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PERSPECTIVES IN RHEUMATOLOGY

Can metabolic profiling provide a new description of osteoarthritis
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Abstract

Osteoarthritis (OA) is a multifactorial disease contributing to significant disability and economic burden in Western populations.
The actiology of OA remains poorly understood, but is thought to involve genetic, mechanical and environmental factors. Currently,
the diagnosis of OA relies predominantly on clinical assessment and plain radiographic changes long after the disease has been
initiated. Recent advances suggest that there are changes in joint fluid metabolites that are associated with OA development. If this is
the case, biochemical and metabolic biomarkers of OA could help determine prognosis, monitor disease progression and identify
potential therapeutic targets. Moreover, for focussed management and personalised medicine, novel biomarkers could sub-stratify
patients into OA phenotypes, differentiating metabolic OA from post-traumatic, age-related and genetic OA. To date, OA bio-
markers have concentrated on cytokine action and protein signalling with some progress. However, these remain to be adopted into
routine clinical practice. In this review, we outline the emerging metabolic links to OA pathogenesis and how an elucidation of the
metabolic changes in this condition may provide future, more descriptive biomarkers to differentiate OA subtypes.
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Metabolic profiling (also known as metabolomics,
metabonomics and metabolic phenotyping) is emerging as a
strategy to provide biomarker diagnostics capable of disease
prediction, monitoring and early detection. It is defined as “the
quantitative measurement of the dynamic multiparametric
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response of a living system to pathophysiological stimuli or
genetic modification” [1]. Metabolites are the end points of
molecular biology and variations in their profile reflect a re-
sponse to the patient’s disease, environment, diet and lifestyle.
Metabolic profiling has already established itself as a robust
technique in oncology, epidemiology, gastrointestinal disease,
metabolic syndrome (MeS), diabetes and cardiovascular dis-
ease [2-8]. Its scope for impact on clinical practice is exem-
plified by studies in which biomarker analysis can enhance the
prediction of short term all-cause mortality, the profiling of
chronic kidney disease and assessment of cardiovascular risk
[9-11].

We can derive comprehensive descriptions of the thou-
sands of metabolites present in a biofluid or tissue through
complex analytical methods including but not exclusive to
the following: nuclear magnetic resonance (NMR) spectrom-
etry, liquid chromatography mass spectrometry (LC-MS), gas
chromatography mass spectrometry (GC-MS) and capillary
electrophoresis mass spectrometry (CE-MS) (Fig. 1). The
granular metabolic “fingerprint”, unique to specific disease
states, can be compared with other disease subgroups or
non-disease controls. Consequently, the technique can poten-
tially delineate OA disease traits, symptoms, outcomes or
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treatment response. Analysis can be “untargeted”, where anal-
ysis does not target specific metabolites, or “targeted”, to fo-
cus on metabolite groups with associations of interests [1].
Nevertheless, interpreting metabolic data is challenging due
to the significant number of variables and confounding fac-
tors. This is where computational multi-variate statistics can
enable data interpretation and identify representative
metabolites.

How does metabolic profiling differ
from the other “big data” research methods?

The advantage of metabolic profiling is the “top down” rep-
resentation of a disease phenotype, encompassing the genetics
of disease in addition to environmental, lifestyle and dietary
factors [12].

Pathology in biological systems can be classified at the
genome (genomic), transcriptome (transcriptomic), proteome
(proteomic) and, ultimately, metabolome level (Fig. 2).
Notably, these entities are not mutually exclusive, with
cross-interactivity between the metabolome and other repre-
sentations of the phenome [13]. Inter alia, metabolic profiling
provides insights into the final stage of disease expression.
The strength of metabolic data is in the patterns and relative
abundance of small molecules.

