Skip to main content
Log in

Dominant Enterobacteriaceae in tempeh were primarily originated from soybean

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

During tempeh production, boiling was considered as heat treatment that could significantly reduce or eliminate bacterial population in soybean before fungal inoculation. The objective of this study was to enumerate and trace Enterobacteriaceae communities in pre-boiling soybean, post-boiling soybean, and fresh tempeh designated as RTI and EMP. Standard plate count and qRT-PCR were employed to determine the culturable and non-culturable bacteria, while Enterobacterial Repetitive Intragenic Consensus PCR was conducted to determine the intraspecies genomic variations. Fresh tempeh from both RTI and EMP contained approximately 107 and 108 CFU/g of Enterobacteriaceae respectively. The number of bacteria in pre-boiling soybean were 10,000 times lower than in fresh tempeh. Our study showed that most Enterobacteriaceae were severely injured or quiescent during boiling process and quickly recovered up to 109 CFU/g in fresh tempeh. Some Klebsiella isolates found in tempeh were genetically identical to isolates in soybean, but different from those of medical isolates. This study suggested that soybean could be the main origin of Klebsiella in fresh tempeh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achilleos C, Berthier F. Evaluation of qPCR and plate count for quantifying thermophilic starters in cheese. Food Microbiology. 65: 149-159 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Agrimonti C, Bortolazzi L, Maestri E, Sanangelantoni AM, Marmiroli N. A real-time PCR/SYBR green I method for rapid quantification of Salmonella enterica in poultry meat. Food Analytical Methods. 6: 1004-1015 (2013)

    Article  Google Scholar 

  • Ahmad A, Ramasamy K, Majeed AB, Mani V. Enhancement of beta secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharmaceutical Biology. 53, 758–766 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Ampe F, Benomar N, Moizan C, Wacher C, Guyot J. Polyphasic study of spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentation. Applied and Environmental Microbiology. 65: 5464-5473 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashenafi M. Microbiological evaluation of tofu and tempeh during processing and storage. Plant Foods for Human Nutrition. 45: 183-189 (1994)

    Article  CAS  Google Scholar 

  • Astawan M., Wresdiyati T, Maknun L. Tempe: Sumber Zat Gizi dan Komponen Bioaktif untuk Kesehatan (Tempeh: Source of Nutrients and Bioactive Components for Health). IPB Press, Bogor, Indonesia. pp. 3-28 (2017)

    Google Scholar 

  • Ayu E, Suwanto A, Barus T. Klebsiella pneumoniae from Indonesian tempeh were genetically different from that of pathogenic isolates. Microbiology Indonesia. 8: 9-15 (2014)

    Article  Google Scholar 

  • Barus T, Suwanto A, Wahyudi AT, Wijaya H. Role of bacteria in tempe bitter taste formation: microbiological and molecular biological analysis based on 16S rRNA gene. Microbiology Indonesia. 2: 17-21 (2008)

    Article  Google Scholar 

  • Barus T, Hanjaya I, Sadeli J, Lay BW, Suwanto A, Yulandi A. Genetic diversity of Klebsiella spp., isolated from tempe based on enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). HAYATI Journal of Biosciences. 20: 171-176 (2013)

    Article  Google Scholar 

  • Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens N, Morisset D. Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science and Technology. 37: 115-126 (2014)

    Article  CAS  Google Scholar 

  • BSN (Badan Standarisasi Nasional). Tempe Kedelai (Soybean-Made Tempeh). 3144:2015 ed. SNI (Standard National Indonesia), Jakarta, Indonesia. pp. 6-7 (2015)

  • Cesrany M, Yulandi A, Rusmana I, Suwanto A. Whole genome analysis of Klebsiella: Unique genes associated with isolates from Indonesian tempeh. Malaysian Journal of Microbiology. 13: 273-279 (2017)

    CAS  Google Scholar 

  • Efriwati, Suwanto A, Rahayu G, Nuraida L. Population dynamics of yeasts and lactic acid bacteria (LAB) during tempeh production. HAYATI Journal of Biosciences. 20: 57-64 (2013)

    Article  Google Scholar 

  • Everis L. 2001. Injured bacteria in foods. Nutrition and Food Science. 31: 84-88 (2001)

    Article  Google Scholar 

  • Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. 2004. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. Journal of Experimental Medicine. 199: 697-705 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georghiou PR, Hamill RJ, Wright CE, Versalovic J, Koeuth T, Watson DA, Lupski JR. Molecular epidemiology of infections due to Enterobacter aerogenes: identification of hospital outbreak-associated strains by molecular techniques. Clinical Infectious Diseases. 20: 84-94 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Hanna EM, Hamp TJ, McKillop IH, Bahrani-Mougeot F, Martinie JB, Horton JM, Sindram D, Gharaibeh RZ, Fodor AA, Iannitti DA. Comparison of culture and molecular techniques for microbial community characterization in infected necrotizing pancreatitis. Journal of Surgical Research. 191: 362-369 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Huang HT. Fermentations and Food Science. Cambridge University Press, New York, USA. pp 342-346 (2000)

    Google Scholar 

  • Huiyong D, Tongjie C, Yumei C, Zhaobing Z, Meiling Y, Xingxiao Z. 2008. Transmission identification of Escherichia coli aerosol in chicken houses to their environments using ERIC-PCR. Science China Life Sciences. 51: 164-173 (2008)

