Skip to main content

Advertisement

Log in

Exploring the causal association of rheumatoid arthritis with atrial fibrillation: a Mendelian randomization study

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Background

It has been proved that rheumatoid arthritis (RA) patients have high incidence of atrial fibrillation (AF). Nevertheless, whether they have causal relevance is uncertain. This study aimed to explore and verify the authenticity of causal relationship between RA and AF using Mendelian randomization (MR).

Methods

The genome-wide association study (GWAS) summary data from Biobank Japan Project (BBJ) (RA, 4199 cases and 208,254 controls) were regarded as exposure data and the GWAS data from European Bio-informatics Institute database (EBI) (AF, 15,979 cases and 102,776 controls) as outcome data. The causal effect was appraised by the inverse variance weighted (IVW) method, MR-Egger regression, and weighted median estimator. MR-robust adjusted profile score (MR-RAPS) method was delivered to examine the robustness of causal relationship and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) method to control horizontal (directional) pleiotropy.

Results

The results indicated that RA increased the risk of AF (IVW, the odds ratio (OR) = 1.060; 95% confidence interval (CI), 1.028 to 1.092; p = 1.411 × 10−4; weighted median, OR = 1.046, 95% CI, 1.002 to 1.093, p = 0.047). The MR analysis also showed this causal effect through all four IVW methods with various statistical algorithms. Both MR-RAPS and MR-PRESSO supported the causality of RA and AF. Also, the MR-PRESSO result indicated the absence of apparent pleiotropy.

Conclusion

There is a causal association between RA and AF. RA patients are genetically more vulnerable to AF. This study may contribute to further exploring early clinical prevention and fundamental mechanism of AF in patients with RA.

Key Points

• We provided some genetic evidence for the causal link between rheumatoid arthritis (RA) and atrial fibrillation (AF) with multiple Mendelian randomization (MR) methods.

• RA patients were genetically more vulnerable to AF.

• This study partly shed light on latent fundamental mechanisms underlying RA-induced AF and inspired future studies on RA-AF relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets applied in this study are readily accessible from the online repositories. This article contains the names of the repositories as well as the accession number.

References

  1. Klareskog L, Catrina AI, Paget S (2009) Rheumatoid arthritis. Lancet 373:659–672. https://doi.org/10.1016/S0140-6736(09)60008-8

    Article  CAS  PubMed  Google Scholar 

  2. England BR, Thiele GM, Anderson DR, Mikuls TR (2018) Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ 361:k1036. https://doi.org/10.1136/bmj.k1036

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sodergren A, Stegmayr B, Lundberg V, Ohman ML, Wallberg-Jonsson S (2007) Increased incidence of and impaired prognosis after acute myocardial infarction among patients with seropositive rheumatoid arthritis. Ann Rheum Dis 66:263–266. https://doi.org/10.1136/ard.2006.052456

    Article  PubMed  Google Scholar 

  4. Meune C, Touze E, Trinquart L, Allanore Y (2010) High risk of clinical cardiovascular events in rheumatoid arthritis: levels of associations of myocardial infarction and stroke through a systematic review and meta-analysis. Arch Cardiovasc Dis 103:253–261. https://doi.org/10.1016/j.acvd.2010.03.007

    Article  PubMed  Google Scholar 

  5. Jang SY, Kang KW, Jo M, Park M (2021) Risk of new-onset acute coronary syndrome and atrial fibrillation in patients with rheumatoid arthritis compared with a risk-set and propensity score-matched cohort - a nationwide cohort study. Circ J 85:194–200. https://doi.org/10.1253/circj.CJ-20-0825

    Article  PubMed  Google Scholar 

  6. Lazzerini PE, Capecchi PL, Laghi-Pasini F (2017) Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur Heart J 38:1717–1727. https://doi.org/10.1093/eurheartj/ehw208

    Article  CAS  PubMed  Google Scholar 

  7. Joseph PG, Healey JS, Raina P et al (2021) Global variations in the prevalence, treatment, and impact of atrial fibrillation in a multi-national cohort of 153 152 middle-aged individuals. Cardiovasc Res 117:1523–1531. https://doi.org/10.1093/cvr/cvaa241

