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Abstract
The paper presents the framework and discusses the outcomes of the "Mass Movements in Germany" project—a 
collaboration of five State Geological Surveys (SGSs) and the Federal Institute for Geosciences and Natural Resources 
(BGR) to conduct a feasibility study for a nationwide landslide susceptibility map in Germany using harmonized datasets. 
Therefore, distinct methods representing heuristic, physically-based, and data-driven approaches were employed. In 
14 consecutive modeling cases, we investigated parameter selection and preparation, model building, evaluation, 
and transferability issues. The results show that nationally harmonized datasets, deemed high-quality, exhibited data 
generalization at regional scales, affecting the reliability of the landslide susceptibility patterns. While using regional 
datasets on larger scales mitigated some generalization effects, heterogeneities in inventory datasets among distinct federal 
states pose challenges in creating a nationwide applicable model. Heterogeneous data require locally adjusted model 
designs affecting the model's transferability and comparability of data-driven models across large regions. Heuristic 
methods operate without observational data but require in-depth knowledge of the regional-geological conditions 
by involving expert groups rather than single experts. The physically-based model shows promising results with 
parametrization based on the pedotransfer functions and soil database supplementing the national soil map. However, this 
approach is limited to shallow translational landslides. Thus, considering all mass movement types, a single comprehensive 
approach for creating a nationwide landslide susceptibility map for Germany is currently not feasible. Close collaboration 
and further harmonization of datasets and methods involving all SGSs are needed.
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Introduction

Landslides are significant natural hazards frequently 
associated with earthquakes, torrential rainfall events, 
storms, and riverine floods, causing several billion USD 
in annual losses and claiming thousands of casualties 
worldwide (Froude and Petley 2018; Sim et  al. 2022). 
Though the casualties are distributed unevenly, with about 
95% in developing countries (Freeman et al. 2003; Lacasse 
and Nadim 2014), economic loss by landslide events is 
prevalent in all mountainous regions, affecting, in particular, 
transportation infrastructure (e.g., Jaiswal et  al. 2010; 
Vranken et al. 2013, Martino et al. 2019). Klose et al. (2015) 
estimated Germany's direct and indirect losses at 300 million 
USD annually, with about 80 – 90 million USD solely on 
national highway infrastructure (Klose et al. 2016).

There is increasing scientific evidence that climate 
change influences the frequency and intensity of extreme 
weather events, posing significant challenges for 
communities worldwide (e.g., Coumou and Rahmstorf 
2012; Clarke et al. 2021; IPCC 2023). The total losses 
by natural hazards in 2022 were about 270 billion USD. 
Most of those losses are attributed to meteorological 
and hydrological hazards (Munich Re 2023a), with a 
rising trend over the past ten years (Munich Re 2023b). 
Considering these worrying trends, policymakers would 
be well-advised to develop adaptation strategies to face the 
challenges ahead. This adaptation process implies, among 
others, employing reliable and effective hazard assessment 
tools at different scales. In the following, we will use the 
term scale in its cartographic sense, which denotes the 
ratio between a distance on a map and the corresponding 
actual distance on the ground. In the following, large-scale 
refers to maps with scales of 1:10,000 or greater, where 
the map depicts a smaller area with a high level of detail. 
Conversely, small-scale refers to maps with scales less 
than 1:500,000, which cover larger geographical areas 
but with less detail. Regional scale maps lie between the 
small and large scales, offering a balance of detail and 
area coverage suitable for representing states, provinces, 
or sizable metropolitan areas.

Regional scale hazard assessments are critical in 
providing policymakers with a broad overview, identifying 
areas of high hazard and risk potentials, and supporting 
action plans for more detailed investigations. These 
assessments aim to provide a comprehensive understanding 
of the hazards in a specific region, which is essential for 
developing informed and effective adaptation strategies.

Compared to other natural hazards, landslides are 
typically confined to specific local conditions (e.g., 
Fell et  al. 2008). Therefore, accurate landslide hazard 
assessments at regional scales can be highly challenging, 

as the conditions responsible for landslide occurrence 
are difficult to replicate or to transfer to other regions 
(e.g., Petschko et al. 2014). Additionally, the scarcity of 
observational multitemporal datasets further complicates 
assessing landslide hazards (e.g., Van Westen et al. 2006).

Because of these challenges, landslide hazard assessment 
is often substituted by landslide susceptibility assessment 
(LSA) (Brabb 1985). Unlike the landslide hazard, landslide 
susceptibility does not consider the temporal occurrence and 
magnitude of the events but depicts their spatial probability of 
occurrence given the presence of specific controlling factors 
(e.g., Guzzetti et al. 2005; Tian et al. 2017). Nevertheless, it 
is still valuable for identifying landslide-prone areas and land 
use planning and management decisions.

LSA includes heuristic (knowledge-based), physically-
based, data-driven approaches (statistical and machine 
learning methods), and hybrid concepts combining those 
methods. While many options exist to assess landslide 
susceptibility, there is no global standard for approaching 
the issue at international, national, and even regional levels. 
Although extensive efforts were made in pan-European 
projects to create guidelines for harmonized mapping 
areas at landslide risk (e.g., Hervás et  al. 2007; Malet 
et al. 2007; Reichenbach et al. 2007; Van Den Eeckhaut 
et al. 2012; Günther et al. 2014; Wilde et al. 2018), the 
employed concepts remain very different at the country 
level calling for a common legal framework for dealing 
with landslides (Herrera et  al. 2018). Notable, among 
these past ventures at the European level, Germany was 
commonly underrepresented. The latter is due to Germany's 
decentralized federal structure, in which natural disaster 
prevention is the responsibility of every single federal state.

Consequently, every federal state pursues its own hazard 
and risk assessment procedures. A national legal framework 
or guideline defining standards for conducting regional LSA 
does not exist yet. The demand to assess landslide hazards 
and related risks varies with the prevalent geomorphological 
conditions. Thus, federal states with mountainous regions 
invest more in analyzing and mapping landslides than those 
with predominantly flat terrain. The different demands and 
the generally available coping capacities across federal states 
lead to principally heterogeneous methodical data collection 
and processing. Therefore, from the German perspective, 
generating a national landslide susceptibility map is as chal-
lenging as acting internationally, bringing states with spe-
cific interests and varying capacities to the common ground. 
Though German federal states act independently, they oper-
ate not isolated. State Geological Surveys (SGSs) have pro-
fessional collaboration on various fundamental topics such 
as soil (Ad-hoc-AG Boden), geology (Ad-hoc-AG Geolo-
gie), and hydrogeology (Ad-hoc-AG Hydrogeologie) in so-
called ad-hoc working groups which involve participants of 
all 16 SGDs and the Federal Institute for Geosciences and 
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Natural Resources (BGR). For decades, these joint working 
groups have compiled thematic national overview maps for 
soil, geology, and hydrogeology at a scale of 1: 200,000. 
However, a close project collaboration on comparably spe-
cific topics, such as nationwide landslide susceptibility 
assessment that could offer robust findings (e.g., a national 
map), has never been implemented due to the different 
importance of this hazard type in distinct federal states and 
thus, different prioritization and allocation of resources and 
capacities. The collaboration regarding landside assessment 
in Germany is currently limited to basic recommendations 
for landslide characterization issued in 2008 and updated in 
2016 (Ad-hoc-AG Geologie 2016). However, it is essential 
to note that these recommendations are not obligatory. As a 
result, only a few SGDs have implemented the recommended 
standards yet.

The German academic community has addressed the 
landslide issue in the past. Dikau and Glade (2003) intro-
duced a small-scale national overview map for landslide 
susceptibility as a part of the national atlas. Günther and 
Thiel (2009) proposed a preliminary heuristic landslide sus-
ceptibility map for Germany in the European Soil Thematic 
Strategy framework. Further research assessed the regional 
landslide susceptibility in several parts of Germany (e.g., 
Neuhäuser and Terhorst 2007; Terhorst and Kreja 2009; 
Damm et al. 2009; Kaynia et al. 2008). Klose et al. (2016) 
discussed the impacts of landslide hazards in Germany and 
their historical and socioeconomic perspectives.

Moreover, there are attempts to establish a national 
landslide database (e.g., Damm and Klose 2015; Kreuzer 
et al. 2017).