Traditionally, clinicians have focused upon genomic and
proteomic disease descriptions. However, pathogenesis or
treatment response is modulated by both exogenous and host
factors: immunosuppression, exercise, toxins, radiation, con-
current disease, diet and gut microbiome. Under circum-
stances where these factors have a substantial role in disease

Fig. 2 The methods of
representing a biosystem using
the “omic” techniques
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evolution, metabolic profiling, and its ability to account for
this, provides a more attractive disease description.

Search methods

In order to understand and research the metabolic influences
of OA, the following search of the EMBASE and MEDLINE
databases was performed:

1. “osteoarthritis” AND (“metabolic” OR “metabonomic”
OR “metabolomic” OR “metabolism™)

2. (“synovial fluid” OR “cartilage” OR “synovium” OR “se-
rum” OR “plasma” OR “urine”) AND (“NMR” or “Mass
Spectrometry’)

A total of 8851 abstracts were identified and 28 reports
contained suitable metabolic data.

What is metabolic syndrome and how does it
link to osteoarthritis?

MeS has a plethora of definitions and is associated with an
increased risk of cardiovascular disease. Common to all defi-
nitions are insulin resistance, visceral obesity, atherogenic
dyslipidaemia and hypertension [13]. In instituting the term
“metabolic OA”, the link with metabolic syndrome has been
pursued due to the shared mechanism of inflammation, oxida-
tive stress, common metabolites and endothelial dysfunction
in their aetiologies [14]. Therefore, metabolic syndrome un-
derpins the hypotheses of OA metabolic description, having a
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large impact upon study design and execution of many
studies.

A twofold increase in the risk of developing MeS has been
demonstrated in patients suffering from OA [15].
Cardiovascular disease risk is elevated in female OA patients
[16, 17]. Diabetes occurs more commonly in patients with
radiological but not necessarily symptomatic osteoarthritis
and confers a greater risk of developing bilateral hip osteoar-
thritis [18]. Inflammatory markers and pain scores are elevat-
ed in those suffering with OA and non-insulin-dependent di-
abetes mellitus compared with OA alone [19, 20]. A study of
the serum of patients with OA showed an increase in total
cholesterol compared with suitably matched controls [21].
This wide body of evidence for phenotypic variations and
potentially more progressive osteoarthritis in the presence of
metabolic disturbance has now resulted in OA being incorpo-
rated into some definition of MeS [22]. Nevertheless, what
remains unclear from these predominantly retrospective stud-
ies is whether metabolic disturbances are a cause or effect of a
proinflammatory state.

Previous studies have suggested that treating these meta-
bolic disturbances, through dietary modification or direct-
acting drug therapies, could slow or even halt the progression
of OA [23]. Statin therapy in animal models showed promis-
ing reductions in catabolic OA cytokines and attenuated his-
tological OA progression. Moreover, a 5-year longitudinal
cohort study identified that atorvastatin significantly lowered
the risk of developing knee pain [24]. The mechanism by
which statins exert these effects remains unclear; however,
reductions in IL-1, IL-6 and IL-8 and upregulation of nitric
oxide synthase (NOS) have been postulated as potential mech-
anisms. These factors are intrinsically involved in the inflam-
matory pathogenesis of metabolic OA.

Why is metabolism important
in osteoarthritis?

OA is a multifactorial disease, which has a widely accepted
metabolic variant. How and which key metabolic components
establish and/or drive OA is not clear [14, 23, 25]. Broadly, it
is perceived that the overexpression of proinflammatory me-
diators in OA is triggered through components of the MeS,
including, for example, adipokines and advanced glycation
end-products, from dyslipidaemic and hyperglycaemic states
respectively.

Cohort studies suggest phenotypic variations in OA mani-
fest as differing responses of pain and OA progression, BMI,
sex and depression—all of which have been shown to differ
metabolically [26]. Although these factors influence systemic
phospholipid metabolism, a causal effect upon OA pathogen-
esis is yet to be established [27, 28]. By elucidating the role of
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metabolic stress in OA, we will gain insights into novel mo-
lecular targets for disease-modifying treatments.

