Skip to main content
Log in

Association between type 1 diabetes and systemic lupus erythematosus: a Mendelian randomization study

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Observational studies have shown that there is a bidirectional relationship between type 1 diabetes (T1D) and systemic lupus erythematosus (SLE); the causality of this association remains elusive and may be affected by confusion and reverse causality. There is also a lack of large-scale randomized controlled trials to verify. Therefore, this Mendelian randomization (MR) study aimed to investigate the causal association between T1D and SLE.

Methods

We aggregated data using publicly available genome-wide association studies (GWAS), all from European populations. Select independent (R2 < 0.001) and closely related to exposure (P < 5 × 10−8) as instrumental variables (IVs). The inverse-variance weighted (IVW) method was used as the primary method. We also used MR-Egger, the weighted median method, MR-Robust, MR-Lasso, and other methods leveraged as supplements.

Results

T1D had a positive causal association with SLE (IVW, odds ratio [OR] = 1.358, 95% confidence interval [CI], 1.205 − 1.530; P < 0.001). The causal association was verified in an independent validation set (IVW, OR = 1.137, 95% CI, 1.033 − 1.251; P = 0.001). SLE had a positive causal association with T1D (IVW, OR = 1.108, 95% CI, 1.074 − 1.144; P < 0.001). The causal association was verified in an independent validation set (IVW, OR = 1.085, 95% CI, 1.046 − 1.127; P < 0.001). These results have also been verified by sensitivity analysis.

Conclusion

The MR analysis results indicated a causal association between T1D and SLE. Therefore, further research is needed to clarify the potential biological mechanism between T1D and SLE.

Key Points

Observational studies have shown that there is a bidirectional relationship between T1D and SLE.

We evaluated causal effects between T1D and SLE by Mendelian randomization analyses.

The MR analysis results indicated a causal association between T1D and SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The GWAS summary datasets for SLE (GWAS ID: 26502338), are available through the open targets (https://genetics.opentargets.org). Type 1 diabetes (GWAS ID: GCST90000529), and Type 1 diabetes (GWAS ID: GCST90014023) are available through the ieu open gwas project (https://gwas.mrcieu.ac.uk/datasets).

Abbreviations

SLE :

Systemic lupus erythematosus

T1D :

Type 1 diabetes

IVs :

Instrumental variables

GWAS :

Genome-wide association study

SNP :

Single nucleotide polymorphism

MR :

Mendelian randomization

IVW :

Inverse-variance weighted

MR-Egger :

The Mendelian randomization-Egger

MR-PRESSO :

MR Pleiotropy RESidual Sum and Outlier

MR-RAPS :

MR-robust adjusted profile score

References

  1. Kaul A, Gordon C, Crow MK et al (2016) Systemic lupus erythematosus. Nat Rev Dis Primers 2:16039. https://doi.org/10.1038/nrdp.2016.39

    Article  PubMed  Google Scholar 

  2. Deng Y, Tsao BP (2017) Updates in lupus genetics. Curr Rheumatol Rep. 19(11):68. https://doi.org/10.1007/s11926-017-0695-z

    Article  CAS  PubMed  Google Scholar 

  3. Bertsias GK, Salmon JE, Boumpas DT (2010) Therapeutic opportunities in systemic lupus erythematosus: state of the art and prospects for the new decade. Ann Rheum Dis 69(9):1603–1611. https://doi.org/10.1136/ard.2010.135186

    Article  PubMed  Google Scholar 

  4. Yen EY, Singh RR (2018) Brief report: lupus-an unrecognized leading cause of death in young females: a population-based study using nationwide death certificates, 2000–2015. Arthritis Rheumatol 70(8):1251–1255. https://doi.org/10.1002/art.40512

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee YH, Choi SJ, Ji JD, Song GG (2016) Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus 25(7):727–734. https://doi.org/10.1177/0961203315627202

    Article  CAS  PubMed  Google Scholar 

  6. Ulff-Moller CJ, Simonsen J, Kyvik KO, Jacobsen S, Frisch M (2017) Family history of systemic lupus erythematosus and risk of autoimmune disease: nationwide cohort study in Denmark 1977–2013. Rheumatology (Oxford) 56(6):957–964. https://doi.org/10.1093/rheumatology/kex005

    Article  PubMed  Google Scholar 

  7. Hemminki K, Li X, Sundquist J, Sundquist K (2009) Familial association between type 1 diabetes and other autoimmune and related diseases. Diabetologia 52(9):1820–1828. https://doi.org/10.1007/s00125-009-1427-3

    Article  CAS  PubMed  Google Scholar 

  8. Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485. https://doi.org/10.1146/annurev.immunol.23.021704.115643

    Article  CAS  PubMed  Google Scholar 

  9. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300. https://doi.org/10.1038/nature08933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daneman D (2006) Type 1 diabetes. Lancet 367(9513):847–858. https://doi.org/10.1016/S0140-6736(06)68341-4

    Article  CAS  PubMed  Google Scholar 

  11. Tulpar S, Poyrazoglu MH, Patiroglu TE et al (2011) Lupus nephritis in a child with type I diabetes mellitus. J Trop Pediatr 57(5):396–398. https://doi.org/10.1093/tropej/fmq103

