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Abstract
Introduction Primary Sjögren’s syndrome (pSS) is an autoimmune disease characterized by inflammatory infiltration, and 
dysfunction of the salivary and lacrimal glands. This research aimed to explore the disease pathogenesis and improve the 
diagnosis and treatment of pSS by mining inflammation-associated biomarkers.
Methods Five pSS-related datasets were retrieved from the Gene Expression Omnibus (GEO) database. Inflammation-associated 
biomarkers were determined by the least absolute shrinkage and selection operator (LASSO) and support vector machines recursive 
feature elimination (SVM-RFE). Single sample gene set enrichment analysis (ssGSEA) was implemented to profile the infiltration 
levels of immune cells. Real-time quantitative PCR (RT-qPCR) verified the expression of biomarkers in clinical samples.
Results Four genes (LY6E, EIF2AK2, IL15, and CXCL10) were screened as inflammation-associated biomarkers in pSS, the predic-
tive performance of which were determined among three pSS-related datasets (AUC > 0.7). Functional enrichment results suggested 
that the biomarkers were involved in immune and inflammation-related pathways. Immune infiltration analysis revealed that biomarkers 
were notably connected with type 2 T helper cells, regulatory T cells which were significantly expressed between pSS and control. 
TESTOSTERONE and CYCLOSPORINE were predicted to take effect by targeting CXCL10 and IL15 in pSS, respectively.
Conclusion Four inflammation-associated biomarkers (LY6E, EIF2AK2, IL15, and CXCL10) were explored, and the underlying 
regulatory mechanisms and targeted drugs associated with these biomarkers were preliminarily investigated according to a series of 
bioinformatics methods based on the online datasets of pSS, which provided a reference for understanding the pathogenesis of pSS.

Key Points
• Inflammation-associated biomarkers (LY6E, EIF2AK2, IL15, and CXCL10) were firstly identified in Sjögren’s syndrome based on LASSO 

and SVM-RFE analyses.
• CXCL10, EIF2AK2 and LY6E were prominently positively correlated with immature B cells, while IL15 were significantly negatively cor-

related with memory B cells in Sjögren’s syndrome.
• LY6E, EIF2AK2, IL15, and CXCL10 were significantly more highly expressed in clinical Sjögren’s syndrome samples compared to healthy 

control samples, which was consistent with the analysis results of the GEO database.
• LY6E, EIF2AK2, IL15, and CXCL10 might be used as the biomarkers for the treatment and diagnosis of Sjögren’s syndrome.
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Introduction

Primary Sjögren’s syndrome (pSS) is a complex and hetero-
geneous autoimmune disease that leads to secretory gland 
dysfunction. It causes dryness of the main mucosal surfaces 
such as the mouth, eyes, nose, pharynx, larynx, and vagina, 
mainly characterized by sicca symptoms (xerostomia and 
xerophthalmia) [1], which can have a major impact on qual-
ity of life, including dry eye, reduced salivary flow rates, an 
increased risk of dental caries, and oral candidiasis [2, 3]. 
Approximately 20–40% of patients with pSS may experience 
extraglandular involvement [4], and among them lymphoma 
is the leading cause of death [5]. In the 2016 American Col-
lege of Rheumatology (ACR)/European League Against 
Rheumatism (EULAR) classification criteria, serological 
(Anti-Ro/SSA) and histological examinations (labial salivary 
gland biopsy) were assigned the highest specificity and high-
est values [6]. However, anti-SSA antibodies can be indica-
tive of a more advanced stage of the disease, and relying on 
them alone for diagnosis may result in inadequate recogni-
tion of very early pSS [7]. Labial salivary gland biopsy is an 
invasive examination, which may possibly cause discomfort 
and complications [8], and also may be affected by the sub-
jective judgment of specimen observers [9]. Therefore, it is 
necessary to develop sensitive and specific biomarkers to 
assist the early diagnosis of pSS.

Host inflammatory responses are essential for the devel-
opment and progression of pSS and are regulated by various 
signaling pathways, such as pro-inflammatory cytokines and 
interferon [10, 11], and the use of anti-inflammatory treat-
ments has been reported to provide relief from symptoms 
associated with pSS [12]. At present, local tear and saliva 
substitutes, systemic secretagogues and immunosuppres-
sants (glucocorticoids, chloroquine/hydroxychloroquine 
chloroquine and methotrexate) are commonly used treat-
ments for pSS; however, their effectiveness is rarely seen in 
practice [13–15]. Targeted treatment for pSS is still unavail-
able despite continued research into the disease’s pathogen-
esis, which may be due to the lack of systematic research 
on targeted biomarkers. Previous studies have uncovered a 
substantial amount of differentially expressed genes in the 
SS peripheral blood sample dataset [16]. Our study sought 
to investigate targeted inflammation-associated biomarkers 
through multiple bioinformatics pathways.

Given the limitations of anti-SSA antibody detection 
(delay and non-specificity) and labial salivary gland biopsy 
(invasiveness and subjectivity) in early pSS diagnosis, 
regulating the inflammatory response and employing anti-
inflammatory therapy have emerged as crucial management 
strategies for pSS [10–12]. Further, considering sensitivity 
and specificity of biomarker detection in serum, saliva, tears, 
or urine can potentially provide a more prompt and accurate 

reflection of the disease’s presence and progression, it has 
the potential to enhance the diagnostic accuracy of pSS and 
offer improved prospects for the treatment and interven-
tion in early pSS. Hence, in this study, the inflammation-
associated biomarkers with diagnostic value for pSS were 
filtered through two classical machine learning algorithms. 
The diagnostic value for the biomarkers was confirmed, and 
the biomarkers-related underlying mechanisms in pSS were 
initially investigate. Relevance analysis of inflammation-
associated biomarkers and immune cell infiltration were 
performed. Moreover, the regulatory networks targeting the 
biomarkers were investigated, and the biomarkers-targeted 
drugs were predicted. Based on the five pSS-related online 
datasets containing the transcriptional expression profiles 
of whole peripheral blood samples, we make the case that 
the research could provide a basis for understanding dis-
ease pathogenesis and improving clinical diagnosis and 
treatment.