However, a common weak point in the mentioned 
academic studies is the limited involvement of the designated 
SGSs. This leads to a notable gap in legal recognition, 
particularly for maps produced at scales relevant to decision-
makers. The debate often centers around the differing 
levels of responsibility assumed by academic researchers 
and the SGSs, sparking significant discussions. Academic 
researchers tend to prefer advanced, albeit complex and 
resource-demanding, methodologies. In contrast, SGSs lean 
towards more pragmatic, cost-efficient strategies that can be 
implemented more easily over extensive areas. Moreover, 
when academics publish landslide susceptibility maps, they 
typically do not bear legal responsibility for the implications 
of their use. SGDs, however, must thoroughly evaluate all 
disseminated information, acknowledging that decisions 
based on their data could have profound impacts.

Besides pure academic research, institutional collaborations 
between SGSs and the BGR led to the creation of regional 
landslide susceptibility maps currently used by some SGSs 
(e.g., Günther and Thiel 2009).

The project "Mass Movements in Germany" was initiated 
by four state geological surveys from Baden-Württemberg, 

Bavaria, North Rhine-Westphalia, and Saxony, accompanied 
by the BGR. These state institutions agreed to conduct a 
comprehensive feasibility study for a nationwide LSA at 
regional scales based on five distinct study areas represent-
ing different data situations across the federal states. The 
feasibility study should consider the available thematic geo-
information nationwide, evaluate its applicability in differ-
ent LSA methods by comparing it with regionally available 
data, and set up a frame for a possible national landslide 
susceptibility overview map supplemented by recommenda-
tions. This paper briefly presents the technical framework 
and discusses the project's outcomes and implications for a 
nationwide landslide susceptibility assessment in Germany.

Study areas

The feasibility study covers five study areas: the Swabian 
Alb and Foreland (SAF) in Baden-Württemberg (BW), Fran-
conian Alb and Foreland (FAF), Simbach (SI) in Bavaria 
(BY), Elbe Valley Trench (EVT) in Saxony (SN), and Sieg 
Valley (SV) in North Rhine-Westphalia (NRW) (Fig. 1).

For the selection of the study areas, at least one of the 
following criteria was applicable:

• latent risk of mass movements;
• high priority for investigation in the respective federal 

state;
• sufficient information available for modeling;
• assumed to be suitable for comparing different modeling 

methods and testing their transferability between areas.

SAF, FAF, and EVT boundaries were defined based on 
the hydrogeological regions (Ad-hoc-AG Hydrogeologie 
2016). The boundaries of SI and SV were delimited manu-
ally based on landslide events, e.g., triggered by extreme 
local rainfalls.

The SAF and FAF cover two mountain ranges in 
southern Germany, each with a similar size of about 8,000 
 km2 and a cuesta landscape with elevations ranging from 
240 to 689 m above sea level (a.s.l.) in FAF and 242 to 
1015 m a.s.l. in SAF, respectively. The lithostratigraphic 
sequence in these ranges consists of clayey, calcareous, 
and, to a lesser extent, sandy sedimentary rocks from 
the Keuper to the youngest Jurassic period. The Jurassic 
deposits of the Swabian Alb dip to the SE towards the 
Danube under Tertiary molasse deposits. In contrast, on the 
eastern flank of the Franconian Alb, they are overlain by 
clayey-sandy Cretaceous deposits. The sedimentary rocks 
are frequently covered by Pleistocene loess and loess loam 
corresponding to Würm and, in some parts, Riss glaciation. 
The thickness of these deposits can reach several meters. 
Additionally, debris flow deposits and alluvial soils are 



 Bulletin of Engineering Geology and the Environment          (2024) 83:207   207  Page 4 of 25

widespread in the area. Mass movements of various types 
occur at the step-like edge of the mountain ranges.

The EVT covers an area of about 2,000  km2. The study 
area traces old NW–SE oriented tectonic lineaments and 
includes the Elbe River valley. The elevation in the study 
area varies between 53 and 790 m a.s.l. The valley's shape 
is narrow in the south, widening to a broad floodplain with 
thick Quaternary deposits in the north. The different sub-
areas are delineated by structural geological features and 
characterized by a wide range of igneous, metamorphic, and 
sedimentary rocks. In the north of the Elbe Valley, magmatic 
rocks geomorphologically occur as domes. The southern 
part of the area reveals a rugged erosional landscape with 
canyon-like valleys within several hundred meters thick 

Cretaceous sandstones. The steep flanks of the valleys are 
mainly affected by rockfalls.

The SV study area is located in the Rhenish Massif east 
of Bonn and covers the middle course of the Sieg River 
with an area of about 177  km2. It is characterized by hilly 
to mountainous terrain with elevations ranging from about 
70 to 400 m a.s.l. The bedrock in this area is composed of 
an interbedding of mudstone, siltstone, and sandstone layers 
of the Lower Devonian age. Periglacial talus layers, loess-
influenced weathered soils, and recent younger weathering 
soil formations of varying thicknesses overlie the slopes. 
Clayey-silty and sandy-loamy soils are widespread in the 
study area. The most frequent type of mass movements that 
occur are translational slides.

Fig. 1  Project study areas: SAF 
– Swabian Alb and Foreland 
in BW – Baden-Württemberg, 
FAF – Franconian Alb and 
Foreland, and SI – Simbach in 
BY – Bavaria, EVT—Elbe Val-
ley Trench in SN – Saxony, SV 
– Sieg Valley in NRW – North 
Rhine-Westphalia
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The SI study area is located in the Bavarian Molasse 
Basin, covering approximately 90  km2. The hilly terrain 
exhibits elevation heights between 300 and 550 m a.s.l. 
Miocene units comprising deposits of marine, brackish-flu-
vial, and limnic origin dominate the lithological sequence. 
Unconsolidated or weakly consolidated, except for a con-
glomerate rock called Nagelfluh, Quaternary deposits build 
the top of the lithological sequence. In June 2016, this area 
was affected by a torrential rainfall event (up to 180 mm/h), 
causing a riverine flood with enormous tangible damages 
and five fatalities (Rimböck et al. 2018). The rainfall event 
triggered more than 120 shallow landslides.

Methods

In the past, many methods have been introduced for regional 
LSA. These methods can be roughly categorized as physi-
cally-based, heuristic (knowledge-driven), and data-driven 
approaches (e.g., Aleotti and Chowdhury 1999; Guzzetti 
et al. 1999).

Physically-based methods directly analyze physical 
processes using force equilibrium (e.g., Pack et al. 2005; 
Jibson et al. 2000; Mergili et al. 2014) or more rigorous 
approaches. However, these methods require comprehensive 
knowledge of slope geometry, geotechnical material 
properties, and local hydrological conditions. The resulting 
model generates results in safety factors for a particular slope 
or a failure probability, indicating its vulnerability to failure.

In heuristic or knowledge-driven concepts, one expert or 
a group of experts assesses the importance of specific factors 
assumed to control the occurrence of mass movements (e.g., 
Stevenson 1977; Schleier et al. 2014; Kirschbaum et al. 
2016; Stanley and Kirschbaum 2017). A weighted overlay 
of assessed factors generates a landslide susceptibility map. 
Therefore, heuristic analyses do not need observational data 
to establish the model and are suitable in areas with poor 
landslide inventories.

In data-driven approaches, the importance of the factors 
is evaluated based on observational data using statistical 
models either established by experts or directly learned 
from data by machine learning (ML) algorithms. The data-
driven LSA is a binary classification, which allows for the 
application of many different statistical and ML methods 
and their derivatives (e.g., Reichenbach et al. 2018; Torizin 
et al. 2022). The data-driven methods can be subdivided 
into bivariate and multivariate methods, differing in the 
way they integrate independent variables (also contributing 
factors) within the model. Bivariate methods analyze the 
relationship between the dependent variable (landslide) 
and one contributing factor at a time, making them well-
suited for understanding direct, pairwise correlations (e.g., 
Bonham-Carter 1994; Dahal et  al. 2008). In contrast, 

multivariate models simultaneously incorporate multiple 
independent variables to predict or explain a dependent 
variable, offering a more complex and comprehensive 
analysis that captures the interaction of various factors (e.g., 
Menard 1995; Schicker and Moon 2012; Lombardo and Mai 
2018). The complexity of multivariate methods varies from 
linear models, such as logistic regression, to non-linear 
models, such as artificial neural networks.