Which tissue types to sample and why?

The goal of metabolic analysis is to identify metabolic differ-
ences occurring secondary to disease or an intervention. Thus,
in the context of disease analysis, the selection of body fluid or
tissue requires careful consideration.

Typical biofluids such as urine and blood are favoured as
advantageous due to a ubiquitous route of excretion, ease of
sampling and mirroring any future clinical measurement of the
disease state. A key shortcoming is their heterogeneity with
many body systems resulting in spurious effects upon metab-
olite levels. Furthermore, in the context of OA, the relative
effect of local joint disease towards systemic metabolism may
be limited.

Local sampling of an affected tissue or fluid may prove
more representative of the altered metabolic state and subse-
quently better describe disease aetiology or mechanism.
However, sampling these fluids or tissues may be technically
and ethically challenging [8].

In OA, sampling the synovial fluid or tissue can enable the
investigation of specific changes in cartilage metabolism,
where disease is most fulminant and major structural changes
occur. Additionally, synovial fluid is solely responsible for
supplying nutrients and removing waste products from the
cartilage, thereby making it an attractive reservoir for the pas-
sage of OA-specific small molecules.

Alternatively, the synovium and intraarticular fat, as an
adipokine source, may provide more insights into pro-
inflammatory mediators of OA. Diseased cartilage may be
studied directly to understand the small molecule changes
associated with cartilage depolymerisation—nevertheless,
clinical applicability will be limited due to the destructive
nature of joint surface sampling.

The metabolic discoveries of osteoarthritis

There are several archetypal metabolic profiles associated
with OA. Synovial tissue culture from patients with varying
degrees of osteoarthritis showed depletion in the branch chain
amino acids (BCAA), amino acids (AA) and tricarboxylic
acid (TCA) cycle intermediates with the predominance of lac-
tate and pyruvate production [29]. This is consistent with the
notion that the energetic stresses of OA mediate a shift to an
anaerobic state [30-32]. It is worth noting, however, that this
metabolic state is not specific to OA [33, 34]. Thus, clarifica-
tion of the timing or degree of this metabolic disturbance
compared with other disease states is necessary for OA-
specific inferences. A more promising biomarker is plasma
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histidine, which is less concentrated in OA patients and as a
singular measure may have value as a point-of-care diagnostic
tool [34, 35].

The effect of osteoarthritic disease upon intra-articular pro-
teoglycan destruction has been demonstrated in cartilage and
synovial fluid [27, 30, 36, 37]. Whether this change is quan-
tifiable as a proxy measure of the magnitude of joint destruc-
tion is unclear and requires larger, well-designed studies with
more accurate descriptions of the intra-articular state. In prin-
ciple, the measurement of biological monomers generated by
the depolymerisation of structural molecules should reflect
joint destruction, albeit, perhaps, with a non-linear
relationship.

Lipid metabolism is an obvious target for metabolic study,
due to its pro-inflammatory properties. OA synovial fluid has
a marked increase in longer fatty acid chains [38].
Furthermore, with concurrent elevations in ketone bodies, this
indicates a switch to fatty acid metabolism [30, 39, 40]. The
results of the Canadian metabolome project indicate arginine
depletion in plasma alongside an alteration to lipid species in
OA [41]. Furthermore, the alterations in the lipid profile were
more pronounced in the presence of diabetes—suggesting it
could be a modality to isolate patients with metabolic OA
[27]. A description of osteoarthritis populations revealed a
separation of patients into lipid-specific classes, distinguished
by virtue of glycophospholipid and sphingomyelin levels
[42]. These lipid classes varied with age, obesity and response
to pain, factors which confound with ageing-related and me-
chanical OA, but could still be linked to metabolic OA.

Mesenchymal stromal cell (MSC) differentiation towards
cartilage anabolic cell lines has been shown to be affected in
OA. These cell lines have been shown to favour glycolysis
and uronic acid metabolism as disease progresses, specifically
pentose and glucuronic acid [43].

