pediococcus acidilactici K10 isolated from kimchi on enteropathogenic bacterial adhesion. Food Bioscience. 30: 100425. https://doi.org/10.1016/j.fbio.2019.100425 (2019)

    Article  CAS  Google Scholar 

  • Kitagawa N, Otani T, Inai T. Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells. Anatomical Science International. 94: 163-171 (2019)

    CAS  PubMed  Google Scholar 

  • Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 8: 4. https://doi.org/10.3390/biom8010004 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  • Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis. 128: 171-7 (2019)

    CAS  PubMed  Google Scholar 

  • Lafuente-Rincón DF, Chávez TEV, Norma M. Bacteriocins of Gram-positive bacteria: Features and biotherapeutic approach. African Journal of Microbiology Research. 10: 1873-1879 (2016)

    Google Scholar 

  • Lagedroste M, Reiners J, Knospe CV, Smits SHJ, Schmitt L. A structural view on the maturation of lanthipeptides. Frontiers in Microbiology. 9: 1183. https://doi.org/10.3389/fmicb.2020.01183 (2020)

    Article  Google Scholar 

  • Lajis AFB. Biomanufacturing process for the production of bacteriocins from Bacillaceae family. Bioresource and Bioprocessing. 7: 8. https://doi.org/10.1186/s40643-020-0295-z (2020)

    Article  Google Scholar 

  • Lee KH, Moon GS, An JY, Lee HJ, Chang H, Chung D, Lee JH, Kim J. Isolation of a nisin-producing Lactococcus lactis strain from Kimchi and characterization of its nisZ gene. Journal of Microbiology and Biotechnology. 12: 389-397 (2002)

    CAS  Google Scholar 

  • Leech J, Cabrera-Rubio R, Walsh AM, Macori G, Walsh CJ, Barton W, Finnegan L, Crispie F, O’Sullivan O, Claesson MJ, Cotter PD. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. mSystems. 5: e00522-20. https://doi.org/10.1128/mSystems.00522-20 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research. 11: 3919-3931 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Montalban-Lopez M, Kuipers OP. Feasibility of introducing a thioether ring in vasopressin by nisBTC co-expression in Lactococcus lactis. Frontiers in Microbiology. 10: 1508. https://doi.org/10.3389/fmicb.2019.01508 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Song Q, Wang M, Ren J, Liu S, Zhao S. Comparative genomics analysis of Pediococcus acidilactici species. Journal of Microbiology. 59: 573-583 (2021)

    CAS  Google Scholar 

  • Liu H, Zhang L, Yi H, Han X, Chi C. Identification and characterization of plantaricin Q7, a novel plantaricin produced by Lactobacillus plantarum Q7. LWT - Food Science and Technology. 71: 386-390 (2016)

    CAS  Google Scholar 

  • Liu R, Kim AH, Kwak MK and Kang SO. Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-K06 have activities against multidrug-resistant bacteria. Frontiers in Microbiology. 8: 761. https://doi.org/10.3389/fmicb.2017.00761 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Wang Y, Li X, Hao X, Xu D, Zhou Y, Mehmood A, Wang C. Genetic and biochemical evidence that Enterococcus faecalis Gr17 produces a novel and sec-dependent bacteriocin, Enterocin Gr17. Frontiers in Microbiology. 10: 1806. https://doi.org/10.3389/fmicb.2019.01806 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü X, Yi L, Dang J, Dang Y, Liu B. Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control. 46: 264-271 (2014)

    Google Scholar 

  • Lv X, Lin Y, Jie Y, Sun M, Zhang B, Bai F, Zhao H, Li J. Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai. European Food Research and Technology. 244: 323-331 (2018)

    CAS  Google Scholar 

  • Ma J, Yu W, Hou J, Han X, Shao H, Liu Y. Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. International Journal of Food Properties. 23: 677-92 (2020)

