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Abstract
In tunnel construction, efficiently predicting the energy usage of tunnel boring machines (TBMs) is critical for optimizing 
operations and reducing costs. This research proposes a novel method for predicting the specific energy of micro slurry tunnel 
boring machines (MSTBMs) using an explainable neural network (xNN) that leverages operator-monitored data. The xNN 
model provides transparency and interpretability by integrating the Shapley additive explanation (SHAP) technique, enabling 
tunneling engineers and operators to gain valuable insights into the prediction process. Extensive data from MSTBM umbrella 
pipe support excavation are the foundation for training, testing, and unseen data in the xNN model. The specific energy 
formula derived from the operational parameters of the MSTBM defines the dependent variable for the xNN model. The test 
dataset evaluates the model’s performance with an R² of 98.7%, an MSE of 2.40, and an MAE of 0.003, demonstrating its 
accuracy and reliability. Ten percent of the dataset was reserved as unseen data to assess the model’s generalization capabili-
ties. Upon evaluation, the model achieved an R2 value of 89%, an MAE of 0.01, and a root mean squared error (RMSE) of 
0.01. The xNN empowers operators to optimize operational parameters and promote more efficient and sustainable tunneling 
practices by identifying influential factors affecting energy consumption through its interpretable nature. This research has 
significant implications for the future of underground construction, paving the way for improved resource management.

Keywords Micro slurry TBM · Soft ground tunneling · Specific energy · Operational parameters · Explainable AI · Neural 
networks

Introduction

The tunnel boring machine (TBM) represents an advanced 
engineering solution that automates the process of tunnel 
excavation. It has a rotating cutter head, and cutting tools 
effectively bore through various geological formations, 
ranging from soft soil and clay to hard rock and abrasive 
materials. By employing state-of-the-art technology and 
engineering principles, TBMs can tunnel through the most 
challenging terrains with precision and efficiency. In contrast 
to conventional tunneling techniques such as drilling and 
blasting, mechanized tunneling with TBMs minimizes the 
need for human involvement within the tunnel face. TBMs 
operate in a closed environment, providing a controlled 
working environment that further enhances safety stand-
ards (Acaroglu et al. 2008; Hartlieb et al. 2017; Zhang et al. 
2017; Ren et al. 2018; Feng et al. 2021). However, there are 
drawbacks to the impact of TBM tunnelling on excavation 
efficiency. The impacts can be classified into two main types: 
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ground-machine interactions and human‒machine interac-
tions. Numerous studies have been conducted to identify and 
predict the reason for the inefficiency of TBM tunnelling. 
These studies can be categorized into empirical/theoretical 
and artificial intelligence applications. Empirical/theoretical 
models have been introduced to examine the predominant 
characteristics of TBMs (Roxborough and Phillips 1975; 
Farmer and Glossop 1980; Wijk 1992; Rostami and Ozdemir 
1993; Barton 2000; Cardu and Oreste 2011; Macias et al. 
2016; Cardu et al. 2017). Empirical/theoretical models (She 
et al. 2024) have considered various rock parameters, includ-
ing the cerchar abrasivity index (CAI), uniaxial compressive 
strength (UCS), quartz content, Vickers hardness number 
(VHNR), fracturing degree, porosity, drilling rate index, 
and rock mass classification, as well as machine properties 
such as the thrust force (MN), torque (MN.m), penetration 
rate (m/h), revolutions per minute (rpm), and TBM diam-
eter, to estimate cutter tool life. Nevertheless, this approach 
has limitations, such as the need for specialized laboratory 
equipment, reliance on a limited set of input parameters, 
and high computational time due to the complexity of the 
experimental setup process.