The majority of studies to date have examined the joint as a
biosystem in entirety. However, one must consider that mito-
chondrial DNA variants may drive metabolism and osteoar-
thritis disease. In addition to a disruption in oxidative phos-
phorylation is the effect upon macromolecule synthesis and
maintenance. Whether the presence of the mitochondrial
DNA variants is solely responsible for OA disease, metabolic
associations and macromolecule catabolism is not clear [44].
However, despite the generation of reactive oxygen species,
we do not believe this mechanism fully accounts for the in-
flammatory component of the disease or the altered lipid
metabolism.

What are the potential uses and outcomes
of the metabolic data?

Descriptive reporting of the metabolic OA phenotype has
identified associated metabolites. Nevertheless, to date,

variations within OA subtypes have not been demonstrated
or been able to explain the OA cohort variations in, for exam-
ple, depression, pain and disease severity. While this can be
attributed in the most part to inadequately powered studies, a
metabolic description of the OA subtypes is required to deter-
mine potential associations with these clinically observed phe-
notypic variations.

If the aforementioned limitations are resolved, by
characterising patients’ metabolic profiles, there is the po-
tential to identify specific OA subtypes (Fig. 3). This model
of care, with metabolic profiling as a diagnostic tool, can
facilitate a paradigm shift from the present “one size fits all”
OA management approach, which is indifferent to trauma-
related or metabolic-induced OA. Metabolic profiling of
joint fluid may provide a personalised insight into subsets
of metabolic OA. Overall, this bespoke approach to treat-
ment can only benefit patients, by permitting more effica-
cious, cost-effective treatment allocation and even the abil-
ity to predict treatment response [12, 45]. The latter can be
achieved with the ability of metabolic data to provide ad-
vanced disease descriptions and a window into the real-time
effects and interaction between treatment, lifestyle and di-
etary changes.

OA patient

Characterise phenotype

Determine metabolic joint
fluid profile

Subclassify into eg MeS,
inflammatory, degenerative

Apply a bespoke tailored

treatment

Fig. 3 The osteoarthritis diagnostics and therapeutic workflow enabled
by joint fluid metabolic profiling
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Limitations of metabolic phenotyping
and the over-reporting of results

As metabolic profiling is all-encompassing, confounding fac-
tors, including lifestyle, diet and exercise, pose the greatest
limitation upon meaningful metabolic profile interpretation.
This is further complicated by modern polypharmacy, which
introduces additional metabolites and metabolism-altering
drugs. These obstacles can be controlled by study design,
sample numbers and sound statistical principles—no research-
er should be naive about their presence or influence.

Detection of metabolites is limited by metabolite similarity
and instrument sensitivity. Instrument sensitivity continues to
improve. However, a single technique will always have selec-
tive limitations and thus, using multiple analytical methods
(NMR, LC-MS, GC-MS, CE-MS) is desirable.

A majority of multi-variate statistical models use linear re-
gression and thus, any variable which has a non-linear associa-
tion may be misrepresented—something frequently overlooked
by investigators. These statistical models while powerful con-
tribute to the exaggerated reporting of statistical significance.
For example, one can easily use partial least squares discrimi-
nant analysis (PLS-DA) models to generate plots showing good
pictorial separation of the sample classes; however, care must be
taken that models are not overfitted and are appropriately vali-
dated. Hence, if the quality of model is not assured by using test
sets or cross-validation, data can be misrepresented and generate
false positives. Unfortunately, in some clinical studies, these
errors have been carried through into publication.

“Personalised medicine” and the impact
of metabolic profiling

“Personalised medicine” is defined by NHS England as “a
move away from a ‘one size fits all” approach to the treatment
and care of patients with a particular condition, to one which
uses new approaches to better manage patients’ health and
targets therapies to achieve the best outcomes in the manage-
ment of a patient’s disease or predisposition to disease.” [44].