    Article  PubMed  Google Scholar 

  12. Zeglaoui H, Landolsi H, Mankai A, Ghedira I, Bouajina E (2010) Type 1 diabetes mellitus, celiac disease, systemic lupus erythematosus and systemic scleroderma in a 15-year-old girl. Rheumatol Int 30(6):793–795. https://doi.org/10.1007/s00296-009-0988-2

    Article  PubMed  Google Scholar 

  13. Smith GD, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22. https://doi.org/10.1093/ije/dyg070

    Article  PubMed  Google Scholar 

  14. Gupta V, Walia GK, Sachdeva MP (2017) ‘Mendelian randomization’: an approach for exploring causal relations in epidemiology. Public Health 145:113–119. https://doi.org/10.1016/j.puhe.2016.12.033

    Article  CAS  PubMed  Google Scholar 

  15. Yarmolinsky J, Wade KH, Richmond RC et al (2018) Causal inference in cancer epidemiology: what is the role of mendelian randomization? Cancer Epidemiol Biomarkers Prev 27(9):995–1010. https://doi.org/10.1158/1055-9965.EPI-17-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Emerging Risk Factors Collaboration E-CVDVDSC (2021) Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol 9(12):837–846. https://doi.org/10.1016/S2213-8587(21)00263-1

    Article  Google Scholar 

  17. Chiou J, Geusz RJ, Okino ML et al (2021) Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature 594(7863):398–402. https://doi.org/10.1038/s41586-021-03552-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forgetta V, Manousaki D, Istomine R et al (2020) Rare genetic variants of large effect influence risk of type 1 diabetes. Diabetes 69(4):784–795. https://doi.org/10.2337/db19-0831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bentham J, Morris DL, Graham DSC et al (2015) Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47(12):1457–1464. https://doi.org/10.1038/ng.3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034

    Article  PubMed  Google Scholar 

  21. Staiger D, Stock JH (1997) Instrumental variables regression with weak instruments. Econometrica 65(3):557–586. https://doi.org/10.2307/2171753

    Article  Google Scholar 

  22. Burgess S, Thompson SG, Collaboration CCG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764. https://doi.org/10.1093/ije/dyr036

    Article  PubMed  Google Scholar 

  23. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36(11):1783–1802. https://doi.org/10.1002/sim.7221

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao QY, Wang JS, Hemani G, Bowden J, Small DS (2020) Statistical inference in two-sample summary-data mendelian randomization using robust adjusted profile score. Ann Stat 48(3):1742–1769. https://doi.org/10.1214/19-Aos1866

    Article  Google Scholar 

  28. Slob EAW, Burgess S (2020) A comparison of robust Mendelian randomization methods using summary data. Genet Epidemiol 44(4):313–329. https://doi.org/10.1002/gepi.22295

    Article  PubMed  PubMed Central  Google Scholar 

  29. He J, Luo X, Xin H, Lai Q, Zhou Y, Bai Y (2022)The effects of fatty acids on inflammatory bowel disease: a two-sample mendelian randomization study. Nutrients. 14(14)https://doi.org/10.3390/nu14142883

  30. Bottini N, Musumeci L, Alonso A et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338. https://doi.org/10.1038/ng1323

    Article  CAS  PubMed  Google Scholar 

  31. Kyogoku C, Langefeld CD, Ortmann WA et al (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 75(3):504–507. https://doi.org/10.1086/423790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kristiansen OP, Larsen ZM, Pociot F (2000) CTLA-4 in autoimmune diseases–a general susceptibility gene to autoimmunity? Genes Immun 1(3):170–184. https://doi.org/10.1038/sj.gene.6363655

    Article  CAS  PubMed  Google Scholar 

  33. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423(6939):506–511. https://doi.org/10.1038/nature01621

    Article  CAS  PubMed  Google Scholar 

  34. Wang XS, Li BZ, Hu LF et al (2013) Perspectives of the relationship between IL-7 and autoimmune diseases. Clin Rheumatol 32(12):1703–1709. https://doi.org/10.1007/s10067-013-2360-x

    Article  PubMed  Google Scholar 

  35. Ohl K, Tenbrock K (2011) Inflammatory cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011:432595. https://doi.org/10.1155/2011/432595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harrison C (2012) Autoimmune disease: targeting IL-7 reverses type 1 diabetes. Nat Rev Drug Discov 11(8):599. https://doi.org/10.1038/nrd3805

    Article  CAS  PubMed  Google Scholar 

  37. Lee LF, Axtell R, Tu GH et al (2011) IL-7 promotes T(H)1 development and serum IL-7 predicts clinical response to interferon-beta in multiple sclerosis. Sci Transl Med 3(93):93ra68. https://doi.org/10.1126/scitranslmed.3002400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.X. conceived of the study idea. S.L. developed the theory and performed the computations. Y.Z., Q.Y., S.S., J.L., and verified the analytical methods. All authors discussed the results and contributed to the final manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (2020YFC2003500), National Natural Science Foundation of China in 2021/general program (82173625), Shandong Province Key R&D Program (Science and Technology Demonstration Project) Project(2021SFGC0504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzhong Xue.

Ethics declarations

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Si, S., Li, J. et al. Association between type 1 diabetes and systemic lupus erythematosus: a Mendelian randomization study. Clin Rheumatol 43, 41–48 (2024). https://doi.org/10.1007/s10067-023-06800-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06800-8

Keywords

Navigation