Materials and methods

Datasets and gene collection

Five pSS-related datasets were downloaded from the GEO 
database, namely the GSE51092, GSE66795, GSE84844, 
GSE145065, and GSE132842 datasets. The microarray data-
sets of GSE51092 contained the transcriptional expression 
profile of whole peripheral blood samples from 32 healthy 
controls and 190 pSS patients and was utilized to screen 
inflammatory-associated biomarkers, immune infiltration 
analysis, and single-gene GSEA analysis. Two microarray 
expression profiling datasets of pSS were employed to vali-
date the expression and diagnostic value of inflammatory-
associated biomarkers, that is, GSE66795 and GSE84844. 
GSE66795 dataset included a transcriptional expression 
profile of whole peripheral blood samples from 29 healthy 
controls and 131 pSS patients. The GSE84844 dataset 
comprised the transcriptional expression profiles of whole 
blood samples from 30 healthy controls and 30 pSS patients. 
The information of age and gender of patients and controls 
within the three pSS-related datasets above was exhibited 
in Table 1. Furthermore, RNA sequencing (RNA-seq) data 
from GSE145065 dataset, consisting of mRNA and lncRNA 
expression profiles of peripheral blood monocytes from 5 
healthy controls and 5 pSS patients, was used for differen-
tial lncRNA screening. The GSE132842 dataset compris-
ing miRNA expression profiles of CD1c-expressing cDC2s 
isolated from peripheral blood from 6 healthy controls and 
15 pSS patients was detected through TaqMan OpenAr-
ray Human MicroRNA Panel and was used for differential 
miRNA screening. Two-hundred inflammation-associated 
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genes were derived from the MSigDB database by search-
ing the inflammation-associated gene set in the Hallmark 
gene set with the keyword ‘Inflammatory’ (Supplementary 
Table 1).

Certification of candidate genes 
for inflammation‑associated biomarkers in pSS

The ‘limma’ package (version 3.50.0) was used to authen-
ticate the differentially expressed genes (DEGs) between 
pSS samples and healthy controls in the GSE51092 dataset, 
defined by |log2FoldChange (FC) > 0.5| and p-value < 0.05 
[17, 18]. The pSS-related genes were then filtered by 
Weighted Gene Co-expression Network Analysis (WGCNA) 
in the GSE51092 dataset. The R package ‘WGCNA’ (version 
1.7–3) [19] was implemented to generate a co-expression 
network. The determination of the soft threshold firstly 
ensures that the interaction between genes conforms to the 
scale-free distribution to the maximum extent. Through 
gene adjacency calculations and assessing gene similarity, 
the introduction of topological overlap matrix (TOM) allows 
for the construction of a systematic clustering tree. Further, 
the dynamic tree cutting method was employed to assign 
genes to modules under hierarchical clustering, setting the 
minimum number of genes per gene module to 150. In addi-
tion, the pSS samples and healthy controls were considered 
as trait data for WGCNA to retrieve modules and genes asso-
ciated with pSS using correlation analysis. The intersection 
of DEGs, pSS-related genes, and inflammation-associated 
genes was obtained from a Venn diagram and was incor-
porated into the subsequent analyses as candidate genes for 
inflammation-associated biomarkers in pSS.

Functional annotation analysis

The default gene set in R package ‘clusterProfiler’ (version 
4.2.1) [20] was applied as background gene set for Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis of candidate genes. 
GO was categorized into cellular component (CC), molecu-
lar function (MF), and biological process (BP). An adjusted 
p-value < 0.05 was considered statistically significant.

Recognition of inflammation‑associated biomarkers 
in pSS

In the GSE51092 dataset, two machine learning methods were 
applied to screen for disease characteristic genes, namely least 
absolute shrinkage and selection operator (LASSO) [21] and 
support vector machines recursive feature elimination (SVM-
RFE) [22]. LASSO logistic regression was performed with 
the R software package ‘glmnet’ (version 4.0–2), setting the 
parameters family as binomial and type.measure as class. The 
error rate with different features was measured using tenfold 
cross-validation. By adjusting the penalty coefficient lambda, 
the majority of variable coefficients are eventually forced to 
converge to 0. The optimal lambda value is selected when the 
minimal error and the strong relevant features were selected. 
Support vector machine (SVM) analysis was carried out using 
the SVM in R package ‘e1071’ (version1.7–9). The best fea-
ture subset is determined by evaluating the model’s perfor-
mance as the features are progressively reduced. Specifically, 
the recursive feature elimination (RFE) method was deployed 
to obtain the importance ranking of each gene, as well as the 
error rate and accuracy rate of each iteration of the combina-
tion. The features are gradually reduced until achieving the 
highest classification accuracy and lowest error rate under the 
feature subset size should not exceed the predefined maximum 
value, and the corresponding gene was extracted as the feature 
gene. The genes identified by both LASSO and SVM-RFE 
were defined as inflammation-associated biomarkers in pSS.

Relevance analysis of inflammation‑associated 
biomarkers and immune cell infiltration

The relative infiltration levels of 28 types of immune cells in 
32 healthy controls and 190 pSS samples in the GSE51092 
dataset were profiled by the ssGSEA algorithm, which was 
run in the ‘GSVA’ package (version 1.38.0) [23]. Variations 
in the infiltration levels of different immune cells between 
the normal and pSS samples were estimated using a Wil-
coxon test, and the results were visualized by a violin plot 
created by the ‘vioplot’ package (version 0.3.7). The cor-
relations between immune cells and correlations between 
biomarkers and differential immune cells were assessed by 
the Pearson method.