This is a concept widely held to be a viable product of
metabolic profiling techniques and is being realised in the
evaluation of atherosclerosis and the risk of developing cardio-
vascular disease [46]. The newfound interest and role of the
metabolome in osteoarthritis make this goal achievable via a
more detailed description of OA. This has potential for a more
detailed and sub-categorised OA diagnosis with aetiology and
treatments to match, possibly with metabolic targets. The im-
portance of MSC subtypes and sub-cellular mitochondrial me-
tabolism is not established but these metabolic perturbations
are likely to be attractive targets for future study.

A great limitation to the success of these techniques in the
research of OA is the lack of population-based studies. In
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order to address this, phenome centres have been created with
significant financial and academic commitment, allowing
centralisation of expertise and resources. There are now facil-
ities capable of providing phenome data to rigorous standards
for population-based studies. The geographical locations of
these phenome centres lend themselves to make population
comparisons. Furthermore, the possibility for metadata com-
parison and collation is much greater, due to agreed standards
for experimental methods. To date, osteoarthritis research has
not exploited these resources.

The power of “big data” tools like genomics and metabolic
profiling comes through combined analysis, which effectively
multiplies the descriptive power of one’s available data.
Genome-wide associated studies (GWAS) have provided
some OA genetic targets, primarily involved in gene regula-
tion. Links have been demonstrated to genes involved in car-
tilage turnover (cartilage oligomeric matrix protein, COMP)
and inflammation (transcription growth factor alpha, TGFA)
[47, 48]. Marrying these findings to their downstream meta-
bolic effects can allow a greater understanding of OA subtype
actiologies and widen the scope for therapeutic targets.
Presently, in OA research, merged genotyping and advanced
phenotyping are lacking.

Data analysis in using “big data” methods is challenging.
The biggest limitation is often the data itself, due to a failure of
collection or addressing the clinical question. Multi-variate
linear regression models have become the standard analysis
methods in interpreting metabolic profiling. Novel computa-
tional and machine learning algorithms have become more
powerful and attracted sizeable investment. Limited metabolic
profiling reports have applied these methods and one would
expect an expansion going forward, with uncertain impact but
hopeful advancement.

One of the barriers to clinical applications of metabolic phe-
notyping is its requirement for extensive and specialist analyt-
ical methods and equipment. The engineering of solutions ca-
pable of providing a complex, albeit, specific pattern of metab-
olite composition is evolving at pace. Handheld engineering
solutions are now capable of sampling organic metabolites.
Microchip technology allows multiple metabolite analysis and
a coded result with the potential for robust, affordable and non-
invasive testing [49]. In OA, these technologies could enable
cost-effective early detection in asymptomatic individuals and
sub-stratification in symptomatic individuals. Hence, we can
envisage a future where a simple handheld breath or urine test
can characterise disease and permit personalised treatment.

Summary

The benefits of using the metabolic profile to provide an ad-
vanced description of osteoarthritis are numerous in both re-
search and clinical practice. A detailed metabolic description
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of the OA patient can enable targeted therapy, ultimately re-
duce costs of treatment and allow predictions of one’s treat-
ment journey. Drug development and treatment can be fur-
thered by a greater understanding of an individual’s response
to disease and therapy.

It is still not possible to accurately and reliably sub-stratify
patients into OA phenotypes and identify metabolic OA.
Nevertheless, robust studies are now being undertaken to in-
form our knowledge of OA subtypes and to suggest associated
metabolites. Progress will require a population-based study
with comprehensive clinical measures and in-depth metabolic
measurements, with a view to describing the observed disease
cohorts that are seen. Phenome centres will be pivotal in pro-
viding access to population data and expertise. This will move
us away from a “one size fits all”” model for OA treatment and
deliver the promise of metabolic profiling.
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