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Abstract
Objective Recent studies have demonstrated an altered expression of certain microRNAs in patients with rheumatoid arthritis
(RA) as well as their first-degree relatives (FDRs) compared to healthy controls (HCs), suggesting a role of microRNA in the
progression of the disease. To corroborate this, a set of well-characterized RA families originating from northern Sweden were
analyzed for differential expression of a selected set of microRNAs.
Method MicroRNA was isolated from frozen peripheral blood cells obtained from 21 different families and included 26 RA
patients, 22 FDRs, and 21 HCs. Expression of the selected microRNAs miR-22-3p, miR-26b-5p, miR-34a-3p, miR-103a-3p,
miR-142-3p, miR-146a-5p, miR-155, miR-346, and miR-451a was determined by a two-step quantitative real-time polymerase
chain reaction (qRT-PCR). Statistical analysis including clinical variables was applied.
Results Out of the nine selected microRNAs that previously have been linked to RA, we confirmed four after adjusting for age
and gender, i.e., miR-22-3p (p = 0.020), miR-26b-5p (p = 0.018), miR-142-3p (p = 0.005), and miR-155 (p = 0.033). Moreover, a
significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs. In addition,
analysis of the effect of corticosteroid use showed modulation of miR-103a-3p expression.
Conclusions We confirm that microRNAs seem to be involved in the development of RA, and that the expression pattern in FDR
is partly overlapping with RA patients. The contribution of single microRNAs in relation to the complex network including all
microRNAs and other molecules is still to be revealed.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease
that affects 0.3–1% of the world population. RA is more

common in northern Europe and North America, with pre-
dominance among women and elderly [1]. Previous studies
suggest an interplay between genetic factors, environmental
factors, and the immune system [2–4] although the pathogen-
esis of RA is still not fully understood. In families containing
RA individuals, the majority of first-degree relatives (FDRs)
never develop RA, even if they display risk factors such as
smoking, anti-citrullinated protein antibodies (ACPAs), or
carriage of HLA-shared epitope.

MicroRNA (miRNA or miR) is a non-coding sequence of
single-stranded RNA that is approximately 18–25 nucleotides in
length [5]. Its main function is to alter gene expression by post-
transcriptional modifications and has shown to regulate about
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30% of the protein coding genes. The mature microRNA will
bind to a complementary sequence on mRNA that, depending
on the grade of complementarity, will either lead to degradation
of the mRNA or interfere with the translation process.
Regarding this, microRNA primarily downregulates gene ex-
pression [2, 6]. A single microRNA can have the ability to
regulate multiple genes, and it is also possible that one gene
can be regulated by several microRNAs [2].

In a recent study based on indigenous North Americans,
Anaparti et al. have shown an altered expression of several
microRNAs in blood samples of RA patients as well as their
FDRs, compared to healthy controls (HCs) [5]. Several other
studies have similarly identified a dysregulated expression of
microRNAs within the inflamed joints [7–10] and serum [11]
as well as peripheral blood mononuclear cells (PBMCs) [12]
from patients with RA, indicating that microRNA might have
a role in the pathogenesis of the disease.

In a previous study of RA patients, their FDRs, and HCs
originating from the four northernmost counties of Sweden
[13], we have shown differences in the levels of IgG, IgA, and
IgM ACPAs as well as of rheumatoid factor (RF) of IgM and
IgA isotype. However, microRNA expression in peripheral
blood cells has not been analyzed in this group. In this study,
the expression of a number of carefully chosen microRNAs was
studied. Thus, miR-22-3p, miR-26b-5p, miR-34a-3p, miR-103a-
3p, miR-142-3p, miR-146a-5p, miR-155, miR-346, and miR-
451a were examined in peripheral blood cells of our cohort com-
paring the three groups: patients with RA, their FDRs, and HCs.