Many researchers have developed artificial intelligence 
models for predicting TBM performance to address the 
limitations of empirical methods. Artificial intelligence 
models have been used to predict TBM performance based 
on cutter wearing and penetration rate (Alvarez Grima 
et al. 2000; Benardos and Kaliampakos 2004; Mahdevari 
et al. 2012, 2014; Ghasemi et al. 2014; Jahed Armaghani 
et al. 2018; Salimi et al. 2018, 2022; Koopialipoor et al. 
2019; Feng et al. 2021; Kilic et al. 2022; Yang et al. 2022). 
However, while artificial intelligence models have dem-
onstrated their effectiveness in predicting TBM penetra-
tion rates, accurately forecasting specific energy remains a 
considerable challenge within mechanized tunnelling. The 
specific energy is a critical parameter that directly impacts 
the TBM performance and energy consumption through-
out tunnel excavation. Understanding and accurately pre-
dicting specific energy is vital for optimizing tunnelling 
operations, enhancing overall efficiency, and minimizing 
construction expenses (Mirahmadi and Dehkordi 2019; 
Tang et  al. 2023). Several researchers have developed 
approaches such as empirical, experimental, and intelli-
gent models to analyze the specific energy consumption 
of mechanized tunneling. Snowdon et al. (1982) Balci and 
Tumac (2012) Cho et al. (2013) Copur et al. (2014), and 
Pan et al. (2019) used a linear cutting machine (LCM) 
to analyze the penetration rate and specific energy rela-
tionship. Nevertheless, conducting full-scale linear cut-
ting tests has certain limitations. One of the drawbacks is 
the challenge of acquiring large rock blocks, which can 
be difficult or sometimes unfeasible. Additionally, many 
researchers may not have access to the necessary testing 

equipment, such as a full-scale linear cutting machine. 
On the other hand, Altindag (2003) reported a significant 
relationship between the brittleness of a rock mass and its 
specific energy. Preinl et al. (2006) identified a correla-
tion between rock mass excavability (RME) and specific 
energy. The impact of brittleness and destruction energy 
on specific energy was explored by Atici and Ersoy (2009). 
A method that utilizes fuzzy logic to estimate the specific 
energy requirements of constant cross-section disc cut-
ters during rock cutting was proposed by Acaroglu et al. 
(2008). Regression analyses to explore the connection 
between excavation parameters and rock cutoff were per-
formed by Tang et al. (2023). They established a predic-
tion model for UCS and a classification model for rock 
cutoff based on SE. Moreover, the mechanical analysis 
of the shield excavating process via a nonlinear multiple 
regression model using on-site data, leading to the devel-
opment of a diagnostic model for SE, was integrated by 
Zhang et al. (2012). Introduced a novel specific energy 
(SE) equation that accounts for variations in the disc-cutter 
radius, enhancing the predictive accuracy for TBM perfor-
mance by Wang et al. (2012). However, simple regression 
models overlook bottlenecks in predicting specific energy 
because the models have been constructed with limited 
data and cannot capture reliable information. Zhou et al. 
(2022) developed a physics-informed machine learning 
model to predict the energy consumption of a TBM using 
the physics constraints of tunnel geology. However, due to 
the tailored physics formula, physics-based machine learn-
ing models are complex and unsuitable for generalization. 
Wang et al. (2023) emphasized that TBM energy consump-
tion is the primary factor influencing excavation efficiency. 
They argued that evaluating TBM efficiency solely based 
on operator experience lacks reliability in optimizing exca-
vation effectiveness. To address this concern, the authors 
devised a hybrid algorithm named QPSO-ILF-ANN, which 
combines quantum particle swarm optimization with an 
enhanced loss function grounded on a neural network. This 
model successfully predicted that increased penetration 
and rotational speeds increase excavation speeds while 
concurrently reducing energy usage. However, its com-
plexity arises from the requirement for quantum knowl-
edge and its involvement in traditional hyperparameter 
tuning methods. In summary, previous researchers did 
not consider optimizing the operator’s decision-making. 
Additionally, determining and forecasting the SE is nota-
bly more intricate in nonhard rock conditions due to the 
infrequent utilization of soil mechanics parameters and 
their inherent uncertainty, as noted by Yu and Mooney 
(2023). Previous studies revealed two significant gaps in 
SE prediction research. First, optimizing TBM operators 
through intelligent system feedback underscores the sig-
nificance of human–machine interactions. Second, there is 
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a call for a new equation to calculate the specific energy, 
considering the TBM operational parameters, soil-machine 
interactions, and material removal flow rate instead of the 
penetration rate-guided approach.