    CAS  Google Scholar 

  • Malanovic N, Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals (Basel). 9: 59. https://doi.org/10.3390/ph9030059 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  • Maleke MS, Adefisoye MA, Doorsamy W, Adebo OA. Processing, nutritional composition and microbiology of amasi: A Southern African fermented milk product. Scientific African. 12: e00795. https://doi.org/10.1016/j.sciaf.2021.e00795 (2021)

    Article  Google Scholar 

  • Man LL, Xiang DJ. Characterization of a broad spectrum bacteriocin produced by Lactobacillus plantarum MXG-68 from Inner Mongolia traditional fermented koumiss. Folia Microbiologica. 64: 821-34 (2019)

    CAS  PubMed  Google Scholar 

  • Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, Vuyst LD, et al. (2021). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology & Hepatology. 18: 196-208 (2021)

    Google Scholar 

  • Mathur H, Fallico V, O’Connor PM, Rea MC, Cotter PD, Hill C, Ross RP. Insights into the mode of action of the sactibiotic thuricin CD. Frontiers in Microbiology. 8: 696. https://doi.org/10.3389/fmicb.2017.00696 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur H, Beresford TP, Cotter PD. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients. 12: 1679. https://doi.org/10.3390/nu12061679 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Meade E, Slattery MA, Garvey M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics (Basel). 9: 32. https://doi.org/10.3390/antibiotics9010032 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Melini F, Melini V, Luziatelli F, Ficca AG, Ruzzi M. Health-promoting components in fermented foods: an up-to-date systematic review. Nutrients. 11: 1189. https://doi.org/10.3390/nu11051189 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Menezes AGT, Ramos CL, Cenzi G. et al. Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics and Antimicrobial Proteins. 12: 280-288 (2020)

    CAS  PubMed  Google Scholar 

  • Meng F, Zhu X, Zhao H, Nie T, Lu F, Lu Z, Lu Y. A class III bacteriocin with broad-spectrum antibacterial activity from Lactobacillus acidophilus NX2-6 and its preservation in milk and cheese. Food Control. 121: 107597. https://doi.org/10.1016/j.foodcont.2020.107597 (2021)

    Article  CAS  Google Scholar 

  • Moh LG, Etienne, PT, Jules-Roger K. Seasonal diversity of lactic acid bacteria in artisanal yoghurt and their antibiotic susceptibility pattern. International Journal of Food Science. ID 6674644, 12. https://doi.org/10.1155/2021/6674644 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 22: 1255. https://doi.org/10.3390/molecules22081255 (2017)

    Article  CAS  PubMed Central  Google Scholar 

  • Montalbán-López M, Deng J, van Heel AJ, Kuipers OP. Specificity and application of the lantibiotic protease NisP. Frontiers in Microbiology. 9: 160. https://doi.org/10.3389/fmicb.2018.00160 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazari M, Smith DL. A PGPR-produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Frontiers in Plant Science. 20: 11.https://doi.org/10.3389/fpls.2020.00916 (2020)

    Article  Google Scholar 

  • Negash AW, Tsehai BA. Current applications of bacteriocin. International Journal of Microbiology. https://doi.org/10.1155/2020/4374891 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng, ZJ, Zarin MA, Lee CK, Tan JS. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Advances. 10: 38937-38964 (2020)

    CAS  Google Scholar 

  • Niamah AK. Structure, mode of action and application of pediocin natural antimicrobial food preservative: a review. Basrah Journal of Agricultural Sciences. 31(1): 59–69 (2018)

    Google Scholar 

  • Niamah AK. Structure, mode of action and application of pediocin natural antimicrobial food preservative: a review. Basrah Journal of Agricultural Sciences. 31: 59-69 (2020)