In this study, we picked representative methods of each 
category that have gained significant attention in academic 
research in recent decades and have been applied in 
numerous case studies worldwide. The following briefly 
introduces the methods used.

Analytical hierarchy process

The Analytical Hierarchy Process (AHP) is a multi-criteria 
decision-making method introduced by Saaty (1977). It 
provides a systematic pairwise comparison of criteria to 
structure and evaluate hierarchical decision problems, 
resulting in numerical estimates representing each factor's 
weight in decision-making (e.g., Saaty 2008). The method 
determines the relative importance of these factors, and it 
performs a weighted overlay analysis to generate a landslide 
susceptibility map. Different studies demonstrated AHP's 
effectiveness in integrating multiple factors using expert 
knowledge to produce reliable LSA results (e.g., Hung et al. 
2016; Persson et al. 2014).

Infinite slope model

The Infinite Slope Model (ISM) is a one-dimensional limit-
equilibrium model that evaluates the force balance acting 
on a soil slab resting on an inclined plane (slope). The 
model makes several assumptions regarding the properties 
of the slab and acting forces. So, the slab has an infinite 
extent (no lateral forces at the end of the slab), and the 
water table is parallel to the slope. These assumptions 
make the model best applicable to shallow translational 
landslides (e.g., Mankelow and Murphy 1998). Due to its 
simplicity, it is suitable for implementation in grid-based 
GIS analyses, computing the force balance for each grid 
independently. Although it appears simplistic, researchers 
have successfully used the model in various approaches 
by coupling it with infiltration models such as steady-state 
recharge or transient infiltration for unsaturated soils (e.g., 
Pack et al. 2005; Baum et al. 2010). The model has also been 
applied to derive critical seismic loads (Jibson et al. 2000) or 
critical rainfall thresholds (Claessens et al. 2005). Stochastic 
Monte Carlo simulation typically extends ISM to account 
for soil properties' spatial variability at regional scales (e.g., 
Hammond 1992; Luzy et al. 2000; Fuchs et al. 2014).
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Weight of evidence

Weights of Evidence (WoE) is a bivariate statistical method 
that analyzes the relationships between the independent vari-
ables (factors) and dependent observational data. It operates 
by analyzing each independent factor separately using the 
Bayesian formulation of conditional probabilities, which 
yields likelihood ratios for landslide occurrence based on 
the presence or absence of the factor (e.g., Bonham-Carter 
et al. 1989; Bonham-Carter 1994; Dahal et al. 2008). WoE 
assumes conditional independence of factors. This assump-
tion simplifies the computation of the likelihoods, resulting 
in high transparency and generally well-interpretable results, 
but also makes the analysis sensitive to multicollinearities 
(e.g., Agterberg and Cheng 2002; Torizin 2016). Finally, 
the individually weighted factors are combined in a linear 
additive model to generate a landslide susceptibility map.

At the BGR, the WoE method has been successfully 
used for many years in various projects worldwide (e.g., 
Teerarungsigul et al. 2015; Torizin et al. 2017; Torizin et al. 
2018) and is, therefore, a reference methodology for other 
data-driven methods involved into the study.

Logistic regression

Logistic Regression (LR) is a multivariate statistical 
method commonly used to model the relationship between 
a dependent dichotomous target variable and related 
independent factors (Menard 1995). The method involves 
fitting a logistic function to the data, which describes the 
relationship between the probability of landslide occurrence 
and the values of the independent factors (e.g., Ayalew and 
Yamagishi 2005; Can et al. 2005). A trained model is applied 
to predict the probability of landslide occurrence for a given 
set of conditions and to generate a susceptibility map based 
on the predicted probabilities. LR belongs to popular LSA 
methods implemented worldwide in the past three decades 
(e.g., Bernknopf et al. 1988; Dai and Lee 2003; Lombardo 
and Mai 2018).

Artificial neural network

Artificial Neural Network (ANN) is an ML algorithm 
inspired by the structure and function of the human brain. 
It uses layers of interconnected nodes (neurons) to perform 
input data computations and produce output. ANNs train 
to recognize patterns, make predictions, and perform other 
tasks by adjusting the weights of the connections between 
neurons through a process called backpropagation (e.g., 
Rumelhart et al. 1986). The most frequent type of ANN 
applied for LSA is the feed-forward ANN with one hidden 
layer (e.g., Ermini et al. 2005; Lee and Evangelista 2006; 
Pradhan and Lee 2010). Like LR, the trained ANN model 

predicts the probability of landslide occurrence given a set 
of conditions.

Data

Parameters

In Germany, harmonized data exist as an overview map 
series for geology, hydrology, and soil at 1: 200,000 and 1: 
250,000 scales, published in the joint institutional work of 
the SGS working groups and the BGR. Geology and soil 
overview maps are based on more detailed maps at scales 
of 1:25,000 and 1:50,000. Regional overview maps incor-
porate consistent symbol keys across Germany for geology, 
hydrogeology, and soil, serving as a foundation for aggrega-
tion and generalization to small-scale maps such as the Geo-
logical Overview Map (GÜK1000) at a scale of 1:1000,000. 
Comprehensive factual data accompany these map series. 
Beyond the essential attributes needed to characterize legend 
units, such as lithology and stratigraphy in the GÜK200, 
there is a factual database in the BÜK200, which includes 
standardized soil profiles and their proportional representa-
tion in each map legend unit for the upper two meters.

In addition to the geoscientific information layers, the 
Federal Agency for Cartography and Geodesy (BKG) pro-
vides digital elevation models (DEM) with ground resolu-
tions of 25 m and 10 m, the Digital Landscape Model at 
scale 1:250,000 (DLM250) and Corine Land Cover (CLC). 
The DLM250 describes topographic objects of the landscape 
and the earth's surface relief in vector format. The dataset 
includes various object types and their key attributes, such 
as roads, paths, railways, water bodies, and settlements. The 
CLC program in Germany is part of a European initiative to 
provide consistent and comparable information on European 
land cover. The CLC data for Germany includes detailed 
mapping of various land cover types, such as agricultural 
areas, forests, urban regions, and water bodies.

The German Meteorological Service (DWD) offers 
regionalized precipitation data known as REGNIE, 
encompassing various temporal aggregates like daily, 
monthly, and yearly averages across three decades. Among 
these, REGNIE8110 specifically denotes the average annual 
precipitation calculated from 1981 to 2010, reflecting long-
term precipitation trends over these 30 years. Table 1 gives an 
overview of the datasets used in the study.

Inventories

Landslide inventories can provide valuable observational 
data for understanding the frequency, magnitude, and 
distribution of landslide events in a specific region (e.g., 
Hervas and Bobrowsky 2009). Therefore, ideally, they 
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http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz_zeile=1&gdz_unt_zeile=22&gdz_user_id=0
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https://luis.sachsen.de/boden/bk50.html
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https://www.lfu.bayern.de/umweltdaten/geodatendienste/index_wms.htm#Geologie
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comprise detailed descriptions of the landslide events, such 
as the process type, time of occurrence, and geometrical 
information. Well-maintained landslide inventories are 
essential for developing and validating predictive data-
driven models (e.g., Lima et al. 2021).

Respective SGSs provided landslide inventories for the 
project study areas. These inventories indicate significant 
differences in quality and acquisition strategies, which may 
pose a substantial source of uncertainty in the subsequent 
analyses (e.g., Lima et al. 2021; Loche et al. 2022). For SAF, 
the landslide inventory was mapped from the hillshade of 
DEM with a one-meter ground resolution providing polygon 
shapes. One single polygon consolidates the entire landslide 
from the depletion area to the deposit toe. The distinguished 
types are slides (undifferentiated) and rockfalls. In FAF, 
landslides were detected by field mapping and interpretation 
of airborne imagery. The FAF inventory distinguishes the 
mass movement types as translational slides, rotational 
slides, and rockfalls. Also, it considers different geometrical 
representations of scarp and deposition areas (see Table 3). 
For EVT, the mass movement inventory is based on field 
surveys. Points mark the depletion area's top (scarp's center) 
with a field mapping-related uncertainty. The few mass 
movements for SV are historical records of uncertain origin 
(no detailed description available), which generally reduce 
the reliability of the inventory for model generation and 
validation, making it potentially unusable. Field mapping 
and the interpretation of high-resolution airborne imagery 
also build the source for the landslide inventory in the SI 
study area. Table 2 provides an overview of the inventory 
features in the project's study areas.