    Article  Google Scholar 

  • Ilha EC, Scariot MC, Treml D, Pereira TP, Sant’Anna ES, Prudencio ES, Arisi ACM. Comparison of real-time PCR assay and plate count for Lactobacillus paracasei enumeration in yoghurt. Annals of Microbiology. 66: 597-606 (2015)

    Article  Google Scholar 

  • Jung JY, Lee SH, Lee HJ, Jeon CO. Microbial succession and metabolite changes during fermentation of saeu-jeot: Traditional Korean salted seafood. Food Microbiology. 34: 360-368 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Kakirde KS, Parsley LC, Liles MR. Size does matter: Application-driven approaches for soil metagenomics. Soil Biology and Biochemistry. 42:1911-1923 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keuth S, Bisping B. Vitamin B12 production by Citrobacter freundii or Klebsiella pneumoniae during tempeh fermentation and proof of enterotoxin absence by PCR. Applied and Environmental Microbiology. 60: 1495-1499 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AA, McCarthy S, Wang RF, Cerniglia CE. Characterization of United States outbreak isolates of Vibrio parahaemolyticus using enterobacterial repetitive intergenic consensus (ERIC) PCR and development of a rapid PCR method for detection of O3:K6 isolates. FEMS Microbiology Letters. 206: 209-214 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Lipman LJ, de Nijs A, Lam TJ, Gaastra W. Identification of Escherichia coli strains from cows with clinical mastitis by serotyping and DNA polymorphism patterns with REP and ERIC primers. Veterinary Microbiology. 43: 13-19 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Marchesi JR, Sato T, Weihtman J, Martin TA, Fry JC, Hiom SJ, Wade WG. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding bacterial 16S rRNA. Applied and Environmental Microbiology. 64: 795-799 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Blanch JF, Sanchez G, Garay E, Aznar R. Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. International Journal of Food Microbiology. 135: 15-21 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Millemann Y, Lesage-Descauses MC, Lafont JP, Chaslus-Dancla E. Comparison of random amplified polymorphic DNA analysis and enterobacterial repetitive intergenic consensus-PCR for epidemiological studies of Salmonella. FEMS Immunology and Medical Microbiology. 14: 129-134 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Moreno MRF, Leisner JJ, Tee LK, Ley C, Radu S, Rusul G, Vancanneyt M., De Vuyst L. Microbial analysis of Malaysian tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium. Journal of Applied Microbiology. 92: 147-157 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Nassif X, Fournier JM, Arondel J, Sansonetti J. Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infection and Immunity. 57: 546-552. (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nout MJR, Kiers JL. Tempe fermentation, innovation, and functionality: update into the third millenium. Journal of Applied Microbiology. 98: 789-805 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiology. 28: 848-861 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Radita R, Suwanto A, Kurosawa N, Wahyudi AT, Rusmana I. Metagenome analysis of tempeh production: Where did the bacterial community in tempeh come from?. Malaysian Journal of Microbiology. 13: 280-288 (2017)

    CAS  Google Scholar 

  • Roubos-van den Hil PJ, Nout MJR. Anti-diarrhoeal aspects of fermented soya beans. InTech. 1: 383-406 (2011)

    Google Scholar 

  • Sechi LA, Zanetti S. Dupré I, Delogu G, Fadda G. Enterobacterial repetitive intergenic consensus sequences as molecular targets for typing of Mycobacterium tuberculosis strains. Journal of Clinical Microbiology. 36: 128-132 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde AN, Malpathak N, Fulzele D.P. Determination of isoflavone content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chemistry. 118: 128-132 (2010)

    Article  CAS  Google Scholar 

  • Shurtleff W, Aoyagi A. History of Tempeh and Tempeh Products (1815-2011): Extensively Annotated Bibliography and Sourcebook. Soyinfo Center, Lafayette, USA. pp. 5-6 (2011)

    Google Scholar 

  • Starzynska-Janiszewska A, Stodolak B, Mickowska B. Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds. Journal of the Science of Food and Agriculture. 94: 359-366 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Saito R, Miya S, Kuda T, Kimura B. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae. International Journal Food Microbiology. 246: 92-97 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Kovalis SK, Guggesberg JA, Meske LH, Doyle MP. Evaluation of the microbiological safety of tempeh made from unacidified soybeans. Journal of Food Protection. 48: 438-441 (1985)

    Article  Google Scholar 

  • Van der Zee A, Steer N, Thijssen E, Nelson J, Van’t Veen A, Buiting A. Use of multienzyme multiplex PCR amplifed fragment length polymorphism typing in analysis of outbreaks of multiresistant Klebsiella pneumoniae in an intensive care unit. Journal of Clinical Microbiology. 41: 798-802 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research. 19: 6823-6831 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson LA, Sharp PM. Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Molecular Biology and Evolution. 23: 1156-1168 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PT Wilmar Benih Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonius Suwanto.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilham, H.M., Wijaya, M., Suwanto, A. et al. Dominant Enterobacteriaceae in tempeh were primarily originated from soybean. Food Sci Biotechnol 30, 861–868 (2021). https://doi.org/10.1007/s10068-021-00915-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-021-00915-x

Keywords

Navigation