    Article  CAS  PubMed  Google Scholar 

  8. Du X, Guo L, Xia S, Du J, Anderson C, Arima H, Huffman M, Yuan Y, Zheng Y, Wu S, Guang X, Zhou X, Lin H, Cheng X, Dong J, Ma C (2021) Atrial fibrillation prevalence, awareness and management in a nationwide survey of adults in China. Heart 107:535–541. https://doi.org/10.1136/heartjnl-2020-317915

    Article  PubMed  Google Scholar 

  9. Hindricks G, Potpara T, Dagres N et al (2021) Corrigendum to: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42:4194. https://doi.org/10.1093/eurheartj/ehab648

    Article  PubMed  Google Scholar 

  10. Bacani AK, Crowson CS, Roger VL, Gabriel SE, Matteson EL (2015) Increased incidence of atrial fibrillation in patients with rheumatoid arthritis. Biomed Res Int 2015:809514. https://doi.org/10.1155/2015/809514

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim SC, Liu J, Solomon DH (2014) The risk of atrial fibrillation in patients with rheumatoid arthritis. Ann Rheum Dis 73:1091–1095. https://doi.org/10.1136/annrheumdis-2013-203343

    Article  PubMed  Google Scholar 

  12. Lindhardsen J, Ahlehoff O, Gislason GH, Madsen OR, Olesen JB, Svendsen JH, Torp-Pedersen C, Hansen PR (2012) Risk of atrial fibrillation and stroke in rheumatoid arthritis: Danish nationwide cohort study. BMJ 344:e1257. https://doi.org/10.1136/bmj.e1257

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ungprasert P, Srivali N, Kittanamongkolchai W (2017) Risk of incident atrial fibrillation in patients with rheumatoid arthritis: a systematic review and meta-analysis. Int J Rheum Dis 20:434–441. https://doi.org/10.1111/1756-185X.12820

    Article  CAS  PubMed  Google Scholar 

  14. Tan JS, Liu NN, Guo TT, Hu S, Hua L (2021) Genetic predisposition to COVID-19 may increase the risk of hypertension disorders in pregnancy: a two-sample Mendelian randomization study. Pregnancy Hypertens 26:17–23. https://doi.org/10.1016/j.preghy.2021.08.112

    Article  PubMed  Google Scholar 

  15. Lawlor DA (2016) Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol 45:908–915. https://doi.org/10.1093/ije/dyw127

    Article  PubMed  PubMed Central  Google Scholar 

  16. Richmond RC, Hemani G, Tilling K, Davey Smith G, Relton CL (2016) Challenges and novel approaches for investigating molecular mediation. Hum Mol Genet 25:R149–R156. https://doi.org/10.1093/hmg/ddw197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Christophersen IE, Rienstra M, Roselli C et al (2017) Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet 49:946–952. https://doi.org/10.1038/ng.3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, Butterworth AS, Staley JR (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35:4851–4853. https://doi.org/10.1093/bioinformatics/btz469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma M, Zhi H, Yang S, Yu EY, Wang L (2022) Body mass index and the risk of atrial fibrillation: a Mendelian randomization study. Nutrients 14. https://doi.org/10.3390/nu14091878

  20. Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184. https://doi.org/10.1093/aje/kwt084

    Article  PubMed  PubMed Central  Google Scholar 

  21. Au Yeung SL, Luo S, Schooling CM (2018) The impact of glycated hemoglobin (HbA(1c)) on cardiovascular disease risk: a Mendelian randomization study using UK Biobank. Diabetes Care 41:1991–1997. https://doi.org/10.2337/dc18-0289

    Article  CAS  PubMed  Google Scholar 

  22. Hemani G, Tilling K, Davey Smith G (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13:e1007081. https://doi.org/10.1371/journal.pgen.1007081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burgess S, Davey Smith G, Davies NM et al (2023) Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 4:186. https://doi.org/10.12688/wellcomeopenres.15555.3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smith GD, Ebrahim S (2003) 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32:1–22. https://doi.org/10.1093/ije/dyg070

    Article  PubMed  Google Scholar 

  25. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Spiller W, Davies NM, Palmer TM (2019) Software application profile: mrrobust—a tool for performing two-sample summary Mendelian randomization analyses. Int J Epidemiol 48:684–690. https://doi.org/10.1093/ije/dyy195