Materials and methods

Study design

Participants within this study originate from the four most
northern counties in Sweden. The RA families were identified
by a questionnaire provided to patients with RA at their re-
spective rheumatology clinic. A total of 194 patients with
confirmed diagnosis of RA (1987 ARA criteria) [14] and
191 unaffected FDRs were recruited from northern Sweden.
All FDRs were interviewed by a questionnaire and all of the
relatives with symptoms or signs of joint disease were clini-
cally assessed by a rheumatologist as previously reported [13].
For this study, members from the 21 families living closest to
the University Hospital in Umeå participated, resulting in 26
patients with RA and 22 FDRs. For comparison, we included
21HCs in the study (Table 1). The FDRs included in the study
were given a second questionnaire about symptoms and signs
of joint disease and were clinically evaluated by a rheumatol-
ogist if signs of joint disease were reported. Blood samples
were collected in PAXgene Blood RNA tubes (PreAnalytiX,
Hombrechtikon, Switzerland) and were kept in − 80 °C until
microRNA isolation.

Ethical considerations

All procedures performed in studies involving human partic-
ipants were in accordance with the ethical standards of the
institutional and/or national research committee and with the
1964 Helsinki declaration and its later amendments or com-
parable ethical standards. Informed consent was obtained
from all individual participants included in the study. Ethical
permits for this study were from the Regional Ethics
Committee, Umeå (Dnr 05-068M and Dnr 2016-216-32M).

Isolation of microRNA

The collected blood samples were defrosted in room temper-
ature for 2 h and turned eight to ten times, then centrifuged for
10 min at 3000g in 4 °C using a centrifuge with a swing-out
rotor (Allegra® X-15R Centrifuge, Beckman Coulter). The
supernatant was removed and 1 mL Gibco™ PBS (pH 7.4,
1×, Thermo Fisher scientific, Waltham,MA, USA) was added
to the pellet. The samples were transferred into 2-mL tubes
and centrifuged for 10 min at 3000g in 4 °C and the superna-
tant was removed. ThemicroRNAwas isolated from the pellet
using MirVana miRNA Isolation Kit (Life Technologies
Europe B.V., Bleiswijk, Netherlands) according to the manu-
facturer’s instructions with the following changes: instead of
acid-phenol:chloroform:isoamyl alcohol (125:24:1, pH 4.5 ±
0.2), phenol:chloroform:isoamyl alcohol (25:24:1, pH 6.7 ±
0.2) or phenol:chloroform:isoamyl alcohol (125:24:1, pH 4–
5) with an additional volume of chloroform in a 2:1 ratio was
used. Nuclease-free water was used as elution solution. The
concentration of the isolated RNA was determined by a
NanoDrop® ND-1000 Spectrophotometer with software
NanoDrop 1000 3.7.1, or Thermo Scientific™ NanoDrop™
One C, where the absorbance at 230 nm, 260 nm, and 280 nm
was measured. The samples were diluted with nuclease-free
water to a final concentration of 2.0 ng/μL.

Reverse transcription PCR

TaqMan® MicroRNA Reverse Transcription Kit (Life
Technologies Europe B.V.) was used in order to perform the
reverse transcription. RT primers from TaqMan®MicroRNA
assays for RNU48 (assay ID: 001006), U6 snRNA (assay ID:
001973), hsa-miR-22-3p (assay ID: 000398), hsa-miR-26b-
5p (assay ID: 000407), hsa-miR-34a-3p (assay ID: 002316),
hsa-miR-103a-3p (assay ID: 000439), hsa-miR-142-3p (assay
ID: 000464), hsa-miR-146a-5p (assay ID: 000468), hsa-miR-
155 (assay ID: 002623), hsa-miR-346 (assay ID: 000553), and
mmu-miR-451a (assay ID: 001141) with a concentration of
5× were used (Life Technologies Europe B.V.). The reverse
transcription reaction was performed according to the protocol
of the manufacturer for TaqMan® Small RNA Assays. The
cDNA was amplified in PTC-100™ Programmable Thermal

2388 Clin Rheumatol (2021) 40:2387–2394



Controller, and the cDNA was stored in − 20 °C until qPCR
was performed.