    Google Scholar 

  • Niederhäusern Sd, Camellini S, Sabia C, Iseppi R, Bondi M, Messi P. Antilisterial activity of bacteriocins produced by lactic bacteria isolated from dairy products. Foods. 9(12): 1757. https://doi.org/10.3390/foods9121757 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Noda M, Miyauchi R, Danshiitsoodol N, Matoba Y, Kumagai T, Sugiyama M. Expression of genes involved in bacteriocin production and self-resistance in Lactobacillus brevis 174A is mediated by two regulatory proteins. Applied and Environmental Microbiology. 84: e02707-17. https://doi.org/10.1128/AEM.02707-17 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor PM, O’Shea EF, Cotter PD, Hill C, Ross RP. The potency of the broad spectrum bacteriocin, bactofencin A, against Staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific Reports. 8(1): 1-8 (2018)

    Google Scholar 

  • Pei J, Jin W, Abd El-Aty AM, Baranenko DA, Gou X, Zhang H, Geng J, Jiang L, Chen D, Yue T. Isolation, purification, and structural identification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha. Food Control. 110: 106923. https://doi.org/10.1016/j.foodcont.2019.106923 (2020)

    Article  CAS  Google Scholar 

  • Perez RH, Zendo T, Sonomoto K (2018) Circular and leaderless bacteriocins: biosynthesis, mode of action, applications, and prospects. Frontiers in Microbiology. 9: 2085. https://doi.org/10.3389/fmicb.2018.02085 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR and Yoon YJ. A review of the microbial production of bioactive natural products and biologics. Frontiers in Microbiology. 10: 1404. https://doi.org/10.3389/fmicb.2019.01404 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Pokhrel R, Bhattarai N, Baral P, Gerstman BS, Park JH, Handfield M, Chapagain PP. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140. Physical Chemistry Chemical Physics. 21: 12530-9 (2019)

    CAS  PubMed  Google Scholar 

  • Pradhan P, Tamang JP. Phenotypic and genotypic identification of bacteria isolated from traditionally prepared dry starters of the Eastern Himalayas. Frontiers in Microbiology. 10: 2526. https://doi.org/10.3389/fmicb.2019.02526 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Raheem N, Straus SK. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Frontiers in Microbiology. 10: 2866. https://doi.org/10.3389/fmicb.2019.02866 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasheed HA, Tuoheti T, Zhang Y, Azi F, Tekliye M, Dong M. Purification and partial characterization of a novel bacteriocin produced by bacteriocinogenic Lactobacillus fermentum BZ532 isolated from Chinese fermented cereal beverage (Bozai). LWT-Food Science and Technology. 124: 109113. https://doi.org/10.1016/j.lwt.2020.109113 (2020)

    Article  CAS  Google Scholar 

  • Refay RM, Abushady HM, Amer SA, Mailam MA. Determination of bacteriocin-encoding genes of lactic acid bacteria isolated from traditional dairy products of Luxor province, Egypt. Future Journal of Pharmaceutical Sciences. 6l: 22. https://doi.org/10.1186/s43094-020-00031-3 (2020)

    Article  Google Scholar 

  • Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chemical Reviews. 117: 5457-5520 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezac S, Kok CR, Heermann M, Hutkins R. Fermented foods as a dietary source of live organisms. Frontiers in Microbiology. 9: 1785. https://doi.org/10.3389/fmicb.2018.01785 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Şahingil D, İşleroğlu H, Yildirim Z, Akcelik M, Yildirim M. Characterization of lactococcin BZ produced by Lactococcus lactis subsp. lactis BZ isolated from boza. Turkish Journal of Biology. 35: 21-33 (2011)

    Google Scholar 

  • Samal SK. Leader Sequence. Brenner's Encyclopedia of Genetics. 203-205. https://doi.org/10.1016/B978-0-12-374984-0.00850-0 (2013)

    Article  PubMed Central  Google Scholar 

  • Sandiford SK. An overview of lantibiotic biosynthetic machinery promiscuity and its impact on antimicrobial discovery. Expert Opinion on Drug Discovery. 15: 373-82 (2020)