Analysis

The comprehensive feasibility study started in the 
FAF area, which presents a moderately sized landslide 
inventory. This dataset was assessed as substantial Ta
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Table 2  Used landslide inventories of the study areas (provided by 
the respective participating federal states)

Study area Event 
count

Geometry Event type

SAF 12,338 Polygon (undifferenti-
ated)

Slide, Rockfall

FAF 2,202 Point (center of scarp)
Polyline (center of 

scarp),
Polygon (deposit area)

Rotational slide,
Translational slide,
Rockfall

EVT 463 Point Slide, Rockfall, Flow
SI 121 Point Translational slides
SV 8 Point -

https://www.lfu.bayern.de/umweltdaten/geodatendienste/pretty_downloaddienst.htm?dld=uebk25
https://www.lfu.bayern.de/umweltdaten/geodatendienste/pretty_downloaddienst.htm?dld=uebk25
https://www.lfu.bayern.de/umweltdaten/geodatendienste/pretty_downloaddienst.htm?dld=uebk25
https://www.opengeodata.nrw.de/produkte/geologie/boden/BK/ISBK50/
https://www.opengeodata.nrw.de/produkte/geologie/boden/BK/ISBK50/
https://www.opengeodata.nrw.de/produkte/geologie/boden/BK/ISBK50/
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enough to develop and test data-driven models, offering 
insights applicable to regions with both larger and smaller 
landslide inventories. We employed the WoE method 
to create a foundational case study (case study 1 in 
Table 3), wherein we explored the applicability of various 
parameters within data-driven LSA. The low complexity 
and high transparency of the WoE method facilitated 
engaging discussions with local experts, helping to 
pinpoint additional research questions.

The general analysis workflow followed a cyclical pattern, 
beginning with data preparation, then model development, and 
culminating in an evaluation using statistical metrics. This cycle 
concluded with expert discussions, where model predictions 
were contrasted against expert expectations. We refined the 
model whenever there was a discrepancy, testing different 
model designs and alternative parameters. The iterative 
workflow led to various sequential modeling cases designed 
to probe specific issues through targeted research questions. 
Notably, the primary objective of these small modeling 
cases was not merely to produce the most precise landslide 
susceptibility maps. Instead, the focus was on understanding 
how changes in the model affected the outcomes, gaining 
insights into the underlying processes and their implications 
for a potential comprehensive nationwide LSA.

The significant findings of the first case study were rep-
licated in the EVT study area (case study 2, Table 3) to 
manifest their general validity (modeling case 2.1). Addi-
tionally, in the EVT area, which has an insufficient inven-
tory for specific mass movement types, the heuristic AHP 
method and ISM were tested. Both methods do not require 
observational data to build the model (modeling cases 2.2. 
and 2.3). Further, ANN was applied in EVT to investigate 
the applicability of non-linear data-driven approaches in 
regions with poor observational data. Because there are no 
established standards for applying ANN in LSA, we invited 
a research group from the Technical University Berlin to 
conduct a comparability study (Schumann 2020).

In the third case study conducted in the SV region 
(Table 3), we tested the ISM with parameterization based 
on the BÜK200. However, the SV area presented limited 
opportunities to comprehensively evaluate the model's per-
formance. Consequently, we extended our discussion of the 
ISM to a fourth case study in the SI region. This area was 
chosen due to its significantly higher record of events, which 
could be attributed to a single triggering event, enabling a 
more thorough and convenient model evaluation. In the SI 
area, ISM, we compared parametrized ISM models based 
on a regional soil map at a scale of 1:25,000 and BÜK200.

Table 3  Overview of the case studies with corresponding modeling cases, applied methodology, and formulated research issues

No. 
Case 
study

Study
area

Modeling case Methods Research issues

1 FAF 1.1 WoE Which of the available nationwide information layers is suitable for data-driven LSA?
1.2 WoE Can we reduce the generalization effects encountered in 1.1 by locally or regionally available infor-

mation layers at scale 1: 25,000? Is it only a scale issue?
1.3 WoE Can we reduce the bias introduced through generalization in thematic information layers available 

nationwide by adjusting the geometric location of mass movements?
1.4 WoE Can we improve the model reliability by substituting GÜK250 with the adjusted parameter distance 

to the lithostratigraphic boundary to cope with flawed associations due to generalization effects?
1.5 WoE Can we reduce the significance of the parameter slope by masking the flat area, and what effect does 

it have on other parameters?
SAF 1.6 WoE Can we transfer a model to another region (e.g., a neighboring region) with comparable geomor-

phological and geological conditions?
2 EVT 2.1 WoE Can we replicate the findings in case study 1 in another region?

2.2 AHP How comparable are the heuristic AHP results with a data-driven approach (WoE from 2.1)?
2.3 ISM Can we use a regional soil map (1: 50,000) to parametrize the ISM using pedotransfer functions?
2.4 ANN Can we utilize ANN in a region that has comparably poor data? What is the performance compared 

to the bivariate statistical method?
2.5 ANN A comparison study to 2.4 was performed by Schumann (2020)

3 SV 3.1 ISM Repetition of the ISM based on the national soil map
4 SI 4.1 ISM How comparable are the results when parametrizing ISM utilizing a regional soil map (UeBK25) 

and national soil map BÜK200?
4.2 WoE

LR
ANN
ISM

How comparable are different LSA models?
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Given the data consistency in the SI study area, we com-
pared data-driven methodologies with the ISM. Acknowl-
edging the potential limitation of a sparse inventory for 
implementing complex ANN, we also conducted a linear 
multivariate LR analysis. This additional step was taken to 
gauge the broader applicability of multivariate data-driven 
techniques in areas characterized by limited data availability.

Table 3 summarizes the modeling cases in the five study 
areas and highlights the formulated research issue.

The subsequent sections detail the specific analytical 
steps involved in data-driven, physically-based, and 
heuristic methodologies and model evaluation and zonation 
techniques.

Data‑driven analysis

We used the LSAT PM Software (Torizin et al. 2022) and 
other routines written in R and Python to conduct the data-
driven analyses.

At the beginning of the analyses, we randomly split the 
landslide inventory into training and test datasets for all 
data-driven methods in a ratio of 80:20. This division fol-
lowed a common practice in machine learning (ML), usually 
adopting a ratio between 70:30 and 80:20 (e.g., Joseph and 
Vakayl 2022; Thien and Yeo 2022). We chose an 80:20 split, 
often associated with the Pareto principle, to balance the 
training dataset's representativeness with the test dataset's 
adequacy. Notably, differently sized samples may inherently 
introduce a bias that should be considered, e.g., via k-fold 
cross-validation or Monte-Carlo cross-validation when eval-
uating the model with smaller test datasets (e.g., Torizin 
et al. 2021; Torizin et al. 2022).

We implemented different data preparation procedures 
for data-driven analyses depending on the method. For the 
bivariate WoE, we reclassified continuous variables such as 
slope, distance to roads, or distance to tectonic features into 
discrete variables. LSAT PM supports the conversion pro-
cedures by providing different options for building classes.

For LR and ANN, the parameters were normalized fol-
lowing the standard procedures in ML. We scaled continu-
ous data using the min–max scaler to the value range of 0 to 
1. This scaling ensures that no feature dominates the model 
just because of the scale of its values. Categorical datasets 
were one-hot-encoded. The one-hot encoding transfers mul-
ticlass categorical variables in a set of binary variables (also 
known as dummy or indicator variables in statistical analy-
ses), characterizing the presence or absence of a single cat-
egorical feature (e.g., Bishop 2006; Pedregosa et al. 2011). 
This encoding is necessary because linear models such as 
LR assume a linear relationship between independent vari-
ables and the dependent variable. When used directly, fac-
tor variables imply an ordinal relationship, suggesting a 
meaningful order or ranking. However, this assumption is 

not applicable for categories on a nominal scale, such as 
land use or lithology.

While WoE involves all data in the analysis (unless mask-
ing is applied to eliminate some effects or data parts, e.g., 
flat areas in modeling case 1.5), we tested sampling pro-
cedures for the employed ML algorithms (LR and ANNs). 
For these methods, random sampling of non-landslide areas 
was considered. The sampling is usually done due to the 
inherent imbalance of the target variable class (few ones 
and many zeros) because landslide events are comparably 
rare compared to the overall areas under consideration. In 
ML, the class imbalance is frequently considered problem-
atic (e.g., Japkowicz and Stephen 2002) and is the focus 
of current research (e.g., Krawczyk 2016). In the sampling 
process for our analysis, ratios of landslide to non-landslide 
pixels between 1:3 and 1:8 were considered by drawing non-
landslide pixels randomly across the entire study area.