    Article  Google Scholar 

  27. Tan JS, Liu NN, Guo TT, Hu S, Hua L (2021) Genetically predicted obesity and risk of deep vein thrombosis. Thromb Res 207:16–24. https://doi.org/10.1016/j.thromres.2021.08.026

    Article  CAS  PubMed  Google Scholar 

  28. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Holmes MV, Minelli C, Relton CL, Theodoratou E (2019) Guidelines for performing Mendelian randomization investigations. Wellcome Open Res 4:186. https://doi.org/10.12688/wellcomeopenres.15555.2

    Article  PubMed  Google Scholar 

  29. Kaltoft M, Langsted A, Nordestgaard BG (2020) Obesity as a causal risk factor for aortic valve stenosis. J Am Coll Cardiol 75:163–176. https://doi.org/10.1016/j.jacc.2019.10.050

    Article  CAS  PubMed  Google Scholar 

  30. Broadbent JR, Foley CN, Grant AJ, Mason AM, Staley JR, Burgess S (2020) MendelianRandomization v0.5.0: updates to an R package for performing Mendelian randomization analyses using summarized data. Wellcome Open Res 5:252. https://doi.org/10.12688/wellcomeopenres.16374.2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang M, Chao C, Mei K, Di D, Qian Y, Wang B, Zhang X (2023) Relationship between rheumatoid arthritis and cardiovascular comorbidity, causation or co-occurrence: a Mendelian randomization study. Front Cardiovasc Med 10:1099861. https://doi.org/10.3389/fcvm.2023.1099861

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cupido AJ, Asselbergs FW, Natarajan P, Group CIW, Ridker PM, Hovingh GK, Schmidt AF (2022) Dissecting the IL-6 pathway in cardiometabolic disease: a Mendelian randomization study on both IL6 and IL6R. Br J Clin Pharmacol 88:2875–2884. https://doi.org/10.1111/bcp.15191

    Article  CAS  PubMed  Google Scholar 

  34. Rosa M, Chignon A, Li Z, Boulanger MC, Arsenault BJ, Bosse Y, Theriault S, Mathieu P (2019) A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. NPJ Genom Med 4:23. https://doi.org/10.1038/s41525-019-0097-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai H, Wang X, Yin S, Zhang Y, Han Y, Yang N, Xu J, Sun L, Yuan Y, Sheng L, Gong Y, Li Y (2017) Atrial fibrillation promotion in a rat model of rheumatoid arthritis. J Am Heart Assoc 6. https://doi.org/10.1161/JAHA.117.007320

  36. Wang X, Fan H, Wang Y, Yin X, Liu G, Gao C, Li X, Liang B (2021) Elevated peripheral T helper cells are associated with atrial fibrillation in patients with rheumatoid arthritis. Front Immunol 12:744254. https://doi.org/10.3389/fimmu.2021.744254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, Shi Q, Lu J, Wang Z, Hou J (2022) Causal relationships between inflammatory factors and multiple myeloma: a bidirectional Mendelian randomization study. Int J Cancer 151:1750–1759. https://doi.org/10.1002/ijc.34214

    Article  CAS  PubMed  Google Scholar 

  38. Yang C, Pring M, Wear MA, Huang M, Cooper JA, Svitkina TM, Zigmond SH (2005) Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell 9:209–221. https://doi.org/10.1016/j.devcel.2005.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liang Y, Niederstrasser H, Edwards M, Jackson CE, Cooper JA (2009) Distinct roles for CARMIL isoforms in cell migration. Mol Biol Cell 20:5290–5305. https://doi.org/10.1091/mbc.e08-10-1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takahashi N, Coluccio A, Thorball CW, Planet E, Shi H, Offner S, Turelli P, Imbeault M, Ferguson-Smith AC, Trono D (2019) ZNF445 is a primary regulator of genomic imprinting. Genes Dev 33:49–54. https://doi.org/10.1101/gad.320069.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth HV, Goodship JA, Haemers AP, Hahnemann JM, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40:949–951. https://doi.org/10.1038/ng.187