In this paper, a different point of view was evaluated 
for the performance evaluation of the TBM. This paper 
diverges from previous studies by offering data-driven and 
methodologically distinct approaches. The data-driven 
approach involves operator decisions (monitoring), which 
determine how human–machine interactions impact the 
energy consumption of a TBM. The operator-based data-
set was used to develop the model instead of focusing on 
limited ground-machine interactions. The method will 
provide new insight into machine operation for the human 
side because the AI model can assist the operator and then 
concentrate on crucial parameters for energy consump-
tion while avoiding entire control panel management. The 
model’s novelty lies in its methodological approach, where 
a new specific energy formula, tailored for MSTBMs in 
soft ground, incorporates TBM operational parameters, the 
soil-machine friction coefficient, and the sludge removal 
flow rate. By integrating cutting-edge automatic hyperpa-
rameter tuning, we can overcome the high computation 
time and time consumption of model optimization. Finally, 
incorporating SHAP with xANN enables the identification 
of critical parameters influencing energy consumption.

Data

Project description

The tunneling project is a highway bypass tunnel in Japan. 
The hydraulic excavator excavates the main tunnel project. The 
tunnel project entrance consists of soft ground; therefore, an 
umbrella pipe support excavation is used to increase the sta-
bility of the tunnel roof. Figure 1 illustrates the umbrella pipe 
support excavation with the MSTBM.

The pipe geology consists of sandy clay, sand, clay (brown), 
clay (blue), and sandy clay. Owing to the similarities between 
soil samples, they are grouped as TUC, TUS, and TC based 
on the site investigation report. Table 1 shows the mechanical 
properties of the soft ground.

Micro slurry TBM machine specifications

The micro tunnelling method was used to excavate umbrella 
pipe supports for excavating highway bypass tunnels in Japan. 
Figure 2 briefly demonstrates the working principle of the 
micro slurry TBM, and Table 2 provides the specifications 
of the MSTBM.

Data preprocessing

In this research, an operator-based dataset was used to pre-
dict the specific energy consumption of the MSTBM. This 
dataset aimed to identify how to impact operator decisions on 
specific energy consumption levels. In this section, the opera-
tional parameters of the MSTBM were investigated, and the 
input parameters for the model were selected using a correla-
tion matrix. The operational parameters include 27 operating 
parameters. Figure 3 presents the frequency distributions and 
values of the operational parameters.

Owing to the frequency plot distribution, normalization 
and feature transformation rescaled the data in the range of 
[0–1] and decreased the influence of magnitude on the vari-
ance (Huang et al. 2022). Equation 1 expresses the min–max 
normalization formula (Munkhdalai et al. 2019).

(1)x
scaled

=
x − x

min

x
max

− x
minFig. 1  The diagram represents the umbrella support design used in 

excavation, where the round shapes indicate the pipe holes, and the 
cross-sectional view of the pipes shows the holes excavated by the 
MSTBM

Table 1  Mechanical properties 
of pipe geology

Soil properties Elastic module Cohesion Friction angle Unit weight volume
(kN/m2) (kN/m2) Angle (kN/m3)

TUC Sandy/clay 23,800 110 20 18
TUS Clay zone 14,500 37 27 17
TS Sandy/clay 30,800 120 12 19
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where x(scaled) is the normalized data, x is the raw data, and 
xmax and xmin are the maximum and minimum values of the 
dataset, respectively.