While WoE and LR outputs provide metrics that can 
be well-interpreted, such as log weights, coefficients, 
and p-values, ANNs are usually considered "black box" 
approaches. Different techniques have been introduced 
in the past few decades to make the outcomes of ML 
models explainable, such as feature importance based on 
permutation (Breiman 2001; Fisher et al. 2019), Shapley 
value (Lundberg and Lee 2017), or the Local Interpret-
able Model-agnostic Explanations (LIME) (Ribeiro et al. 
2016). In this study, we use the permutation techniques 
implemented in the iml R-Package (Molnar et al. 2018) 
to assess the significance of each feature by observing the 
increase in the model's prediction error after shuffling the 
feature's values, which effectively breaks the association 
between the feature and the actual outcome. A feature is 
considered significant if shuffling its values results in an 
increased error in the model, indicating that the model 
relied on that feature for making predictions.

Physically‑based analysis

The ISM model was performed based on our own Python 
application (unpublished) in three study areas: EVT, SV, 
and SI. To parametrize the ISM, we utilized soil maps and 
their respective databases at various scales. We derived the 
geotechnical material properties from the soil units and 
associated information using pedotransfer functions (PTF). 
PTFs comprise a set of rules and empirical relations to 
translate soil texture and structure into soil-specific properties 
such as cohesion, angle of internal friction, bulk density, and 
hydraulic conductivity (e.g., McBratney et al. 2002; Wadoux 
et al. 2021). We used the PTF defined by the working group 
for soil (Ad-hoc AG Boden 2000, 2005) and the working 
group of the German Soil Society (Renger et al. 2008) tailored 
for the soil classification utilized in Germany's soil maps.
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Specifically, we estimated the mean bulk density based 
on the soil type using empirical relation after Renger et al. 
(2008):

where ρ is the mean bulk density, C represents the percentage 
of clay content, and Si denotes the percentage of silt content 
in a soil type, as determined by a soil texture diagram by 
Ad-hoc-AG Boden (2005). Parameter cohesion was derived 
using the tables from the so-called linkage rule 1.8 (Ad-hoc-AG 
Boden 2000) and internal friction angle utilizing the linkage 
rule 1.10 (Ad-hoc-AG Boden 2000). The linkage rules take the 
soil type and the soil structure as input. While soil type can be 
derived from the soil map, the values are averaged over all types 
of soil structure to account for given uncertainty.

Each soil map unit can be composed of several soil types. 
The portions of the soil types in the map unit are given in the 
corresponding database. To estimate the mean and standard 
deviation for the map unit based on the weighted distribu-
tions of the included soil types, we use the equation:

where μ is the mean of the dataset, ni is the frequency of the 
ith group, mi is the midpoint of the ith group, σ the standard 
deviation, and N is the sample size.

� = �max − 0.005C − 0.001Si
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MC simulations for extensive areas can be computation-
ally demanding. To alleviate this, we integrate the concept of 
unique condition units with ergodic assumptions, enhancing 
computational efficiency. We treat continuous parameters 
such as slope as categorical by assigning fine-grained integer 
classes of one degree, reducing them to manageable inte-
ger rasters. These rasters are combined to identify unique 
condition classes defined by slope value and correspond-
ing soil map unit. Within these classes, we assume identical 
behavior across the distribution of parameters, regardless 
of their spatial location. This approach enables the con-
ducting of MC simulations for unique conditions and the 
application of the results across all corresponding spatial 
locations. By focusing on limited unique combinations, we 
can significantly compress large raster datasets for calcula-
tions, freeing up computational resources for additional tasks 
such as more simulation repetitions. The estimated mean and 
standard deviation of parameters, which provided a range 
of values assumed by Gaussian distribution, were used in 
ISM extended by MC simulation. We randomly drew the 
parameters—soil density, cohesion, and angle of internal 
friction—from the estimated distributions. We employed 
different uniformly distributed wetness scenarios to compute 
the ISM without integrating a realistic precipitation scenario 
and a subsequent hydrological infiltration model.

As a result, we obtained a probability of factor of safety 
(FS) less or equal to one given the conditions associated 
with the respective soil unit of the soil map and wetness 
scenario. The computation equation for the given task can 
be formulated as follows:

where P(FS ≤ 1) is the failure probability, N is the number 
of simulation iterations, f(x) denotes the probability density 
function for parameters cohesion c [kPa], soil density ρs, g 
is the gravitational acceleration with 9.81  ms−2, and internal 
friction φ [°], ϑ is the slope angle [°], and w is the wetness 
index taking values between 0 for dry and 1 for fully saturated 
conditions. H is the Heavyside step function defined as:

Returning zero for values smaller than zero (this is 
the case when the FS is greater than 1) and values of one 
for all values greater or equal to zero. The summation of 
positive outcomes divided by the total number of iterations 
effectively estimates the failure probability.

H ∶ ℝ → {0, 1}; Hi(x) =

{

1 ∶ x ≥ 0

0 ∶ x < 0
,

Heuristic analysis

The AHP was conducted using the application designed by 
Goepel (2013), employing a simple query to rank the importance 
of factors such as slope and lithology regarding their influence 
on rockfall events in the EVT test area by geoscientists involved.

We utilized the GK1000 to derive lithological classes. 
GK1000 exhibits nine distinct lithological classes in the 
study area. In contrast, the GÜK250 dataset contains approx-
imately 85 lithostratigraphic units in the same area, which 
would require aggregation or additional hierarchical grouping 
to enable ranking using the AHP. Therefore, GK1000 was 
selected to enable a more practical choice for this assessment.

Seven geoscientists with different experience levels and 
knowledge of the regional conditions participated in this 
assignment. After joining the different expert rankings, we 
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estimated the consensus of the rankings. Finally, the aver-
aged priorities were applied to the mapping units and over-
laid to a susceptibility map.

Model evaluation and zoning

We evaluated all models using the receiver operating 
characteristics (ROC) curve. The ROC curve is a tool to 
estimate the goodness of the binary classifier (e.g., Fawcett 
2006) depicting the relation of the True Positive Rate 
against the False Positive Rate of the model. A quantitative 
measure to compare ROCs is the area under the ROC curve 
(AUROC). To assess uncertainties in data-driven models, 
we introduced Monte Carlo cross-validation (MCCV) (e.g., 
Picard and Cook 1984, Torizin et al. 2021). The traditional 
cross-validation divides the data into a fixed number of 
equally sized folds, and the model is trained and tested on 
each fold in turn. MCCV randomly draws training sets for 
each iteration, allowing a more comprehensive evaluation of 
the model's performance, as it helps to avoid biases arising 
from using fixed data partitioning. MCCV is particularly 
useful when working with small datasets or when the data 
distribution is highly variable. Averaging the performance 
over 100 random splits provides a robust estimate of the 
model's performance.

Finally, we used validation ROC curves to divide the 
obtained landslide susceptibility into five zones as follows:

• Very high: about 50% of all known/predicted events
• High: about 30% of all known/predicted events
• Moderate: about 15% of all known/predicted events
• Low: about 3% of all known/predicted events
• Very low: less than 2% of known/predicted events.

Results and discussion

The initial case study in FAF served as preliminary work 
for the subsequent investigations. The analysis indicated the 
exceptional discriminatory power of the slope information 
layer obtained from DEM25. As a result, susceptibility 
models for various mass movement types have achieved 
good to excellent accuracy, as shown in Table 5. However, 
while slope gradient is sufficient to characterize rockfalls, 
rotational and translational landslides exhibit distributions 
extending to shallower slopes. Thus, additional parameters 
are needed to improve the spatial discrimination of 
susceptible areas for these mass movement types. 
Including geological or soil maps at a scale of 1: 250,000 
and 1: 200,000 in the model enhances the identification 
of landslide-prone areas for rotational and translational 
landslides. These layers strongly correlate with the 

distribution of landslides and provide traceably interpretable 
classifications. Vector maps at minor scales (e.g., GK1000) 
or raster layers with coarser ground resolution (e.g., 
REGNIE8110) demonstrate generally lower performance 
and are more challenging to interpret accurately. Information 
layers at a scale of 1:250,000 also show effects that we 
attributed to the generalization of information.

