Skip to main content

Advertisement

Log in

JAK-STAT signaling pathway-related gene single nucleotide polymorphisms and susceptibility to ankylosing spondylitis in eastern Chinese Han population

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

A Correction to this article was published on 13 December 2022

This article has been updated

Abstract  

Objective

A case–control study was utilized to investigate the relationship between genetic variation of JAK-STAT signaling pathway-related genes and the susceptibility to ankylosing spondylitis (AS).

Methods

Fifteen SNPs in the JAK-STAT signaling pathway-related genes from 660 AS patients and 646 healthy controls were genotyped using iMLDR technology (JAK1: rs2230587, rs2230588, rs2780815, rs310241; JAK2: rs2274472, rs2230722, rs2230724, rs10758669; STAT1: rs10199181, rs1547550, rs2066802, rs45463799, rs6718902; STAT3: rs3744483; STAT5A: rs1135669).

Results

Allele analysis revealed that the T allele of STAT1 rs6718902 was a protective agent for male AS patients (OR = 0.765, 95% CI = 0.644–0.909). Inheritance models showed that GG + CG as well as GG genotypes of STAT1 rs1547550 had a significant risk of developing AS in males (OR = 5.374, 95%CI = 2.505–11.526; OR = 5.186, 95%CI = 2.412–11.153). The TT + CT and TT genotypes at STAT1 rs6718902 were observed to be associated with a significantly decreased risk of AS compared to CC genotypes among male patients and male controls (OR = 0.637, 95%CI = 0.485–0.837; OR = 0.597, 95%CI = 0.422–0.845). Furthermore, the genotypes of JAK1 gene rs2230588, rs2780815, and rs310241 were correlated with the severity of clinical conditions in female AS patients, while the JAK2 rs2230724 genotypes may affect disease ability in male AS patients.

Conclusion

These findings indicated that JAK-STAT signaling pathway-related gene single nucleotide polymorphisms may be associated with AS susceptibility in eastern Chinese Han population.

Key Points

• The T allele of rs6718902 on the STAT1 gene may be a protective agent for male AS patients.

• STAT1 rs1547550 GG + CG and GG genotypes were observed to be connected with a risk of male AS patients. However, STAT1 rs6718902 TT + CT and TT genotypes reduced the susceptibility risk of male AS patients compared to wild-type CC.

• The JAK1 genes rs2230588, rs2780815, and rs310241 may affect disease functional status in female AS patients, while the JAK2 rs2230724 genotype was related to disease activity in male AS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Ritchlin C, Adamopoulos IE (2021) Axial spondyloarthritis: new advances in diagnosis and management. BMJ 372:m4447

    Article  Google Scholar 

  2. van der Linden SM, Valkenburg HA, de Jongh BM, Cats A (1984) The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 27:241–9

    Article  Google Scholar 

  3. Braun J, Bollow M, Remlinger G et al (1998) Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 41:58–67

    Article  CAS  Google Scholar 

  4. Akkoc N, Khan MA (2005) Overestimation of the prevalence of ankylosing spondylitis in the Berlin study: comment on the article by Braun et al. Arthritis Rheum 52:4048–9; author reply 9–50

  5. Zhai J, Rong J, Li Q, Gu J (2013) Immunogenetic study in Chinese population with ankylosing spondylitis: are there specific genes recently disclosed? Clin Dev Immunol 2013:419357

    Article  Google Scholar 

  6. Montoya J, Matta NB, Suchon P et al (2016) Patients with ankylosing spondylitis have been breast fed less often than healthy controls: a case-control retrospective study. Ann Rheum Dis 75:879–882

    Article  CAS  Google Scholar 

  7. Hanson A, Brown MA (2017) Genetics and the causes of ankylosing spondylitis. Rheum Dis Clin North Am 43:401–414

    Article  Google Scholar 

  8. Ding N, Hu Y, Zeng Z et al (2015) Case-only designs for exploring the interaction between FCRL4 gene and suspected environmental factors in patients with ankylosing spondylitis. Inflammation 38:632–636

    Article  CAS  Google Scholar 

  9. Wang S, Li G, Ge R et al (2013) Association of KIR genotype with susceptibility to HLA-B27-positive ankylosing spondylitis. Mod Rheumatol 23:538–541