Quantitative PCR

qPCR was performed using TaqMan™ Fast Universal
PCR Master Mix (2×) no AmpErase™ UNG (Life
Technologies Europe B.V.) and primers and probes from
TaqMan® MicroRNA assays as mentioned above, with a
concentration of 20× (Life Technologies Europe B.V.).
The PCR reaction mix was prepared according to the man-
ufacturer’s protocol for TaqMan® Small RNA Assays.
Negative controls, without cDNA, were run on every plate.
In the majority of cases, samples and negative controls
were analyzed in triplicates. The qPCR was performed in
QuantStudio5 and analyzed in QuantStudio™ Design and
Analysis Software (Applied Biosystems, Foster City, CA,
USA). For each of the nine microRNAs analyzed, the
threshold value was adjusted to lay within the linear phase
of the amplification curve and was held constant for all
analyses of one particular microRNA. In initial analyses,
two reference genes, i.e., RNU48 and U6 snRNA, were
tested. The U6 snRNA was found to display the lowest
deviation in expression in between the runs and was there-
fore selected as the reference gene.

The cycle threshold (CT) values received from the dupli-
cates and triplicates were used to calculate a meanCT value for
each sample. An inter-experimental reference sample was in-
cluded in all runs, and the mean CT values for all microRNAs
were adjusted to this reference sample.ΔCT was calculated as
[CT (target) − CT (U6 snRNA)] and used in order to calculate
ΔΔCT [ΔCT (RA) −ΔCT (HC)], [ΔCT (FDR) −ΔCT (HC)],
or [ΔCT (RA) − ΔCT (FDR)]. Fold difference in expression
was calculated as 2−ΔΔCT.

Statistical analysis and construction of figures

SPSS software version 26.0 (IBM, NY, USA) was used for
statistical analyses. Comparisons between the groups of con-
tinuous variables were done using logistic regression present-
ed with odds ratios (ORs) with 95% confidence intervals (CIs)
or the Jonckheere-Terpstra test to analyze for the trend be-
tween the groups. Categorical variables were analyzed using
the chi-square test. All tests were two-tailed. p values ≤ 0.05
were considered significant. The figures were created in
GraphPad Prism 8 (version 8.4.3, GraphPad Software LLC,
San Diego, CA, USA).

Results

Analysis of the relative fold difference for the different
microRNAs between the groups revealed that four of the nine
microRNAs analyzed displayed significant differences in the
comparison between RA and HCs (Table 2). In addition, dif-
ference in miR-155 expression was borderline significant in
this comparison. After adjustments for age and gender, three
microRNAs remained significant, i.e., miR-22-3p, miR-26b-
5p, and miR-142-3p, and the p value of the miR-155 compar-
ison became significant. Moreover, miR-26b-5p and miR-
142-3p showed a significant difference comparing FDRs with
HCs, where miR-26b-5p remained significant after adjust-
ments. Notably, none of the analyzed microRNAs displayed
significant difference between FDRs and RA after adjusting
for gender and age (Table 2). A graphical overview of the
findings is shown in Fig. 1.

Next, we applied the Jonckheere-Terpstra test to compare
the three groups regarding microRNA expression. We found
significant differences between the three groups for miR-22-
3p (p = 0.001), miR-26b-5p (p = 0.026), miR-142-3p (p =

Table 1 Descriptive
characteristics of participants
included in the study

RA patients, N = 26 FDRs, N = 22 HCs, N = 21

Women/men 20/6 9/13 18/3

Age at sampling, mean (range), years 62.0 (42.7–83.0) 52.6 (31.3–79.6) 52.7 (28.3–71.4)

Anti-CCP positive, n (%) 24 (92.3) 8 (36.4) ND

RF positive, n (%) 18 (69.2) 4 (18.2) ND

Smoking, ever, n (%) 16 (61.5) 11 (50) 9 (42.9)

RA duration, mean (range), years 21.5 (5.8–51.0) - -

Treatment

Corticosteroids, n (%) 7 (26.9) 1 (4.6) -

sDMARD, n (%) 18 (69.2) 0 -

bDMARD, n (%) 4 (15.4) 0 -

NSAID, n (%) 20 (76.9) 2 (9.1) -

Statins, n (%) 9 (34.6) 3 (13.6) -

ND not determined
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0.001), and miR-451a (p = 0.045) as presented in Fig. 2. In
addition, for miR-155, the difference between the three groups
was borderline significant (p = 0.051). Principal component
analysis based on relative expression level was applied to
investigate potential clustering of individuals. No particular
pattern was observed (data not shown).