Figure 4 shows the correlation matrix of the operational 
parameters used to determine the correlations among the vari-
ables. According to Fig. 4, 11 operational parameters were 
selected from the entire dataset due to their reasonable cor-
relations with the specific energy.

Based on the correlation matrix in Fig. 4, the following 
operational parameters were selected to serve as input variables 
for the xNN model. The cutter torque (kN∙m), cutter current 
(ampere; A), cutting-edge water pressure (MPa), earth pres-
sure (kN/m2), jack stroke (mm), original pressing force (MPa), 
thrust propulsion force (kN), slurry density (t/m3), sludge den-
sity (t/m3), slurry dry solids flow rate (l/min), and sludge dry 
solids flow rate (l/min). The selected parameters have a positive 
and reasonable correlation with the specific energy.

Methodology

After data preprocessing, the dataset consisted of 11 selected 
features for building the xANN model. The dataset was split 
into training (80%), test (20%), and unseen data (10%). The 

target variable specific energy was derived from the MTBM 
torque power consumption during cutting rotation with 
respect to the friction coefficient of the soil machine dur-
ing sludge removal. As elaborated in the introduction, this 
derivation was necessitated by the existing specific energy 
formulas that are primarily applicable to laboratory-scale 
tests and large hard rock TBMs. Initially, operator-monitored 
data is collected and subjected to exploratory data analysis 
to understand data characteristics, with a particular focus 
on the frequency distribution of data. This analysis, aug-
mented by a correlation matrix, informs feature selection, 
ensuring that only the most relevant features are chosen, 
thereby enhancing model performance, and reducing unnec-
essary complexity. Data is then split into distinct sets: 80% 
for training, 20% for testing, and 10% set aside as unseen 
data for final validation. Before training, min-max stand-
ardization normalizes the feature scales, promoting faster 
convergence during the learning phase and preventing any 
single feature from dominating the model’s attention due to 
scale differences. The training process itself is optimized 
through iterative hyperparameter tuning using Optuna, strik-
ing a balance between performance and computational effi-
ciency. Post-training, the model is evaluated for accuracy 
using the test set. SHAP analysis provides insights into fea-
ture importance, contributing to the model’s explainability 
and identifying opportunities to refine the model further. 
Finally, validation against unseen data ensures that the mod-
el’s predictive power holds up against new, real-world data, 
confirming its robustness and generalization capability. This 
methodical process not only bolsters model transparency 
but also seeks to improve the overall quality of predictions, 
ensuring that the model is not only high-performing but also 
understandable and trustworthy.

Fig. 2  The working principle of the MSTBM involves excavating a tunnel and transporting the excavated material through pipes. This material is 
treated for soil conditioning and to maintain pressure at the cutter face for added stability

Table 2  Micro slurry TBM specifications

Machine specifications

Shield outer diameter (cm) 87
Shield length (m) 5.2
Thrust force (kN/m2) 245
Torque (kN.m) 15.2
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The detailed process of deriving this specific energy 
equation is described in the “Derivation of the micro 
slurry TBM-specific energy formula” section. The spe-
cific energy equation is used as an output of the xNN 
model. The process of integrating the Optuna model into 
the ANN model is described in the “Optuna automatic 
hyperparameter tuning” section. The “Explainable neural 
network” section describes explainable neural networks 
fine-tuned using Optuna. The model has been incorporated 

with SHAP to address the black box concern inherent in 
neural networks, thereby ensuring transparency and inter-
pretability of the model’s outcomes in the “Shapley addi-
tive explanation (SHAP)” section.

Consequently, the “Evaluation metrics” section outlines 
the assessment metrics, including R2, MSE, and MAE. 
Figure 5 briefly summarizes the methodology and model 
description.