Table 1  The clinical information in the three pSS-related datasets

GSE51092 GSE66795 GSE84844 Overall

(N = 222) (N = 160) (N = 60) (N = 442)
Group

  Control 32 (14.4%) 29 (18.1%) 30 (50.0%) 91 (20.6%)
  pSS 190 (85.6%) 131 (81.9%) 30 (50.0%) 351 (79.4%)

Age
  [20, 30] 0 (0%) 0 (0%) 7 (11.7%) 7 (1.6%)
  [30, 40] 0 (0%) 0 (0%) 10 (16.7%) 10 (2.3%)
  [40, 50] 0 (0%) 0 (0%) 15 (25.0%) 15 (3.4%)
  [50, 60] 0 (0%) 0 (0%) 10 (16.7%) 10 (2.3%)
  [60, 70] 0 (0%) 0 (0%) 12 (20.0%) 12 (2.7%)
  [70, 80] 0 (0%) 0 (0%) 6 (10.0%) 6 (1.4%)

Missing 222 (100%) 160 (100%) 0 (0%) 382 (86.4%)
Gender

  Female 0 (0%) 160 (100%) 59 (98.3%) 219 (49.5%)
  Male 0 (0%) 0 (0%) 1 (1.7%) 1 (0.2%)
  Missing 222 (100%) 0 (0%) 0 (0%) 222 (50.2%)
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Gene set enrichment analysis based on a single 
gene

The ‘h.all.v6.2.sytmbols.gmt’ in the MSigDB database was 
extracted to act as the reference gene set, and the pSS samples 
in the GSE51092 dataset were assigned to high- and low-
expression groups with the median as the cut-off value of 
each key gene for calculating the fold change of gene expres-
sion between the high and low expression groups and ranking 
them. Furthermore, GSEA was performed to investigate the 
differences in gene set enrichment between the high and low 
expression groups using the R software ‘clusterProfiler’ (ver-
sion 4.0.5) package. Significance thresholds of single gene 
GSEA were |NES|> 1, q value < 0.2, and p value < 0.05.

Establishment of lncRNA‑miRNA‑mRNA network 
and drug‑gene network

The miRNAs targeting the inflammation-associated 
biomarkers and the lncRNAs targeting miRNAs were 
predicted by the StarBase database (screening condi-
tion: CLIP-DATA ≥ 1). Under the screening criteria of 
|log2FC > 1| and p-value < 0.05, the predicted miRNAs 
were crossed with the differentially expressed miRNAs 
(DE-miRNAs) between the pSS samples and healthy con-
trols in the GSE132842 dataset. Similarly, the predicted 
lncRNAs were crossed with the differentially expressed 
lncRNAs (DE-lncRNAs) between the pSS samples and 
healthy controls in the GSE145065 dataset. Moreover, the 
drugs targeting the inflammation-associated biomarkers 
were forecasted in the DGIdb database. After inputting 
the biomarkers, drugs related to the treatment of inflam-
mation were obtained from the extracted drug-gene inter-
action information. The final lncRNA-miRNA-mRNA 
regulatory network and gene-drug network was mapped 
by Cytoscape software, where each node is presented as 
lncRNA, miRNA, mRNA or drug, and the edge is pre-
sented as the interaction between them in a visual way 
(version 3.8.2) [24].

RNA acquisition and real‑time quantitative PCR 
(RT‑qPCR)

A total of 10 pSS patients and 10 healthy control patients 
were recruited from the Peking University Third Hospital 
with PBMC samples to perform RT-qPCR experiments. 
The pSS patients fulfilled the 2016 American College 
of Rheumatology (ACR)/European League Against 
Rheumatism (EULAR) classification criteria [6]. The 
detailed clinical information of the patients involved is 
shown in Supplementary Table 2. This study was approved 
by the Peking University Third Hospital Medical Science 

Research Ethics Committee (IRB00006761-M2022106), 
written informed consent was received from all participants 
for their enrollment, and all methods were carried out in 
accordance with relevant guidelines and regulations. The 
total RNA of PBMC samples from 10 healthy control 
and 10 pSS patients was isolated by the TRIzol Reagent 
following the manufacturer’s guidance (Ambion, USA). 
Next, total RNA was inversely transcribed into cDNA 
utilizing the SweScript-First-strand-cDNA-synthesis-
kit (Servicebio, China), according to the manufacturer’s 
protocol. qPCR was subsequently performed using 
the 2xUniversal Blue SYBR Green qPCR Master Mix 
(Servicebio, China). The primer sequences for PCR 
are displayed in Table 2. The relative expression level 
was uniformized to the internal reference GAPDH and 
calculated using the  2−ΔΔCq method [25].

Statistical analysis

Violin plots of gene expression were produced by the R pack-
age ‘ggstatsplot’ (version 0.9.1). ROC curves were gener-
ated by the ‘pROC’ package (1.17.0.1). All analyses were 
conducted using the R programming language, and the data 
from different groups were compared by the Wilcoxon test. 
The Student’s t-test was utilized to filter for DE-miRNAs and 
compare the differences in RT-qPCR. If not specified above, a 
p-value less than 0.05 was considered statistically significant.

Results

Candidate genes for inflammation‑associated 
biomarkers in pSS

The workflow diagram for the current study was displayed 
in Supplementary Fig. 1. To determine the differentially 
expressed pSS-related genes, the DEGs between pSS 
and healthy controls in the GSE51092 dataset were 

Table 2  The primer sequences for RT-qPCR

Primer Sequence

LY6E For CTG TAC TGC CTG AAG CCG A
LY6E Rev CCA TGG AAG CCA CAC CAA C
EIF2AK2 For GCC GCT AAA CTT GCA TAT CTTCA 
EIF2AK2 Rev TCA CAC GTA GTA GCA AAA GAACC 
IL15 For ATG AAG TGC TTT CTC TTG GAGT 
IL15 Rev GAA GTG TTG ATG AAC ATT TGGA 
CXCL10 For TTC TGA TTT GCT GCC TTA TCT TTC 
CXCL10 Rev CTT CTC ACC CTT CTT TTT CAT TGT 
GAPDH For GGA AGG TGA AGG TCG GAG T
GAPDH Rev TGA GGT CAA TGA AGG GGT C
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first authenticated. According to |log2FC|> 0.5 and 
p-value < 0.05, a grand total of 282 DEGs, including 165 
upregulated and 117 downregulated genes were identified 
in the pSS samples (Fig. 1A–B, Supplementary Table 3). 
Then, WGCNA was implemented using the data of the 
GSE51092 dataset. Firstly, no outlier samples were 
excluded by sample cluster analysis (Supplementary 
Fig. 2A). Nine were chosen as the optimal soft threshold 
(R2 = 0.85) to ensure that the interactions between genes 
maximally conform to the scale-free distribution (Fig. 2A). 
Next, a total of 11 modules were developed based on a 
gene clustering tree and dynamic tree cutting algorithm 
(Fig. 2B, Supplementary Fig. 2B). Correlations between 
modules and sample traits (healthy control or disease pSS) 
were computed, and the purple module with the highest 
correlation was selected as the key module (Fig. 2C). 
Hence, the 459 genes in the key module were regarded as 
pSS-related genes (Supplementary Table 4). Subsequently, 
the DEGs, pSS-related genes, and inflammation-associated 
genes were overlapped, resulting in nine intersecting genes 
(Fig.  2D), namely LY6E, EIF2AK2, IRF7, TNFAIP6, 
RTP4, IL15, CXCL10, LAMP3, and CCL2. These genes 
were considered the candidate genes for inflammation-
associated biomarkers in pSS.