Next, influence of treatments of the RA patients was deter-
mined, and a significant effect of corticosteroids on miR-
103a-3p levels was observed, with an upregulation of miR-
103a-3p in the group treated with corticosteroids (p = 0.048).

Discussion

miRNAs are involved in RA pathogenesis

Familial studies provide a unique possibility to evaluate the
impact of potential contributing factors in the at-risk FDR
group. Taking this approach, we have previously shown that
the frequency of HLA-DRB1*0401/0404/0408 and the T var-
iant of PTPN22, which are risk factors of RA development,
are significantly increased in RA and FDRs compared to those
in HCs [13]. Moreover, levels of ACPAs and RF in plasma, in
particular of the IgA and IgM isotypes, were significantly
different between the three groups, where FDRs showed an
intermediate phenotype [13]. Despite the presence of risk fac-
tors in the FDRs for RA development, regulatory mechanisms
appear to still be in place. MicroRNAs could potentially be
involved in this process. Indeed, several recent studies [5, 11,
12, 15] have demonstrated both overlaps and differences in
the expression of multiple microRNAs comparing RA pa-
tients, FDRs, and HCs.

Thus, in the current study, we have analyzed the expression
levels of nine different microRNAs in peripheral blood
cells of well-characterized RA, FDR, and HC individuals.
Expression of miR-26b-5p and miR-142-3p was downregu-
lated in FDRs compared to that in HCs, and miR-26b-5p
remained significant after adjustment for age and gender.
Comparison of FDR to RA patients showed that FDR and
RA patients display similar levels of these microRNAs, sug-
gesting that FDR display this disease-associated feature. Our
observations are in line with Zhu et al. where downregulation
of miR-26b-5p and miR-142-3p was observed in PBMC of
RA patients compared with controls [12]. MiR-26b has been
associated to RA and inflammation where inhibition of miR-
26b in rheumatoid arthritis fibroblast-like synoviocytes
(RAFLS) causes increased levels of TNF-α, IL-1β, and IL-
6, while miR-26bmimicsmediate downregulation of the same
proinflammatory cytokines [16]. Chen et al. have found that
miR-26 is able to downregulate IL-6 expression as well as
TNF-α/NF-κB signaling, by targeting mucosa-associated
lymphoid tissue lymphoma translocation protein 1 (MALT1)
and high-mobility group AT-hook 1 (HMGA1) [17].Ta
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Moreover, levels of miR-26b are downregulated in the carti-
lage of osteoarthritis (OA) patients compared to those in con-
trols [18], where decreased levels of miR-26b also have been
suggested to contribute to disease progression by upregulation
of the NF-κB signaling pathway. In our analysis, however, we

did not observe a correlation betweenmiR-26b and IL-6 or IL-
1β in RA and FDR (data not shown), which indicates that
regulation of the expression of these cytokines depends on
multiple influencing factors. Our result also deviates from the
study by Anaparti et al., where significant decreased levels of
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miR-26b-5p were observed in FDRs compared to RA, and
when compared to HCs, no significant difference was noted [5].

In this study, miR-142-3p was shown to be significantly
downregulated in RA (and FDRs before adjustment) com-
pared to that in HCs, which is in line with the study by Zhu
et al., comparing PBMCs in RA and HC [12]. However, in
serum and RAFLS, miR-142-3p is upregulated in patients
with very early RA and CCP-positive at-risk individuals
[11], as well as in RA patients [19] compared to HCs. This
corroborates the complexity of microRNA function and regu-
lation including that miR-142-3p seems to play various roles
in various tissues.