Table 4 shows the parameters derived from the DEM25 
and other thematic layers and corresponding AUROC values 
for different mass movement types. The AUROC values 
depict the training dataset with the corresponding variance 
based on MCCV. The value in brackets specifies the AUROC 
value for the test dataset.

The best combination of parameters is slope and lithology 
from GÜK250, providing AUROC on the test dataset of 0.96 
for rotational slides, 0.94 for translational slides, and 0.97 for 
rockfalls. Figure 2 shows a small excerpt of the FAF study 
area with susceptibility patterns for different mass movement 
types based on the abovementioned parameters.

Findings from the first case study (see also Table 4) suggest 
that geoscientific information layers, initially not created 
for analyzing the spatial distribution of mass movement 
potentials, represent mapping units with varying degrees of 
abstraction depending on their original thematic objective. 
The geometric generalization, e.g., by simplifying or 
smoothing map unit borders, and conceptual generalization, 
e.g., aggregation of map units, in the transition between the 
large and small scales can lead to incorrect spatial attribution 
of conditions when superimposing generalized information 
layers with landslide locations. Also, modifiable areas of map 
units across the scales directly influence the estimates for 

Table 4  Parameters derived from the DEM25 and corresponding 
AUROC values for different mass movement types

Parameter AUROC
for Training and (Test)

Rotational Slide Translational Slide Rockfall

Slope 0.93 ± 0.01
(0.93)

0.89 ± 0.04
(0.87)

0.96 ± 0.02
(0.96)

Aspect 0.57 ± 0.02
(0.54)

0.60 ± 0.03
(0.61)

0.62 ± 0.03
(0.59)

Curvature 0.79 ± 0.01
(0.79)

0.74 ± 0.03
(0.77)

0.80 ± 0.02
(0.79)

GÜK250 0.87 ± 0.02
(0.87)

0.90 ± 0.04
(0.83)

0.80 ± 0,03
(0.80)

BÜK200 0.78 ± 0.01
(0.79)

0.85 ± 0.02
(0.79)

0.84 ± 0.02
(0.85)

BÜK1000 0.70 ± 0.01
(0.69)

0.73 ± 0.03
(0.67)

0.73 ± 0.02
(0.75)

CLC10 0.81 ± 0.01
(0.80)

0.80 ± 0.02
(0.82)

0.82 ± 0.02
(0.81)

REGNIE8110 0.70 ± 0.02
(0.71)

0.70 ± 0.03
(0.72)

0.60 ± 0.03
(0.53)
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conditional probabilities. These errors become more evident 
as the degree of generalization increases, significantly 
limiting the reliability of data-driven analyses at small scales 
such as 1: 1000,000. Notably, statistical model metrics such 
as AUROC may not reveal those effects. Closer scrutiny 
of obtained weights and their interpretation is advisable to 
identify potentially inaccurate attributions.

Different strategies to cope with generalization effects at 
regional scales were tested in the following modeling cases 
(1.2 – 1.4). By integrating information on a larger scale in 
modeling case 1.2 (Table 4), we can suppose that observed 
generalization effects, such as errors in the spatial attribution 
between events and factor classes, are naturally reducible. 

We deduce this from the weights ratios obtained for specific 
lithological units such as sandstones and limestones form-
ing the sequence of the SAF area (see also Fig. 3). At larger 
scales, the weights for incompetent sand- and claystone 
increase, better reflecting the expert's expectations based on 
field experience. However, the significant positive weights 
for limestones remain at larger scales, pointing out that the 
generalization is also present on a scale of 1: 25,000, and 
another reason must exist, such as biases in the inventory.

Spatial attribution errors that may arise from mass move-
ments' geometrical delineation (e.g., point or polygon) were 
scrutinized in the modeling case 1.3. As suggested by the 
results of the previous two modeling cases, landslides, 

Fig. 2  Susceptibility pattern based on the parameters slope and lithology from GÜK250 for b) rotational slides, c) translational slides, and d) 
rockfalls
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depicted as a point at the scarp, do not necessarily cap-
ture the causal conditions of the failure supposed by local 
experts. The initial WoE model, considering these landslide 
positions, estimates that the limestones and dolomites that 
form the prominent step in the landscape are very suscepti-
ble since a significant portion of landslide points are located 
within it. However, local expertise shows that while the 
limestones are involved in the process, the failure is initi-
ated by the incompetent rocks underlying it (Fig. 3).

The shifting of the landslide points to the centroid of the 
mass deposits (available as a polygon for rotational landslides) 
provided minor variations to the AUROC of the model. How-
ever, the procedure improved the interpretation of the factor 
weights, making them more acceptable to local experts since 
more significant weights better considered the underlying 
sandstones. Similar results were achieved in the modeling case 
1.4, introducing alternative parameters, such as the distance 
to lithostratigraphic unit boundaries, without modifying the 
original landslide point position. However, in terms of statis-
tical metrics, we also observed no significant changes here. 
Hence, locally adjusted designs improve model interpretability 

but might affect the model's transferability to other regions 
since the specific design conditions might not be replicable.

Modeling case 1.5 addressed a specific issue frequently 
appearing in LSA at regional scales. The parameter slope 
has extremely discriminative characteristics, suppressing the 
possibility of evaluating the contribution of other param-
eters. Approaching the LSA from causal interpretations, 
we postulate that slope is a necessary cause. Therefore, if 
a critical slope gradient is not reached (depending on mass 
movement type), a failure will not occur, disregarding the 
presence of other contributing factors. Masking flat areas, 
i.e., excluding them from the ROC space, reduces the slope 
parameter's discrimination power, giving a chance to other 
contributing parameters. Table 5 shows selected parameters 
with corresponding AUROC values after masking with a 
specific slope value (see also Table 4). Within masked flat 
areas, the slope appears less critical in distinguishing rota-
tional and translational landslides, and the GÜK250 param-
eter becomes a more effective discriminator. The mask could 
include steeper slopes to improve the performance of other 
parameters for rockfalls. However, it is essential to note 
that slope values may not always accurately represent the 
slope gradient due to the surface generalization effect of 
the DEM25. Increasing the threshold for the mask may lead 
to masking out steeper areas, which appears smoothed on 
DEM's ground resolution.

In the modeling case 1.6, we explored the feasibility of 
applying a susceptibility model developed for one region 
to another region with comparable geological and morpho-
logical characteristics. Specifically, we attempted to transfer 
models designed for rockfalls and rotational landslides from 
FAF to SAF. Both regions are part of the South German 
Scarplands and exhibit similar geomorphological features. 
Model transferability is contingent on the target region's 
characteristics that are recognizable to the model. Geomor-
phometric features such as slope gradients are generally 
transferable, provided the training region encompasses the 

A
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Surface prior to failure
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Fig. 3  Principal sketch of the regional conditions and the available landslide data

Table 5  Selected parameters with corresponding AUROC values 
after masking with a specific slope value

Type Mask slope 
value [°]

Parameter AUROC

Rotational slide  < 10 GÜK250 0.82 (0.81)
Slope 0.69 (0.68)
Curvature 0.70 (0.69)

Translational
slide

 < 5 GÜK250 0.88 (0.80)
Slope 0.81 (0.80)
Curvature 0.63 (0.64)

Rockfall  < 12 GÜK250 0.74 (0.73)
Slope 0.86 (0.87)
Curvature 0.62 (0.60)
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full range of slope values for model calibration. However, 
transferring distinct lithological conditions poses significant 
challenges. Despite FAF and SAF belonging to the same 
geomorphological structure, only 15% of SAF's area could 
be characterized using the petrological IDs from GÜK250 
found in FAF. This limitation stems mainly from the vary-
ing levels of detail in describing specific lithostratigraphic 
units across the two regions despite identical scales of the 
base maps. So, after a closer look at base maps on a 1:25,000 
scale in some regions, we observed that geological forma-
tions exhibit different aggregation levels receiving differ-
ent unique IDs. To mitigate this issue, we aggregated the 
lithostratigraphic units using a more generalized symbolic 
key (LBEG 2015), enabling us to characterize approxi-
mately 90% of SAF's area with weights derived from FAF. 
However, this aggregation reduced the number of distinct 
lithostratigraphic map units from the original 140 used in 
FAF to 63. This additional aggregation may pose an issue 
as it considers stratigraphic properties rather than material 
properties, generating complex units composed of varying 
lithology, and the interpretation becomes challenging. The 
remaining 10% of the area in SAF represents a lithological 
sequence of the middle Keuper not exposed in FAF.