    CAS  PubMed  Google Scholar 

  • Saraiva MAF, Jirata Birri D, Anders Brede D, Baracat-Pereira MC, de Queiroz MV, Nes IF, de Moraes CA. Nisin Z production by wild strains of Lactococcus lactis isolated from Brazilian (Italian Type) fermented sausage. International Journal of Microbiology. 2020: 9309628. https://doi.org/10.1155/2020/9309628 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa N, Koga S, Okamura K, Ishibashi N, Zendo T, Sonomoto K. Identification and characterization of novel multiple bacteriocins produced by L actobacillus sakei D98. Journal of Applied Microbiology. 115: 61-69 (2013)

    CAS  PubMed  Google Scholar 

  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P. Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Frontiers in Microbiology. 8: 2484 (2017) https://doi.org/10.3389/fmicb.2017.02484

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-inflammatory and immunomodulatory properties of fermented plant foods. Nutrients. 13: 1516. https://doi.org/10.3390/nu13051516 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shangpliang HNK, Tamang JP. Phenotypic and genotypic characterizations of lactic acid bacteria isolated from exotic naturally fermented milk (cow and yak) products of Arunachal Pradesh, India. International Dairy Journal. 118: 105038. https://doi.org/10.1016/j.idairyj.2021.105038 (2021)

    Article  CAS  Google Scholar 

  • Shi F, Wang Y, Li Y, Wang X. Mode of action of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Biotechnology Letters. 38: 1551-1557 (2016)

    CAS  PubMed  Google Scholar 

  • Silva CCG, Silva SPM, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology. 9: 594. https://doi.org/10.3389/fmicb.2018.00594 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 8: 639. https://doi.org/10.3390/microorganisms8050639 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Skaugen M, Cintas LM, Nes IF. Genetics of bacteriocin production in lactic acid bacteria. In Genetics of lactic acid bacteria, Springer, Boston, MA, 225-260 (2003)

  • Sogandi S, Mustopa AZ, Artika IM. The characterization of bacteriocins produced by Lactobacillus plantarum strains isolated from traditional fermented foods in Indonesia and the detection of its plantaricin-encoding genes. Indonesian Journal of Biotechnology. 24(1): 1-7 (2019)

    Google Scholar 

  • Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews. https://doi.org/10.1093/femsre/fuaa039 (2021)

    Article  PubMed  Google Scholar 

  • Song DF, Zhu MY, Gu Q. Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS One. 9: e105549. https://doi.org/10.1371/journal.pone.0105549 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spieß T, Korn SM, Kötter P, Entian KD. Autoinduction specificities of the lantibiotics subtilin and nisin. Applied and Environmental Microbiology. 81: 7914-23. https://doi.org/10.1371/journal.pone.0105549 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoyancheva G. Study of helveticin gene in Lactobacillus crispatus strains and evaluation of its use as a phylogenetic marker. Archives of Microbiology. 202: 205-208 (2020)

    CAS  PubMed  Google Scholar 

  • Straume D, Kjos M, Nes IF, Diep DB. Quorum-sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators. Molecular Genetics and Genomics. 278: 283-293 (2007)

    CAS  PubMed  Google Scholar 

  • Sun Z, Wang X, Zhang X, Wu H, Zou Y, Li P, Sun C, Xu W, Liu F, Wang D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. Industrial Microbiology and Biotechnology. 45: 213-27 (2018)

    CAS  PubMed  Google Scholar 

  • Tamang JP, Tamang B, Schillinger U, Franz CMAP, Gores M, Holzapfel WH. Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. International Journal of Food Microbiology. 105: 347-356 (2005)

    CAS  PubMed  Google Scholar 

  • Tamang B, Tamang JP, Schillinger U, Franz CMAP, Gores M, Holzapfel WH. Phenotypic and genotypic identification of lactic acid bacteria isolated from ethnic fermented tender bamboo shoots of North East India. International Journal of Food Microbiology. 121: 35-40 (2008)

    CAS  PubMed  Google Scholar 

  • Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH. Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. International Journal of Food Microbiology. 135: 28-33 (2009)

    CAS  PubMed  Google Scholar 

  • Tamang JP, Holzapfel WH, Watanabe K. Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology. 7: 377. https://doi.org/10.3389/fmicb.2016.00377 (2016a)