An extensively studied microRNA in the development of
RA is miR-155, which has been found to be upregulated in
RA patients and in FDRs compared to HCs or OA patients [5,
20, 21]. MiR-155 is associated with inflammation and has
been associated with erythrocyte sedimentation rate (ESR),
disease activity score (DAS-28), and plasma levels of proin-
flammatory cytokines [22] in RA patients. MiR-155 has sev-
eral targets, including suppressor of cytokine signaling 1
(SOCS1) and SH-2 containing inositol 5′ polyphosphatase 1
(SHIP1). Inhibition of SOCS1 and SHIP1 by miR-155 results
in an enhancement of inflammatory cytokine production, i.e.,
TNF, IL-1, and IL-6 [23], thus contributing to an inflamma-
torymilieu. Other reported targets are the Fas-associated death
domain (FADD) protein and the IκB kinase (IKK), which
both are anti-inflammatory molecules [22]. This further sup-
ports the proinflammatory role of miR-155. Unexpectedly, in
the current study, we found a decrease of miR-155 expression
in RA patients compared to HCs after adjustment for age and
gender, which deviate from previous findings. In addition,
miR-146 that also has been associated with inflammation
did not differ in our cohort. The underlying cause for this is
still to be revealed, but one possibility is that the RA patients
are undergoing treatments of various kinds and the disease
was well controlled at the time of sampling.

This study found a significant downregulation of miR-22-
3p in RA compared to both FDRs and HCs, and the significant
difference remained between RA and HCs after adjustment
for age and gender. Lin et al. found that miR-22 was down-
regulated in synovial tissue of RA patients compared to that of
OA patients, and that the levels of miR-22 were negatively
correlated to the levels of Cyr61 overexpression and the pro-
motion of IL-6 production [24]. Similar results have been
reported by Yu et al., where inhibition of p53 in subarachnoid
hemorrhage (SAH) mice led to decreased levels of miR-22
and upregulation of Cyr61, whereas knock down of p53 in
HEB cells (human normal glial cell line) suppressed the ex-
pression of miR-22 [25]. Decreased levels of miR-22 in syno-
vial tissue of RA patients compared to HCs have also been
reported and this is negatively correlated to sirtuin 1 (SIRT1)
levels [26]. Interestingly, addition of a miR-22 mimic in this
context leads to decreased levels of TNF-α, IL-1β, and IL-6,

supporting the role of miR-22 in inflammation and RA path-
ogenesis [26].

The levels of miR-451a were in this study significantly
decreased in RA compared to those in HCs, and borderline
significant comparing FDRs and HCs (p = 0.054). However,
after adjustment for age and gender, no significant difference
remained, indicating that levels of miR-451a are highly influ-
enced by these parameters. Meta-analysis of likely targets of
miR-451a [27] includes macrophage migration inhibitory fac-
tor (MIF) that is negatively modulated by miR-451a [28] and
IL-6R that is also negatively regulated by miR-451a [29]. As
we observed a downregulation of miR-451a in RA patients
compared to HC, we speculate that this could represent an
underlying inflammation and thus upregulation of IL-6R and
MIF.

In contrast to Anaparti et al. [5], we did not observe any
upregulation of miR-103a-3p expression in RA patients and
FDRs compared to HCs. However, we observed downregula-
tion of miR-103a-3p in RA patients using corticosteroids,
which suggests a modulating effect of this treatment in line
with a beneficial effect of miR-103a-3p suppression. The role
of miR-103a-3p in bone remodulation has been extensively
studied in both animal models and in various rheumatoid dis-
eases [30–32]. In addition, the influence of corticosteroids on
both miR-103 and osteoporosis has demonstrated to be tightly
connected [33–36].

When applying the Jonckheere-Terpstra test, four of the
nine microRNAs analyzed displayed a significant trend com-
paring RA patients, FDRs, and HCs, where FDRs exhibited
an intermediate phenotype. The intermediary pattern for the
microRNAs in the FDRs resembles our previously published
observations [13], where an intermediate level of ACPA and
RF in FDRs of the same cohort was observed. Taken together,
this suggests that a dysregulation of microRNAs may be in-
volved in the increased risk of RA development in FDRs.
However, for some microRNAs, the expression level did not
differ when a group-wise comparison of FDRs and HCs was
performed, suggesting that microRNAs could also have a pro-
tective role, preventing FDRs to develop the disease. Overall,
regulation of inflammation and other biological mechanisms
by microRNAs and other factors is highly complex, and can-
not be expected to be explained by a single microRNA.

In summary, we confirm that microRNAs seem to
play a role in promotion and protection of RA develop-
ment. Strength of this study is the usage of a well-
characterized cohort, as well as the familial analysis
approach where the participants originate from a re-
stricted geographic area, and display a genetic and en-
vironmental homogeneity.
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