To further investigate the function of these nine genes, a 
functional enrichment analysis was executed. As displayed 
in Supplementary Table 5, 180 GO items (162 BP items 
and 18 MF items) and 19 KEGG pathways (Fig. 3A) were 
derived. The top 10 GO items under each classification 
were displayed in a bar chart (Fig. 3B). These genes were 
involved in many immune-related biological processes 
and pathways, including ‘response to interferon-alpha’, 

‘cytokine-mediated signaling pathway’, ‘regulation of 
lymphocyte migration’, ‘cytokine-cytokine receptor 
interaction’, ‘TNF signaling pathway’, ‘RIG-I-like receptor 
signaling pathway’, ‘Toll-like receptor signaling pathway’, 
‘NOD-like receptor signaling pathway’, ‘IL-17 signaling 
pathway’, and ‘chemokine signaling pathway’.

Inflammation‑associated biomarkers in pSS

To further recognize inflammation-associated biomarkers 
in pSS, a machine learning analysis based on the nine 
candidate genes was performed. As shown in Fig. 4A–B, 
the lowest error rate was reached at lambda.min of 0.0038, 
and five genes (LY6E, EIF2AK2, TNFAIP6, IL15, and 
CXCL10) were identified by LASSO logistic regression. 
Meanwhile, six genes (IL15, CXCL10, EIF2AK2, 
IRF7, LY6E, and CCL2) were selected by the SVM-
RFE model (Fig. 4C–D). Hence, four overlapping genes 
(LY6E, EIF2AK2, IL15, and CXCL10) were obtained 
by comparing the genes obtained by the two machine 
learning methods (Fig. 4E). In the GSE51092 dataset, 
all four genes were expressed at increased levels in pSS 
samples compared to healthy controls (Fig. 5A). The ROC 
curves of the four genes in the GSE51092 dataset were 
mapped to further estimate the potential diagnostic value 
of the genes. As the AUC values all exceeded 0.7 for each 
gene, we concluded that the expression of each gene could 
effectively distinguish pSS samples from healthy controls 
(Fig. 5D). Furthermore, the expression of the four genes 
was examined, and the corresponding ROC curves for the 
GSE66795 and GSE84844 datasets were created to validate 
the above results. In agreement with the results of the 

Fig. 1  Identification of DEGs in pSS. A The Volcano plot of DEGs 
between pSS and healthy controls in the GSE51092 dataset, including 
165 upregulated and 117 down-regulated genes (|log2FC|> 0.5 and 

p-value < 0.05). The top 50 DEGs were shown in the Volcano plot. B 
The heatmap of top 50 DEGs between pSS and healthy controls in the 
GSE51092 dataset
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GSE51092 dataset, the four genes were upregulated in the 
pSS samples compared to the healthy controls (Fig. 5B–C). 
Also, the AUC values of the ROC curves were all greater 
than 0.7, indicating that these four genes were reliable 
potential diagnostic biomarkers (Fig. 5E–F). Therefore, 
these four genes were defined as inflammation-associated 
biomarkers in pSS. To gain a preliminary understanding of 
the functions of which, the Panther classification system 
(http:// panth erdb. org/) was used to annotate the four 
biomarkers by GO and Pathway function. The annotated 
GO items and pathways are shown in Supplementary 

Fig. 3, indicating that the four biomarkers were linked 
to ‘inflammation mediated by chemokine and cytokine 
signaling pathway’, ‘interleukin signaling pathway’, and 
‘apoptosis signaling pathway’.

Subsequently, the single-gene GSEA was performed 
based on the hallmark gene set and transcriptomic data 
of pSS samples in the GSE51092 dataset to explore 
the molecular mechanisms of each inf lammation-
associated biomarker in pSS. As revealed in Fig.  6, 
all four genes were linked to the activation of ‘HALL-
MARK_INTERFERON_GAMMA_RESPONSE’, and 

Fig. 2  WGCNA in GSE51092 dataset. A Determination of soft-
thresholding powers (β), including the scale-free fit index for vari-
ous soft-thresholding powers (left) and the mean connectivity for 
various soft-thresholding powers (right). B Dendrogram of all DEGs 
clustered based on a dissimilarity measure (1-TOM) and 11 mod-
ules were displayed with corresponding colors. C The correlation 
between modules and clinical traits (control or pSS), indicating the 

purple module was highest correlated to clinical traits (cor = 0.38, 
p = 5e − 09). The number in the middle of each box represents the 
correlation coefficient, with the corresponding p-value in brackets. 
(D) Venn diagram of 9 intersected genes by overlapping DEGs, pSS-
related genes identified by WGCNA, and inflammation-associated 
genes

http://pantherdb.org/
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‘HALLMARK_INTERFERON_ALPHA_RESPONSE’, 
in the meantime, the inhibition of ‘HALLMARK 
HEME METABOLISM’ should be possible to related to 
EIF2AK2, IL15 and LY6E. More details could be found 
in the Supplementary Table 6.