    Article  CAS  Google Scholar 

  10. O’Shea JJ, Holland SM, Staudt LM (2013) JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 368:161–170

    Article  CAS  Google Scholar 

  11. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ (2016) Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 12:25–36

    Article  CAS  Google Scholar 

  12. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24

    Article  CAS  Google Scholar 

  13. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  Google Scholar 

  14. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  Google Scholar 

  15. Malin S, McManus S, Cobaleda C et al (2010) Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 11:171–179

    Article  CAS  Google Scholar 

  16. Ellinghaus D, Ellinghaus E, Nair RP et al (2012) Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet 90:636–647

    Article  CAS  Google Scholar 

  17. Fortunato G, Calcagno G, Bresciamorra V et al (2008) Multiple sclerosis and hepatitis C virus infection are associated with single nucleotide polymorphisms in interferon pathway genes. J Interferon Cytokine Res 28:141–152

    Article  CAS  Google Scholar 

  18. Hahn WH, Suh JS, Cho SH, Cho BS, Kim SD (2010) Polymorphisms of signal transducers and activators of transcription 1 and 4 (STAT1 and STAT4) contribute to progression of childhood IgA nephropathy. Cytokine 50:69–74

    Article  CAS  Google Scholar 

  19. Hou S, Qi J, Zhang Q et al (2013) Genetic variants in the JAK1 gene confer higher risk of Behcet’s disease with ocular involvement in Han Chinese. Hum Genet 132:1049–1058

    Article  CAS  Google Scholar 

  20. Hu K, Hou S, Li F, Xiang Q, Kijlstra A, Yang P (2013) JAK1, but not JAK2 and STAT3, confers susceptibility to Vogt-Koyanagi-Harada (VKH) syndrome in a Han Chinese population. Invest Ophthalmol Vis Sci 54:3360–3365

    Article  CAS  Google Scholar 

  21. Yang SK, Jung Y, Kim H, Hong M, Ye BD, Song K (2011) Association of FCGR2A, JAK2 or HNF4A variants with ulcerative colitis in Koreans. Dig Liver Dis 43:856–861

    Article  CAS  Google Scholar 

  22. van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis and rheumatism 27:361–8

    Article  Google Scholar 

  23. Zochling J (2011) Measures of symptoms and disease status in ankylosing spondylitis: Ankylosing Spondylitis Disease Activity Score (ASDAS), Ankylosing Spondylitis Quality of Life Scale (ASQoL), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score (BAS-G), Bath Ankylosing Spondylitis Metrology Index (BASMI), Dougados Functional Index (DFI), and Health Assessment Questionnaire for the Spondylarthropathies (HAQ-S). Arthritis Care Res (Hoboken) 63(Suppl 11):S47-58

    Article  Google Scholar 

  24. Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228:273–287

    Article  CAS  Google Scholar 

  25. Liao HT, Li TH, Chen CH et al (2019) Janus kinase-1 and 3 in ankylosing spondylitis. J Formos Med Assoc 118:134–141

    Article  Google Scholar 

  26. Jo S, Wang SE, Lee YL et al (2018) IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res Ther 20:115

    Article  Google Scholar 

  27. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98

    Article  CAS  Google Scholar 

  28. Yasuda K, Takeuchi Y, Hirota K (2019) The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol 41:283–297

    Article  Google Scholar 

  29. Cortes A, Hadler J, Pointon JP et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45:730–738

    Article  CAS  Google Scholar 

  30. Chimenti MS, Perricone C, D’Antonio A et al (2021) Genetics, epigenetics, and gender impact in axial-spondyloarthritis susceptibility: an update on genetic polymorphisms and their sex related associations. Front Genet 12:671976

    Article  CAS  Google Scholar 

  31. Cheng L, Yu H, Jiang Y et al (2016) Lack of association between genetic polymorphisms of JAK-STAT signaling pathway genes and acute anterior uveitis in Han Chinese. Biomed Res Int 2016:5896906

    Article  Google Scholar 

  32. Robinson PC, Claushuis TA, Cortes A et al (2015) Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol 67:140–151

    Article  CAS  Google Scholar 

  33. Rolandelli A, Hernández Del Pino RE, Pellegrini JM et al (2017) The IL-17A rs2275913 single nucleotide polymorphism is associated with protection to tuberculosis but related to higher disease severity in Argentina. Sci Rep 7:40666