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamang JP, Shin DH, Jung SJ, Chae SW. Functional properties of microorganisms in fermented foods. Frontiers in Microbiology. 7: 578. https://doi.org/10.3389/fmicb.2016.00578 (2016b)

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamang JP, Watanabe K, Holzapfel WH. Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology 7: 377. https://doi.org/10.3389/fmicb.2016.00578 (2016b)

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamang JP, Cotter P, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: east meets west. Comprehensive Reviews in Food Science and Food Safety. 19: 184-217 (2020)

    PubMed  Google Scholar 

  • Tamang JP, Jeyaram K, Rai AK, Mukherjee PK. Diversity of beneficial microorganisms and their functionalities in community-specific ethnic fermented foods of the Eastern Himalayas. Food Research International. 148: 110633. https://doi.org/10.1016/j.foodres.2021.110633 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Tankoano A, Diop MB, Sawadogo-Lingani H, Mbengue M, Kaboré D, Traoré Y, Savadogo A. Isolation and characterization of lactic acid bacteria producing bacteriocin like inhibitory substance (BLIS) from “Gappal”, a dairy product from Burkina Faso. Advances in Applied Microbiology. 9: 343-358 (2019)

    CAS  Google Scholar 

  • Teneva-Angelova T, Hristova I, Pavlov A, Beshkova, D. Chapter 4 - Lactic Acid Bacteria—from nature through food to health. Editor(s): Holban AM, Grumezescu AM, In Handbook of Food Bioengineering, Advances in Biotechnology for Food Industry, Academic Press, pp. 91-133 (2018)

  • Tosukhowong A, Zendo T, Visessanguan W, Roytrakul S, Pumpuang L, Jaresitthikunchai J, Sonomoto K. Garvieacin Q, a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Applied and Environmental Microbiology. 78: 1619-1623 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Federal Register (U.S. Food and Drug Administration): Nisin preparation: affirmation of GRAS status as a direct human food ingredient. 21 CFR Part 184, US Federal Register. 53: 11247-11251 (1988)

  • Ullah N, Wang X, Wu J, Guo Y, Ge H, Li T, Khan S, Li Z, Feng X. Purification and primary characterization of a novel bacteriocin, LiN333, from Lactobacillus casei, an isolate from a Chinese fermented food. LWT-Food Science and Technology. 84: 867-75 (2017)

    CAS  Google Scholar 

  • Vezina B, Rehm BHA, Smith AT. Bioinformatic prospecting and phylogenetic analysis reveals 94 undescribed circular bacteriocins and key motifs. BMC Microbiology. 20: 77. https://doi.org/10.1186/s12866-020 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voidarou C, Antoniadou Μ, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagiou A, Bezirtzoglou E. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods (Basel, Switzerland). 10(1): 69. https://doi.org/10.3390/foods10010069 (2021)

    Article  CAS  Google Scholar 

  • Wang Y, Shang N, Qin Y, Zhang Y, Zhang J, Li P. The complete genome sequence of Lactobacillus plantarum LPL-1, a novel antibacterial probiotic producing class IIa bacteriocin. Journal of Biotechnology. 266: 84-88 (2018)

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang S, Ouyang Y, Li R. Current developments of bacteriocins, screening methods and their application in aquaculture and aquatic products. Biocatalysis and Agricultural Biotechnology. 22: 101395. https://doi.org/10.1016/j.bcab.2019.101395 (2019)

    Article  Google Scholar 

  • Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology. 153: 1619-1630 (2007)

    CAS  PubMed  Google Scholar 

  • Woraprayote W, Pumpuang L, Tosukhowong A, Roytrakul S, Perez RH, Zendo T, Sonomoto K, Benjakul S, Visessanguan W. Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293. Food Control. 55: 176-184 (2015)