The relevance of inflammation‑associated 
biomarkers to immune cells in pSS

To further probe the relationship between inflammation-
associated biomarkers and immune cells in pSS, the 

Fig. 3  Functional analysis of candidate genes for inflammation-
associated biomarkers in pSS. A Bubble plot for the KEGG path-
ways enriched by the nine candidated genes, including ‘Influenza A’, 
‘TNF signaling pathway’, ‘Hepatitis C’. B Bar chart for the GO terms 

activated by the nine candidated genes, including the enriched bio-
logical processes of response to virus and the molecular functions of 
‘cytokine- cytokine receptor interaction’

Fig. 4  Identification of inflammation-associated biomarkers in pSS. 
A The logic coefficient penalty diagram of LASSO. B The cross-val-
idation error profile of LASSO. C Determination of number of fea-

ture genes by the accuracy of SVM-RFE model. D Determination of 
number of feature genes by the error of SVM-RFE model. E Venn 
diagram for four overlapping inflammation-associated biomarkers
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infiltration level of 28 types of immune cells between pSS 
samples and healthy controls in the GSE51092 dataset were 
first compared through the ssGSEA method. The scores for 
each immune infiltrating cell in each sample are shown in the 
heatmap (Fig. 7A). The violin plot suggested that the enrich-
ment fraction of CD56 bright natural killer cells, CD56 dim 
natural killer cells, plasmacytoid dendritic cells, memory 
B cells, type 1 T helper cells, immature B cells, immature 

dendritic cells, natural killer cells, regulatory T cells, 
type 17 T helper cells, and type 2 T helper cells had sig-
nificant differences between healthy controls and pSS sam-
ples (Fig. 7B), moreover, the plasmacytoid dendritic cells 
were closely relevant to type 1 T helper cells (cor = 0.54) 
(Fig. 7C). Then, the Pearson method was employed to com-
pute the correlation between biomarkers and differential 
immune cells. As illustrated in Supplementary Table 7 and 

Fig. 5  The potential diagnostic value of the inflammation-associated 
biomarkers in pSS. A The expression of inflammation-associated bio-
markers in the GSE51092 dataset. B The expression of inflammation-
associated biomarkers in the GSE66795 dataset. C The expression 
of inflammation-associated biomarkers in the GSE84844 dataset. D 

ROC curves of the four inflammation-associated biomarkers in the 
GSE51092 dataset. E ROC curves of the four inflammation-associ-
ated biomarkers in the GSE66795 dataset. F ROC curves of the four 
inflammation-associated biomarkers s in the GSE84844 dataset
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Fig. 7D–G, all four biomarkers were notably positively cor-
related with regulatory T cells and type 2 T helper cells as 
defined by |correlation coefficient|> 0.3 and p value < 0.05. 
Meanwhile, CXCL10, EIF2AK2 and LY6E were promi-
nently positively correlated with immature B cells, while 
IL15 were significantly negatively correlated with memory 
B cells and plasmacytoid dendritic cells, which were consist-
ent with CXCL10 as well.

The lncRNA‑miRNA‑mRNA network and gene‑drug 
network based on inflammation‑associated 
biomarkers in pSS

The DE-miRNAs between the pSS and healthy controls in 
the GSE132842 dataset were screened to investigate the 
upstream regulatory mechanisms of inflammation-associ-
ated biomarkers. A total of 12 DE-miRNAs were mined 
according to the screening conditions p value < 0.05 and 
|log2FC|> 1, of which 2 were highly expressed, and 10 
showed low expression in pSS samples (Supplementary 
Fig. 4A–B). Meanwhile, 311 miRNAs targeting inflam-
mation-associated biomarkers were predicted from the 
StarBase database. Six target miRNAs were obtained by 
intersecting with the 12 DE-miRNAs (Supplementary 
Fig. 4C). Next, the DE-lncRNAs between pSS and healthy 
controls in the GSE145065 dataset were screened. 63 

DE-lncRNAs were identified based on the screening crite-
ria p-value < 0.05 and |log2FC|> 1, of which 37 were highly 
expressed and 26 were lowly expressed in pSS (Supple-
mentary Fig. 4D–E). Furthermore, 197 lncRNAs target-
ing the target miRNAs were predicted from the StarBase 
database. Then, 3 target lncRNAs were obtained by inter-
secting with the 63 DE-lncRNAs (Supplementary Fig. 4F). 
Finally, a lncRNA-miRNA-mRNA network with 13 nodes 
and 13 edges was generated using Cytoscape (Fig. 8A). In 
this network, hsa-miR-26-5p and hsa-miR-9-5p regulated 
EIF2AK2. CXCL10 was regulated by hsa-miR-21-5p, 
which was regulated by AL136040.1 and LINC02381. 
Moreover, LY6E was regulated by hsa-miR-708-5p, which 
was regulated by AL157392.3. IL15 was regulated by hsa-
miR-30d-5p, hsa-miR-708-5p, and hsa-let-7f-5p, which 
were regulated by AL157392.3. In addition, hsa-let-7f-5p 
was regulated by LINC02381.

To explore potential drugs targeting the four inflam-
mation-associated markers, 17 drugs targeting three bio-
markers were predicted through the DGIdb database. Ulti-
mately, a disease-gene-drug network containing 21 nodes 
and 21 edges was constructed (Fig. 8B). In this network, 
CYCLOSPORINE, SIROLIMUS and AMG714 might be 
associated with IL15. Furthermore, 12 drugs (ATORVAS-
TATIN, METHYLPREDNISOLONE, TESTOSTERONE, 
etc.) were predicted to target CXCL10.

Fig. 6  Bubble plot of single-gene GSEA enrichment analysis of four 
inflammation-associated biomarkers in pSS. A Enrichment results of 
LY6E by single-gene GSEA illustrated that 10 terms were activated, 
and 2 were suppressed based on hallmark gene set. B Enrichment 
results of EIF2AK2 by single-gene GSEA illustrated that 11 terms 
were activated, and 4 were suppressed based on hallmark gene set. C 

Enrichment results of IL15 by single-gene GSEA illustrated that 11 
terms were activated, and 5 were suppressed based on hallmark gene 
set. D Enrichment results of CXCL10 by single-gene GSEA illus-
trated that 12 terms were activated, and 4 were suppressed based on 
hallmark gene set
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Verification of the expression 
of inflammation‑associated biomarkers in clinical 
samples

As illustrated in Fig. 5A–C, all four inflammation-associated 
biomarkers were upregulated in pSS samples compared to 
healthy controls. The expression in clinical PBMC samples 
from 10 healthy controls and 10 pSS patients was further con-
firmed by RT-qPCR. In agreement with the results of the anal-
ysis of public RNA-sequencing data, four biomarkers were 

significantly more highly expressed in clinical pSS samples 
compared to healthy control samples (Fig. 9, Table 3).