    Article  CAS  PubMed  Google Scholar 

  42. Shi H, Li S, Geng Y, Fan H, Zhang R, Zhang Y, Pan J, Song G, Ge L, Xie T, Wang L (2022) Euphorbia factor L3 ameliorates rheumatoid arthritis by suppressing the inflammatory response by targeting Rac family small GTPase 1. Bioengineered 13:10984–10997. https://doi.org/10.1080/21655979.2022.2066761

    Article  CAS  PubMed  Google Scholar 

  43. Berntsson J, Smith JG, Johnson LSB, Soderholm M, Borne Y, Melander O, Orho-Melander M, Nilsson J, Engstrom G (2019) Increased vascular endothelial growth factor D is associated with atrial fibrillation and ischaemic stroke. Heart 105:553–558. https://doi.org/10.1136/heartjnl-2018-313684

    Article  CAS  PubMed  Google Scholar 

  44. Chang JH, Cheng CC, Lu YY, Chung CC, Yeh YH, Chen YC, Higa S, Chen SA, Chen YJ (2021) Vascular endothelial growth factor modulates pulmonary vein arrhythmogenesis via vascular endothelial growth factor receptor 1/NOS pathway. Eur J Pharmacol 911:174547. https://doi.org/10.1016/j.ejphar.2021.174547

    Article  CAS  PubMed  Google Scholar 

  45. Mezache L, Struckman HL, Greer-Short A, Baine S, Gyorke S, Radwanski PB, Hund TJ, Veeraraghavan R (2020) Vascular endothelial growth factor promotes atrial arrhythmias by inducing acute intercalated disk remodeling. Sci Rep 10:20463. https://doi.org/10.1038/s41598-020-77562-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Igarashi Y, Nochioka K, Sakata Y, Tamai T, Ohkouchi S, Irokawa T, Ogawa H, Hayashi H, Fujihashi T, Yamanaka S, Shiroto T, Miyata S, Hata J, Yamada S, Ninomiya T, Yasuda S, Kurosawa H, Shimokawa H (2021) Risk prediction for new-onset atrial fibrillation using the Minnesota code electrocardiography classification system. Int J Cardiol Heart Vasc 34:100762. https://doi.org/10.1016/j.ijcha.2021.100762

    Article  PubMed  PubMed Central  Google Scholar 

  47. Murakami T, Takahata Y, Hata K, Ebina K, Hirose K, Ruengsinpinya L, Nakaminami Y, Etani Y, Kobayashi S, Maruyama T, Nakano H, Kaneko T, Toyosawa S, Asahara H, Nishimura R (2022) Semaphorin 4D induces articular cartilage destruction and inflammation in joints by transcriptionally reprogramming chondrocytes. Sci Signal 15:eabl5304. https://doi.org/10.1126/scisignal.abl5304

    Article  CAS  PubMed  Google Scholar 

  48. Qian K, Zheng XX, Wang C, Huang WG, Liu XB, Xu SD, Liu DK, Liu MY, Lin CS (2021) beta-sitosterol inhibits rheumatoid synovial angiogenesis through suppressing VEGF signaling pathway. Front Pharmacol 12:816477. https://doi.org/10.3389/fphar.2021.816477

    Article  CAS  PubMed  Google Scholar 

  49. Alipour P, Senkevich K, Ross JP, Spiegelman D, Manousaki D, Dion PA, Rouleau GA (2022) Investigation of the causal relationship between ALS and autoimmune disorders: a Mendelian randomization study. BMC Med 20:382. https://doi.org/10.1186/s12916-022-02578-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishigaki K, Sakaue S, Terao C et al (2022) Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat Genet 54:1640–1651. https://doi.org/10.1038/s41588-022-01213-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (Grant Number: 2021KY1072) for checking the R code and the whole process of our entire MR analysis. And we also sincerely appreciate the guidance to our analysis from “Bio-informatics and Clinical Medicine” (WeChat Subscription).

Funding

This study is supported by The Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (Grant No. 2021KY1072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hong.

Ethics declarations

Disclosures

None.

Ethics approval

Ethical approval was not applicable in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Jc., Chen, Xd., Jin, Nk. et al. Exploring the causal association of rheumatoid arthritis with atrial fibrillation: a Mendelian randomization study. Clin Rheumatol 43, 29–40 (2024). https://doi.org/10.1007/s10067-023-06804-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06804-4

Keywords

Navigation