    Article  CAS  Google Scholar 

  34. de Lima RE, de Holanda Martins CM, do Carmo RF, et al (2018) Two sides of a coin: GG genotype of C7 provides protection against fibrosis severity while showing a higher risk for hepatocellular carcinoma in patients with hepatitis C. Hum Immunol 79:702–7

    Article  Google Scholar 

  35. Liu D, Liu B, Lin C, Gu J (2021) Imbalance of peripheral lymphocyte subsets in patients with ankylosing spondylitis: a meta-analysis. Front Immunol 12:696973

    Article  CAS  Google Scholar 

  36. Jones GW, Greenhill CJ, Williams JO et al (2013) Exacerbated inflammatory arthritis in response to hyperactive gp130 signalling is independent of IL-17A. Ann Rheum Dis 72:1738–1742

    Article  CAS  Google Scholar 

  37. Arbelaez CA, Palle P, Charaix J, Bettelli E (2022) STAT1 signaling protects self-reactive T cells from control by innate cells during neuroinflammation. JCI Insight 7

  38. Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200:79–87

    Article  CAS  Google Scholar 

  39. Liu L, Okada S, Kong XF et al (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648

    Article  CAS  Google Scholar 

  40. Tsukazaki H, Kaito T (2020) The Role of the IL-23/IL-17 Pathway in the pathogenesis of spondyloarthritis. Int J Mol Sci 21

  41. Schiotis R, Bartolomé N, Sánchez A et al (2012) Both baseline clinical factors and genetic polymorphisms influence the development of severe functional status in ankylosing spondylitis. PLoS ONE 7:e43428

    Article  CAS  Google Scholar 

  42. Yang L, Liu D, Liang S et al (2013) Janus kinase 2 polymorphisms are associated with risk in patients with gastric cancer in a Chinese population. PLoS ONE 8:e64628

    Article  CAS  Google Scholar 

  43. Zhong Y, Wu J, Ma R et al (2012) Association of Janus kinase 2 (JAK2) polymorphisms with acute leukemia susceptibility. Int J Lab Hematol 34:248–253

    Article  CAS  Google Scholar 

  44. Küçükşahin O, Ateş A, Türkçapar N et al (2016) Association between single nucleotide polymorphisms in prospective genes and susceptibility to ankylosing spondylitis and inflammatory bowel disease in a single centre in Turkey. Turk J Gastroenterol 27:317–324

    Article  Google Scholar 

  45. Davidson SI, Liu Y, Danoy PA et al (2011) Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann Rheum Dis 70:289–292

    Article  CAS  Google Scholar 

  46. Chen C, Zhang X, Wang Y (2010) Analysis of JAK2 and STAT3 polymorphisms in patients with ankylosing spondylitis in Chinese Han population. Clin Immunol 136:442–446

    Article  CAS  Google Scholar 

  47. Mizoguchi Y, Okada S (2021) Inborn errors of STAT1 immunity. Curr Opin Immunol 72:59–64

    Article  CAS  Google Scholar 

  48. Orozco G, Hinks A, Eyre S et al (2009) Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum Mol Genet 18:2693–2699

    Article  CAS  Google Scholar 

  49. Kalvakolanu DV (2003) Alternate interferon signaling pathways. Pharmacol Ther 100:1–29

    Article  CAS  Google Scholar 

  50. van der Heijde D, Song IH, Pangan AL et al (2019) Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): a multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet 394:2108–2117

    Article  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81273169, 81573218, 81773514, 82073655) and the funds for academic and technical leaders in Anhui province (2017D140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Pan.

Ethics declarations

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The second section under Results section has been corrected from “Genetic model analysis” to "Genotype and allele analysis”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 177 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Xu, W., Gao, X. et al. JAK-STAT signaling pathway-related gene single nucleotide polymorphisms and susceptibility to ankylosing spondylitis in eastern Chinese Han population. Clin Rheumatol 42, 549–562 (2023). https://doi.org/10.1007/s10067-022-06435-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06435-1

Keywords

Navigation