Discussion

pSS is characterized by chronic inflammation and is man-
ifested by impaired function of the exocrine glands, and 
mononuclear cells infiltrate surrounding the ducts and 
replacing the secretory units of the involved glands [26]. 

Fig. 7  The relevance of inflammation-associated biomarkers to 
immune cells in pSS. A The heatmap of ssGSEA scores of immune 
cells infiltration for each sample in the GSE51092 dataset. B The vio-
lin plot of comparing infiltration levels of immune cells between pSS 
and control samples. C The correlation between different immune 
cells. (D) Pearson correlation of LY6E and the immune cells. E 
Pearson correlation of EIF2AK2 and the immune cells. (F) Pearson 
correlation of IL15 and the immune cells. G Pearson correlation of 
CXCL10 and the immune cells. B Difference in the infiltration lev-
els of immune cells between pSS and control samples were com-
pared using wilcox.test. C The correlation heatmap among different 
immune cells was displayed through Pearson correlation analysis. D 

Pearson correlation results showed that LY6E was significantly cor-
related to Immature B cells, Regulatory T cells and Type 2 T helper 
cells. E Pearson correlation results showed that EIF2AK2 was closely 
relevent to Immature B cells, Natural killer cells, Regulatory T cells 
and Type 2 T helper cells. F Pearson correlation results showed that 
IL15 was negatively correlated to Memory B cells, Plasmacytoid den-
dritic cells while it was positively correlated to Regulatory T cells 
and Type 2 T helper cells. G Pearson correlation results showed that 
CXCL10 was negatively correlated to Memory B cells, Plasmacytoid 
dendritic cells as well, while it was positively correlated to Immature 
B cells, Regulatory T cells and Type 2 T helper cells
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Due to the heterogeneities of clinical phenotypes and vari-
ous causes, the identification of key biomarkers in pSS is 
critical to understanding the pathogenesis of this complex 
disease. Considering the biological significance of inflam-
matory response in pSS progress, the study was utilized to 
identify the potential inflammation-associated biomarkers 
through the bioinformatics methods based on the online 
datasets of pSS.

Using the differentially expressed analysis between 
pSS samples and healthy controls, as well as WCGNA 
in the GSE51092 datasets, nine pSS-related and inflam-
mation-associated DEGs were identified in the present 
study, namely LY6E, EIF2AK2, IRF7, TNFAIP6, RTP4, 
IL15, CXCL10, LAMP3, and CCL2, which were mainly 
involved in the activation of the innate antiviral immunity 
process and inflammatory-related signaling pathways. Evi-
dence has indicated that viral infections alter the clinical 
manifestations of various autoimmune diseases. On the 
other hand, protective effects can be achieved by suppress-
ing autoimmune phenomena through regulatory immune 
responses [27]. Influenza viruses and EBV infection were 
considered as central roles in the pathogenesis of pSS 
through the autoimmunity induced by different mecha-
nisms in previous literature [28–33].

Several functions relevant to the pSS-related inflam-
mation-associated DEGs were related to immune and 
inflammation signaling pathways. Toll-like receptors 
(TLRs) could sense nucleic acids derived from viruses 
and trigger antiviral innate immune responses as pattern-
recognition receptors (PRRs) [34, 35], where NF-kappaB, 
MAPK kinases, and IRFs that control the transcription of 
genes encoding type I interferon and other inflammatory 

cytokines were activated to eliminate viruses [36]. Previ-
ous studies have shown that TLRs play an essential role in 
the pathogenesis of pSS [37, 38]. They are elevated in sali-
vary tissue [39] and in the peripheral blood of pSS patients 
[40]. Emerging data indicate that damage-associated 
molecular patterns (DAMPs) may be significant drivers 
of chronic and unremitting inflammation in pSS, although 
the ligands activating TLRs in pSS remain unknown [41, 
42]. Activating TLR signaling cascades likely reduce local 
and systemic inflammation, as shown in an animal study 
[43]. There is no doubt that the interaction of the Toll-like 
signaling pathways and the viral defense response process 
may be important in pSS.

Nod-like receptor protein 3 (NLRP3) is a crucial player 
in regulating host immune responses to infection and cells 
stress [44], and it was also found highly expressed in pSS 
patients than control [45]. The NLRP3 inflammasome can 
be triggered by the P2X7 receptor (P2X7R), leading to 
acute inflammatory responses. Baldini et al. proposed the 
P2X7R-inflammasome axis as a novel potential pathway in 
both pSS exocrinopathy and lymphomagenesis [46]. These 
results suggested that NLRP3 inflammasome-mediated 
inflammation might be implicated in the pathogenesis of 
pSS. Interleukin-17 (IL-17) is a multifaceted cytokine with 
a well-recognized role in immune surveillance at mucosal 
and barrier surfaces [47]. Previous research suggests that the 
IL-17 axis plays a pivotal role in the pathogenesis of several 
autoimmune disorders, including pSS [48, 49]. Studies have 
demonstrated that IL-17 was overexpressed in the salivary 
glands (SGs) [50], serum [51], plasma [52] and tears [53] 
of pSS patients, and IL-17 mRNA levels in MSG biopsies 
seemed to be related to the degree of inflammation [52, 54]. 

Fig. 8  The competing endogenous RNA (ceRNA) network and the 
disease-genes-drugs network relevant to the inflammation-associ-
ated biomarkers. A The lncRNA-miRNA-mRNA network targeting 
inflammation-associated biomarkers. Yellow rectangle represents 

lncRNA, red diamond represents miRNA, and purple oval represents 
mRNA. B The potential disease-gene-drug network of inflammation-
associated biomarkers through DGIdb database, while the potential 
drug targeting the LY6E gene are lacking
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Different IL-17 family members may play several patho-
genetic roles in the development of pSS. According to a 
recent study, IL-17F production in pSS patients is associ-
ated with a higher level of autoantibodies and EULAR SS 
disease activity index (ESSDAI) than IL-17A production in 
pSS patients [55].