    CAS  Google Scholar 

  • Xin B, Zheng J, Liu H, Li J, Ruan L, Peng D, Sajid M, Sun M. Thusin, a novel two-component lantibiotic with potent antimicrobial activity against several Gram-positive pathogens. Frontiers in Microbiology. 7: 1115. https://doi.org/10.3389/fmicb.2016.01115 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Yang L, Li P, Gu Q. Heterologous expression of Class IIb bacteriocin plantaricin JK in Lactococcus lactis. Protein Expression and Purification. 159: 10-6. https://doi.org/10.1016/j.pep.2019.02.013 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Fu Y, Liu F, Liu Z, Ma J, Jiang R, Song C, Jiang JT, Hou J. Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT-Food Science and Technology. 137: 110338. https://doi.org/10.1016/j.lwt.2020.110338 (2020)

    Article  CAS  Google Scholar 

  • Xu M, Zhang F, Cheng Z, Bashiri G, Wang J, Hong J, Wang Y, Xu L, Chen X, Huang SX, Lin S. Functional genome mining reveals a class v lanthipeptide containing ad‐amino acid introduced by an F420H2‐dependent reductase. Angewandte Chemie. 59: 18029-18035 (2020)

    CAS  PubMed  Google Scholar 

  • Yi L, Qi T, Hong Y, Deng L, Zeng K. Screening of bacteriocin-producing lactic acid bacteria in Chinese homemade pickle and dry-cured meat, and bacteriocin identification by genome sequencing. LWT-Food Science and Technology. 125: 109177. https://doi.org/10.1016/j.lwt.2020.109177 (2020)

    Article  CAS  Google Scholar 

  • Zhang J, Yang Y, Yang H, Bu Y, Yi H, Zhang L, Han X, Ai L. Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Frontiers in Microbiology. 9: 2165. https://doi.org/10.3389/fmicb.2018.02165 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Gänzle M, Yang X. Complementary antibacterial effects of bacteriocins and organic acids as revealed by comparative analysis of Carnobacterium spp. from meat. Applied and Environmental Microbiology. 85: e01227-19. https://doi.org/10.1128/AEM.01227-19 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Qin Y, Wang Y, Huang Y, Li P, Li P. Lactobacillus plantarum LPL-1, a bacteriocin producing strain, changed the bacterial community composition and improved the safety of low-salt fermented sausages. LWT-Food Science and Technology. 128: 109385. https://doi.org/10.1016/j.lwt.2020.109385 (2020)

    Article  CAS  Google Scholar 

  • Zhao S, Han J, Bie X, Lu Z, Zhang C, Lv F. Purification and characterization of plantaricin JLA-9: a novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. Journal of Agricultural and Food Chemistry. 64: 2754-64 (2016)

    CAS  PubMed  Google Scholar 

  • Zhao X, Yu Z, Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 8: 425. https://doi.org/10.3390/microorganisms8030425 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology. 70: 2782-2858 (2020)

    CAS  PubMed  Google Scholar 

  • Zhong Y, Wu L, Chen X, Huang Z, Hu W. Effects of food-additive-information on consumers' willingness to accept food with additives. International Journal of Environmental Research and Public Health. 15: 2394. https://doi.org/10.3390/ijerph15112394 (2018)

    Article  PubMed Central  Google Scholar 

  • Zimina M, Babich O, Prosekov A, Sukhikh S, Ivanova S, Shevchenko M, Noskova S. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics. 9: 553. https://doi.org/10.3390/antibiotics9090553 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Zommiti M, Bouffartigues E, Maillot O, Barreau M, Szunerits S, Sebei K, Feuilloley M, Connil N, Ferchichi M. In vitro assessment of the probiotic properties and bacteriocinogenic potential of Pediococcus pentosaceus MZF16 isolated from artisanal Tunisian meat “Dried Ossban”. Frontiers in Microbiology. 9: 2607. https://doi.org/10.3389/fmicb.2018.02607 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Prakash Tamang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.R., Halami, P.M. & Tamang, J.P. Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Sci Biotechnol 31, 1–16 (2022). https://doi.org/10.1007/s10068-021-00986-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-021-00986-w

Keywords

Navigation