Evaluating the transferred models using the ROC curve 
provides an AUROC value of 0.98 for rockfalls and 0.90 for 
rotational slides. We attribute the slightly better results for 
rockfalls to the generally more rugged terrain in the SAF and 
the acquisition procedure of the landslide inventory in this 
area in which the landslides were mapped based on a DEM 
hillshade generally exhibiting better spatial alignment to the 
morphometric parameters derived from a DEM even if DEM 
used in the LSA is of lower resolution. Also, this shows that 
the single parameter slope is sufficient to represent this mass 
movement type at regional overview scales, specifically if 
the entire area (also flat regions) is considered. The lower 
AUROC for slides may have different reasons. First, this 
might stem from the undifferentiated inventory of slides 
in SAF, which comprises rotational and translational 
slides. Also, the geometry of the landslides involved in the 
analysis differs as it consists of polygons depicting all parts 
of the mass movement. Further, when closely analyzing 
the contribution of the slope parameter for translational 
and rotational landslides in FAF (Table 4), we see that 
AUROC of 0.90 is approximately the average when putting 
these types together. Based on this, we could suppose that 
through the additional generalization of lithostratigraphic 
units, the contribution of the lithology parameter was further 
diminished so that, finally, we majorly observe only the 
contribution of the slope.

We could replicate the key findings from the initial FAF 
case study for rockfalls in the EVT study area in the second 
case study. Other landslide types are underrepresented in 

the inventory and do not provide sufficient data for a data-
driven analysis.

As mentioned, the combination of the slope and GÜK250 
parameters has proved to be the most effective for analyzing 
rockfall events, with the same trend that the parameter lithol-
ogy becomes increasingly significant for EVT when flat 
areas are excluded from the analysis. Otherwise, the param-
eter slope dominates the susceptibility pattern. Application 
of other locally available parameters, such as the L-J-K geo-
logical map (Table 2), distance from roads (derived from 
DLM250), and tectonic features, were examined without 
improving the models.

While the generalization effects in FAF could be 
described qualitatively by interpreting the alteration in 
the weights of contributing parameter lithology, we could 
directly and explicitly quantify them in EVT based on the 
landslide inventory. The crucial point in EVT is that the 
landslide inventory collected through field surveys includes 
a detailed field description of the lithological layers in which 
the landslides occurred. This field description was com-
pared with attributes obtained by superimposing the land-
slide locations onto geological maps. As a result, we could 
identify the wrong association of lithological attributes for 
approximately 31% of slides and about 10% of rockfalls. We 
corrected this bias by shifting the event counts to the correct 
lithological class. Comparably to the results of modeling 
cases 1.2–1.4 in FAF, we noted that while the statistical 
performance of the model did not significantly change, the 
correction of the associations altered the order of importance 
for distinct lithological units. The latter suggests that rely-
ing solely on statistical metrics is inadequate for evaluating 
the model's accuracy and reinforces findings and arguments 
of earlier studies, e.g., Steger et al. (2021), emphasizing 
that correlation does not imply causation. Furthermore, 
the results are congruent with the arguments presented by 
Lima et al. (2021), advocating that data biases should not be 
ignored. Instead, they suggest adapting the model design to 
address and rectify data inaccuracies effectively.

The AHP method in modeling case 2.2 revealed different 
challenging points. As described in the analysis, applying 
the method to features exhibiting many classes will require 
a complex hierarchy, and the analysis becomes generally 
cumbersome due to the need to make numerous pairwise 
comparisons. However, even breaking the complexity down 
to a few classes, we observed a high degree of subjectivity 
inherent in involving experts' judgment. While the priori-
ties for the parameter slope indicated a consensus of about 
98%, reflecting the general physical process understand-
ing of all involved experts regarding the causal interac-
tion between rockfall potential and the parameter slope, 
the assessment of the GK1000 parameter classes showed 
an apparent disagreement reflected in a consensus of only 
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55%. Therefore, we can conclude that labeling rock types 
without contextualizing them within a regional geological 
framework is inadequate for accurate and unambiguous 
weighting toward the stated objective. Different subjective 
associations (based on the expert's working experience in 
different regions) regarding discontinuity patterns or bind-
ing agents and the composition of specific rock categories 
influenced individual experts' decisions. A comparison 
with the data-driven assessment based on WoE performed 
with the same parameters (Fig. 4c) reveals that the expert-
based assessment categorizes larger areas as moderate to 
highly susceptible (Fig. 4b). The proportions of the very 
high susceptibility class are comparable in both models. 
The applied overlay procedure in AHP partly explains the 
pattern difference. In AHP, slope and lithology factors were 
equally weighted for the overlay. In WoE, the weights for 
parameter slope are naturally significantly higher, gaining 
better contrast and suppressing lithology weights in flat 
areas. This effect can also be achieved in AHP if the param-
eters get additional weights (e.g., parameter slope has a 
much higher priority than lithology).

The Artificial Neural Network (ANN) was employed 
in the EVT (Fig. 4d) and SI. Schumann (2020) realized 
an alternative ANN approach for comparative purposes 
in EVT. The approach by Schumann (2020) shows 
significant differences in the data preparation process 
(feature engineering), sampling strategies, and the number 
of parameters used. However, the efficiency of the final 
susceptibility models was comparable. Finally, both studies 
concluded that in regions with limited data availability, 
the complexity involved in preparing data for ANN and 
the subsequent effort required to interpret these models, 
e.g., through additional analyses for understanding the 
model's outcomes (e.g., feature importance tests), did not 
justify the knowledge gained in specific case studies. The 
inherent flexibility of ANNs makes them susceptible to 
overfitting when the model is trained with many inputs 
relative to the size of the landslide inventory. Alternative, 
more straightforward methods, such as WoE, have yielded 
comparable results with less computational effort and 
higher levels of transparency and interpretability. Therefore, 
considering the qualitative and quantitative limitations of 
the available datasets, employing ANNs for comprehensive, 
nationwide modeling is not deemed the most effective 
strategy under current conditions. This stance is predicated 
on the notion that unless there is a substantial improvement 
in the data's volume and quality, the advantages of using 
ANN in landslide susceptibility studies remain marginal.

We applied ISM in three study areas: EVT, SV, and SI 
(Fig. 5), parametrizing the model based on soil maps of 
varying scales. The proposed workflow was well applicable 
in the three study areas, pointing to the good feasibility of 

the approach given the available nationwide data. However, 
different challenging aspects also need to be highlighted.

In the parametrization process, we observed that clayish 
soils may exhibit various soil structures (Ad-hoc AG 
Boden 2000, 2005), generally not known for specific soil 
types derived from the soil map unit. This uncertainty 
significantly increases the variance of the cohesion and 
internal friction values. Because ISM is sensitive to 
variance in cohesion, estimates of values that are too 
high may lead to a general underestimation of the failure 
probability for map units dominated by clayish soil types 
located on gentle slopes.

Another issue that arises in areas with poor observational 
data is the limited possibility to evaluate the model's 
performance. While model generation is possible, we lack 
reliable datasets to estimate its accuracy in areas such as SV. 
Generally, we noted that fully saturated models agreed better 
with the recorded events, while models under dry conditions 
performed weakly. These results could imply that the events 
were likely triggered by rainfall. However, given all other 
uncertainties, such as the missing type of landslide and 
possibly uncertain location, they are too large to provide a 
confident model evaluation.

The situation is better in the SI area, where the 
landslide type is known, and all events are attributed to a 
specific trigger. In SI, the ISM model performs well with 
AUROC values of about 0.79 for the national soil map 
(BÜK200) and 0.81 for the regional soil map (UeBK25) 
(Fig. 5). The slightly better performance of the regional 
soil map is mainly due to the more detailed geometrical 
resolution of the larger map scale. Comparing the inputs, 
we count about 897 combinations of 1-degree slope 
classes and soil map units from BÜK200 and about 1364 
unique combinations for UeBK25. As indicated above, 
significant uncertainties occur on clayish soils estimated 
as overconfidently stable due to their high cohesion in the 
ISM model. In these areas, characterized as stable, eight 
landslides were detected.