Next, four genes (LY6E, EIF2AK2, IL15, and CXCL10) 
were authenticated as inflammation-associated pSS biomark-
ers, and the reliability of them in discriminating pSS sam-
ples from healthy control samples, suggesting a potential 

clinical diagnostic value. Functional enrichment results and 
immune infiltration analysis pointed to the involvement of 
the four genes in the immune process and inflammation-
related pathways in pSS. The Lymphocyte antigen 6E 
(LY6E) protein belongs to the Ly6/uPAR family of plas-
minogen activator receptors and is known as one of the 
IFN type I response genes. Recent studies have reported its 
essential role in immunological regulation, T cells physiol-
ogy, oncogenesis, and viral infection [56]. Our study found 
higher LY6E levels in the peripheral blood of pSS patients, 

Fig. 9  The expression levels of inflammation-associated biomarkers 
in pSS and healthy control subgroups patients (n = 10) were detected 
by RT-qPCR through Student’s t-test, indicating the over-expression 

of four biomarkers in pSS compared with healthy control subgroups 
patients. A CXCL10. B EIF2AK2. C IL15. D LY6E. * p < 0.05, ** 
p < 0.01, *** p < 0.001

Table 3  The statistic results of 
four inflammation-associated 
biomarkers in clinical samples

FC, fold change

N pSS FC t, df value p value

LY6E 1.0785 ± 0.1054 3.5786 ± 1.6249 3.318127028 t = 4.855 df = 18 0.0001
EIF2AK2 1.0471 ± 0.0298 3.7453 ± 1.2776 3.576831248 t = 2.266 df = 9  < 0.0001
IL15 1.0352 ± 0.0329 2.8646 ± 0.7050 2.767194745 t = 8.196 df = 9  < 0.0001
CXCL10 1.0263 ± 0.0110 2.5598 ± 0.5605 2.494202475 t = 8.622 df = 9  < 0.0001
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which has been proven by previous clinical studies [57–59]. 
These findings may reveal the importance of the peripheral 
blood LY6E levels and the monocyte IFN type I signature in 
pSS patients. The eukaryotic translation initiation factor 
2-α kinase 2 (EIF2AK2) gene is located on chromosome 2 
and encodes modifying protein kinase R (PKR, interferon-
induced, double-stranded RNA-activated protein kinase) 
[60]. Recent studies have revealed that the coding gene PKR 
is associated with the treatment of pSS, which further con-
firms the role of EIF2AK2 in the progression of pSS [39, 61, 
62]. Although LY6E and EIF2AK2 have been found as pSS 
diagnostic genes in previous studies [57], we further inves-
tigated the potential ceRNA regulatory network and related 
drugs of LY6E and EIF2AK2 in the context of inflamma-
tion, providing insight into the direction for future research. 
Interleukin-15 (IL-15) is a crucial regulatory inflammatory 
cytokine that is upregulated in autoimmunity disorders [63, 
64]. Previous studies revealed a higher IL-15 expression 
level in the peripheral blood of pSS patients [65], which 
is consistent with our results. Besides, based on gene and 
protein analysis and immunohistochemical results in minor 
salivary gland (MSG) biopsy specimens and human sali-
vary gland epithelial cells (SGEC) obtained from patients 
with pSS, IL15 was documented a strong expression in aci-
nar and duct cells of salivary glands with pSS, which may 
be related to TLR2/IL-15 signaling pathway [66–69]. It’s 
consistent with our functional enrichment results (Toll-like 
receptor signaling pathway), which provides a theoretical 
basis for the detection of pSS by blood, but the protein levels 
in blood need further analyses. C-X-C motif chemokine 
ligand 10 (CXCL10) protein is categorized functionally as 
a Th1-chemokine, and its secretion is regulated by inter-
feron (IFN)-γ [70]. The serum and/or tissue expressions 
of CXCL10 in various autoimmune diseases [70–73]. A 
study that assessed CXCL10 plasma levels in pSS patients 
showed that the ratio of full-length (active) CXCL10 to trun-
cated DPP4-truncated (inactive) CXCL10 was significantly 
increased in pSS patients and provided the highest corre-
lation with disease activity [74]. Elevated CXCL10 levels 
were also found in the salivary gland of pSS patients, which 
were associated with decreased circulating CXCR3 + helper 
cells, suggesting facilitating their concerted migration [75]. 
These results guarantee the accuracy of our transcriptome 
analysis results.

The pathogenesis of pSS is multifactorial and complex. 
The process primarily encompasses antigen presentation, 
costimulation, B cell activation, and other related mecha-
nisms [11], in which the cytokine profiles of Th1, Th2, 
Th17, follicular helper T (Tfh) cells, and regulatory cells 
(Tregs/Bregs) play important roles [76]. Studies have shown 
that the frequency of Foxp3 + regulatory T cells (Treg) in 
salivary glands may be correlated with glandular infiltra-
tion and the grade of local inflammation [77], while B cell 

activation is generally associated with an increased risk of 
lymphoma [78]. Lymphocytic infiltration in salivary and 
lacrimal glands and the deposition of autoantibodies, like 
anti-SS-A (anti-Ro) and anti-SS-B (anti-La), cause an auto-
immune outbreak and chronic inflammation, leading to the 
destruction of the salivary gland architecture [79].

In this study, we found that four key genes were signifi-
cantly associated with regulatory T (Treg) cells and type 2 T 
helper (Th2) cells via immune infiltration and Pearson corre-
lation analysis. Treg cell deficiency has been documented in 
pSS patients [80], with peripheral blood levels significantly 
lower than those of healthy controls, suggesting that Treg 
cell deficiency may be involved in salivary gland destruction 
[81]. Type 2 immune response which Th2 cells involved in 
has a regulatory relationship with autoinflammation [82]. 
Th2 cells have been found to promote renal inflammation in 
patients with systemic lupus erythematosus [83], and to play 
a part in the process of pSS by participating in costimulation 
and assisting B cell activation, with the cytokines they pro-
duce dominating the early stages of pSS [84]. These findings 
demonstrate that significant changes occur in Treg cells and 
Th2 cells in pSS and other related autoimmune diseases.

The identified miRNAs in the present study exhibited 
consistency with other research on autoimmune or immune-
mediated related diseases. The miR-26 expression level was 
downregulated in multiple sclerosis (MS) patients compared 
to controls [85]. The neuroregulatory miRNA miR-9-5p was 
significantly upregulated in the peripheral blood samples of 
HLA-B27( +) radiographic axial spondyloarthropathy (rad-
AxSpA) patients [86]. Immuno-miRNAs miR-21-5p and let-
7f-5p were significantly elevated in the serum of patients 
with acetylcholine receptor myasthenia gravis  (AChR+-MG) 
[87–90], and miR-21-5p was also upregulated in type 1 auto-
immune pancreatitis (AIP) [91] and psoriatic arthritis (PsA) 
[92]. Kim et al. found significantly downregulated expres-
sion of miR-30d-5p in the tear samples of pSS patients [93]. 
These miRNAs may be involved in disease pathogenesis via 
immune-related processes.

In our study, three lncRNAs were identified as being 
associated with pSS, namely AL 136040.1, LINC02381, 
and AL157392.3. Previous reports have suggested that 
these three lncRNAs may be implicated in immunologi-
cal disorders. The competitive binding of LINC02381 
with miR-21 has been experimentally confirmed in pre-
vious studies. Zhao et  al. demonstrated this interaction 
through luciferase reporter gene and RNA immunopre-
cipitation assays, indicating that LINC02381 sponged 
miR-21 to enhance KLF12 expression [94]. However, the 
interaction between miR-21 and LINC02381/CXCL10 still 
requires further validation through additional functional 
experiments. Additionally, Jafarzadeh et al. also confirmed 
LINC02381 sponged miR-21 through dual luciferase assay 
[95]. LINC02381/hsa-let-7f-5p/IL-6 competitive network 
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in another immune-mediated connective tissue disease sys-
temic sclerosis (SSc) was shown to be potentially involved 
in inflammatory and immune processes immune microen-
vironmental variation [96]. Glycolysis-associated lncRNA 
AL157392.3 may influence immune-related signaling in 
pan-cancer analysis [97].

Additionally, we predicted potential drugs based on drug-
gene interaction pairs, which included glucocorticoids and 
immunosuppressive drugs. These drugs have been suc-
cessfully used to treat autoimmune diseases. AMG-714 
was used to treat celiac disease [98], which is known as an 
associated autoimmune disease with pSS sharing a com-
mon genetic background [99]. LEVODOPA is an effective 
and well-tolerated drug for the treatment of Parkinson’s 
disease [100], which may have a potential association with 
pSS [101], this suggests that IL-15 may be a potential target 
[100]. ZIDOVUDINE for pSS has been cited in the manu-
script, but studies have shown that antiretroviral therapy has 
a number of severe and life-threatening adverse drug reac-
tions. For instance, taking ZIDOVUDINE was observed as 
a risk factor for anemia. STAVUDINE was utilized for the 
treatment of peripheral neuropathy, but among that, the use 
of nevirapine was identified as a risk factor for cutaneous 
reactions [102].

Significantly, CYCLOSPORINE A has been found to be 
a potent inhibitor of IL-15 release in the context of acute 
rejection following heart transplantation in mice [103]. 
However, varying doses of CYCLOSPORINE, which is 
a key immunosuppressive therapy for kidney transplant 
recipients, do not appear to have an impact on serum levels 
of IL-15 and IP-10 cytokines [104]. While certain studies 
have proposed a potential role of TESTOSTERONE in 
modulating disease progression through the promotion of 
anti-inflammatory responses, the observed reduction in 
CXCL10 levels in male patients receiving TESTOSTERONE 
supplementation was not notably significant [105]. IL-15 
and IP-10, in conjunction with CYCLOSPORINE, have 
been identified as significant inflammatory biomarkers in 
rheumatoid arthritis [106]. Given the notable upregulation 
of IL-15 and CXCL10 in pSS patients, it is postulated that 
pSS may contribute to the regulation of these cytokine 
levels via alternative mechanisms. Combined with the 
current research on the application of TESTOSTERONE 
and CYCLOSPORINE in autoimmune diseases [107–109], 
we speculate that TESTOSTERONE and CYCLOSPORINE 
may regulate the abnormal activity of immune cells and 
reduce inflammation by targeting the inhibition of CXCL10, 
a proinflammatory cytokine, and IL15, an activator of 
immune cells. In turn, this will help improve the immune 
function of pSS patients and alleviate their symptoms and 
immune-mediated inflammation-related damage. However, 
it remains to be clinically verified in pSS patients.

However, there are still several limitations in our study: 
Verifying the reliability of transcriptional changes in 
gene expression establishes a theoretical foundation for 
the rapid evaluation of biomarkers expression in periph-
eral blood detection, while detecting gene expression at 
the protein level requires the further detection of specific 
proteins or cell surface markers, using techniques such as 
ELISA and flow cytometry. At the same time, the diagnos-
tic efficacy of biomarkers, drug targeting results, and the 
regulatory networks are currently only preliminary find-
ings from bioinformatics research and prediction, and it is 
necessary to conduct larger studies with a broader cohort 
of patients, as well as additional follow-up RNA-seq and 
animal studies, to validate their effectiveness, safety, and 
robustness. Furthermore, conducting clinical trials is 
necessary to verify the interaction mechanism between 
key genes and key immune cells using real data obtained 
from an increased number of clinical samples. Despite 
the challenges presented, the advances in genomics offer 
us a unique opportunity to gain a better understanding of 
the pathomechanism of pSS and develop novel therapeutic 
strategies. Further research into pSS could result in inno-
vative treatments.

In conclusion, four genes (LY6E, EIF2AK2, IL15, 
CXCL10) that might be potential diagnostic inflammation-
associated biomarkers of pSS in peripheral blood were 
identified by bioinformatics analysis, and their expres-
sion were validated by RT-qPCR. Given that the samples 
used in this study were all derived from peripheral blood 
for the pSS-datasets, we argue that leveraging peripheral 
blood tests for rapid evaluation of biomarker expression 
has the potential to improve the diagnostic accuracy of 
early pSS. Furthermore, the molecular mechanisms of 
these genes were preliminarily explored by generating a 
lncRNA-miRNA-mRNA regulatory network. And mean-
while, the predicted drugs, such as TESTOSTERONE 
targeting CXCL10 and CYCLOSPORINE targeting IL15, 
may potentially enhance immune function and alleviate 
symptoms and immune-mediated inflammation-related 
damage in patients with pSS. The results provided a basis 
for understanding the pathogenesis and improving clinical 
diagnosis and treatment for pSS.
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