The results characterize failure probability and LSA 
zonation under uniformly distributed wetness conditions, 
excluding infiltration or precipitation models. While this 
approach might initially seem impractical and unrealistic, 
the primary objective was to separate the geotechnical 
model from the uncertainties of the infiltration model, 
focusing on the impact of the variability of geotechnical 
parameters derived from soil maps. The practical use 
case would involve creating a series of models for various 
uniform wetness conditions to facilitate the development 
of a stacked foundational model. The stacked model can 
subsequently be integrated with diverse wetness scenarios, 
thereby avoiding the need to recalculate failure probabilities. 
Realistic wetness scenarios can be applied as spatial queries 
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Fig. 4  a) Shape of the EVT study area; b) Zoning based on AHP utilizing parameters slope and GK1000; c) Zoning based on WoE for slope and 
GK1000; d) Zoning based on ANN with parameters slope and GÜK250; e) Zoning based on WoE with parameters slope and GÜK250
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to this model framework to ascertain the likelihood of failure 
in specific raster cells at particular wetness levels.

The comparison of ISM and data-driven models in the 
SI study area shows that the applied soil maps are suitable 
for characterizing shallow landslides. ISM achieves 
AUROC values of about 0.79 parametrized with BÜK200 
and AUROC of 0.81 parametrized by UeBK25. Data-
driven methods show a similar trend, emphasizing that the 
fine-grained UeBK25 performs better with AUROCs of 
0.88 ± 0.02 for models including BÜK200 and 0.90 ± 0,02 
for UeBK25 on training data. Generally, all data-driven 
models define slope as an essential feature with the most 
significant effect. The contribution order of the soil map 
units differs among the data-driven models. Figure  6 
shows the importance of the features for ANN based on 
the permutation ranked according to their importance to 
the ANN model. Additionally, colored rectangles depict 
variables that show positive coefficients in LR (red) and 
WoE (green). Notably, the map unit MU40, representing 
the "clayey-loamy molasse and other Tertiary materials 
with a loamy top layer," has the highest coefficient in the 
linear LR among the soil map classes but is not significantly 
considered in bivariate WoE and the non-linear ANN.

While random sampling employed in multivariate 
methods (LR and ANN) did not markedly affect the training 

AUROC of the models, it significantly influenced the models' 
generalization capabilities on the test dataset. For the test 
dataset, the performance significantly dropped to values around 
0.80 for sampling low sampling ratios. The most robust results, 
with patterns comparable to WoE, were obtained using the 
imbalanced dataset, including all non-landslide areas (Fig. 7). 
Also, we observed a notable difference in the ranking of soil 
map classes considered significant through the sampling models, 
underscoring the heightened sensitivity of ML algorithms to 
both the sampling but also the overall volume of data. This 
latter becomes especially noticeable in LR models, where the 
p-values for the coefficients' estimates often exceed the standard 
significance threshold of 0.05, sometimes approaching one 
for specific soil map units. High p-values like these indicate 
a weak statistical significance for the corresponding variables, 
suggesting that the observed effects might be due to random 
chance rather than genuine predictive relationships. This implies 
that data availability limitations could influence the model's 
coefficients more than their relevance as predictors.>

For the zoning, the most significant differences occur for 
areas depicted as moderate, low, and very low (Fig. 7).

Overall, the conducted feasibility study investigated the 
opportunities of a harmonized approach for generating a 
national landslide susceptibility map in Germany. While we 
tried to select study areas that could reliably represent the data 

Fig. 5  Results of the ISM for Simbach area: a) Estimated failure probability for fully saturated conditions; b) Corresponding susceptibility zon-
ing based on the ROC curve
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situation among different federal states, the findings might 
still not be exhaustive. Nevertheless, our results reveal the 
most critical issues to address when approaching the task of 
nationally harmonized LSA and are in general agreement with 
the experiences of other recent studies in Europe targeting a 
national landslide susceptibility (e.g., Loche et al. 2022; Lima 
et al. 2021).

A notable finding is that the quantity of functional param-
eters diminishes as the scale becomes more regional and for 
smaller-scale overview maps, as illustrated in Fig. 8. This trend 
is predominantly influenced by the discriminatory capability of 
geomorphometric variables, most notably the slope parameter.

Conclusions

We can draw the following conclusions based on 
the feasibility study results. A data-driven national 
susceptibility map is feasible for rockfalls based on the 
single parameter slope. At regional overview scales, the 
discriminative power of slope parameters is overwhelming. 
The contribution of other parameters is statistically not 
reliably detectable when applying metrics such as AUROC. 
Because the slope is a generally well-transferable parameter, 
the model is trainable in selected pilot areas with good data 
coverage. Likewise, the definition of critical thresholds is 
feasible with heuristic methods.

The slope is also an essential but insufficient 
parameter for characterizing translational and rotational 
slide distribution. Other factors for which regional 

model transferability is limited, e.g., due to local 
characteristics of factors (e.g., lithological conditions), 
are to be considered (Fig.  8). On the other hand, a 
holistic nationwide data-driven assessment of those 
factors is currently not feasible due to heterogeneous 
inventory datasets hosted by the respective SGSs that 
would ultimately lead to biased estimates of landslide 
susceptibility.

Employing heuristic methods for areas with insufficient 
observational data would require intensive and long-term 
cooperation among all SGSs, taking into account detailed 
expert knowledge of regional geology.

The physically-based modeling utilizing a nationwide 
soil map with PTF for model parametrization provides a 
promising approach for shallow translational landslides. 
In Germany, shallow landslides are predominantly 
related to torrential rainfall events. Therefore, the 
physically-based approach could also provide dynamic 
and scenario-based models considering the climatic 
change projections. Further tests in areas with good 
observational data and well-known spatiotemporal 
characteristics are needed to understand possible model 
limitations better. Further in-depth investigations on the 
model parametrization from the soil database, model 
extension by infiltration models, and elaboration of 
critical rainfall thresholds would be an asset.

The physically-based modeling of deep-seated rotational 
landslides demands rigorous models with detailed input 
data (e.g., 3-D underground models), which are generally 
unavailable in the required quality for larger areas.

Fig. 6  Feature importance from the ANN model, including param-
eter slope and map units (MU) from BÜK200 and no sampling, with 
highlighted features considered also significant in WoE and LR mod-
els; with MU33: loamy-sandy molasse material, partly with a loamy 
flow-soil cover, MU38: clayey-loamy molasse material with a loamy 
top layer, MU34: silty to loamy molasse material, mainly with a flow-
soil cover, MU42: loamy and sandy-loamy valley deposits, MU35: 
silty material of the freshwater brackish molasse, locally with loess-

loam cover, MU31: gravelly molasse material, MU11: silty-loamy 
washout materials, MU30: Loess loam with molasse material, MU14: 
River marl or loamy valley deposits over carbonate-rich gravel, 
MU52: loess loam over loess loam flow soil, MU40: clayey-loamy 
molasse and other Tertiary materials with a loamy top layer, MU12: 
river marl over carbonate-rich gravel, MU5: sandy to loamy over 
gravelly floodplain deposits, MU3: gravelly, silty, and clayey flood-
plain deposits
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Fig. 7  Comparison of the LSA models parametrized with slope and soil maps BÜK200 and UeBK25
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Based on the conclusions, we propose actions that could 
foster the development of national procedures. An initial 
step would be the generation of non-susceptibility maps to 
exclude areas not susceptible (unconditionally stable areas 
due to the absence of the necessary causes) to landslides 
following the examples given by Marchesini et al. (2014) 
and Jia et al. (2021). This step would significantly reduce 
the areas for data collection.

A further step could include introducing harmonized 
data acquisition, storage, and processing procedures 
among SGSs. From the hazard assessment point of view, 
establishing a harmonized national landslide database would 
be a quantum leap for Germany.

In particular, for the parameter lithology, additional 
work needs to be done regarding the reinterpretation of 
lithostratigraphic map units into meaningful material 
strength classes based on the lithological classes, their 
weathering conditions, and their deformation history. This 
is crucial to increase the model transferability among several 
regional-geological units.

Finally, we conclude that nationwide assessment and 
mapping of landslide susceptibility in Germany still 
needs considerable effort by the geoscientific community. 
According to their legal mandate, the SGDs play a key role 
in this context.
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