Fig. 3  A frequency histogram illustrating the operational parameters of the MSTBM. On this histogram, the y-axis indicates the frequency, while 
the x-axis represents the various values of the parameters
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Derivation of the micro slurry TBM‑specific energy 
formula

The first concept of the specific energy (J/m3) in the drilling 
process based on the F is thrust on the bit (kN), A is hole sec-
tion  (m2), N is rotation speed (rps), T is rotation torque (kN.m), 
and V is the rate of penetration (m/s), provided by Teale (1965). 
Equation 2 shows the first concept of the specific energy.

(2)E =
F

A
+

2�.NT

AV

Celada et al. (2009) synthesized earlier specific energy 
equations. They emphasized that geomechanical param-
eters, namely, UCS, Young’s modulus, and the rock mass 
rating (RMR), and TBM-related factors, such as thrust, 
torque, rotation speed, and drilling fluid pressure, were 
predominantly employed in deriving specific energy for-
mulas. Notably, this highlights the potential utilization 
of TBM operational parameters in formulating a specific 
energy equation tailored to micro slurry TBM excavation. 
Equation 3 shows the proposed specific energy equation. 

Fig. 4  Correlations of MSTBM variables with each other. According to the matrix, the correlation increases when the color changes to red, but 
the correlation decreases when the color changes to blue. The last row of the correlation matrix shows specific energy correlations with variables
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The MSTBM-based specific energy formula was devel-
oped inspired by Bilgin et al. (2013) the net power require-
ment of the TBM cutting ground. The net power require-
ment formula was improved by considering the frictional 
coefficient of the pipe-soil interaction and sludge removal 
flow rate to calculate the slurry TBM energy consumption 
as a function of the flow rate. Bilgin et al. (2013) stated that 
� (the energy factor of cutterhead motors is 0.75, and the 
frictional coefficient of the clay shield is 0.20).

The cutting power Pcuttingnet (kW) is given in Eq. 4.

The previous net power requirement was improved by 
Eq. 5, which included the frictional coefficient ( � ) of the soil 
machine during cohesive soil excavation. � was assumed to 
be 0.20 for the clay.

Equation 6 indicates the incorporation of the Pcuttingnet and 
the sludge removal flow rate  (m3/h).

(3)SE =
Pcutting net (kW)

Sludge removal f low rate
(

m3

h

)

(4)Pcutting net =
(

2� . T .RPM

60

)

. �

(5)Pcutting net =
(

2� . T .RPM

60

)

. � . (1 + �)

where SE is kWh/m3, T is the cutter torque (kN∙m), revo-
lutions per minute (RPM), η (0.75) is the mechanical effi-
ciency of the TBM, � is the friction coefficient of the pipe 
(0.20) and clay, and f is the sludge removal flow rate  (m3/h).

Optuna automatic hyperparameter tuning

Optuna is a new generation of hyperparameter tuning mod-
els, as explained by Akiba et al. (2019). Artificial intelli-
gence models have several hyperparameters that are vital 
for improving model performance. However, it is not easy 
to manually obtain the best parameters for the model struc-
ture because it is computationally expensive. In this regard, 
the proposed xNN model hyperparameters were determined 
using the Optuna hyperparameter tuning model with 100 
trials. The 100 trials were used to determine the number 
of neurons, layers, learning rate, and weight decay for the 
xNN model.

Optuna iteratively selects different sets of hyperparam-
eters θ to train the ANN model and evaluates its perfor-
mance using the R2 score on the test set. The aim is to find 
the set of hyperparameters that results in the maximum 

(6)SE =

(

2� .T .RPM

60

)

. � . (1 + �)

f

(

m3

h

)

Fig. 5  The operator-monitored 
database explainable neural net-
work model structure to predict 
the specific energy consumption 
of the MSTBM during material 
removal flow rate. The model 
was integrated into the SHAP 
to present the importance of 
the specific energy feature to 
provide insight to the operator. 
The Optuna hyperparameter 
framework uses several trials to 
find the best hyperparameters 
for the model. The best trial 
hyperparameters are used to 
retrain the model
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R2 score, indicating the best fit between the predicted and 
actual values. The optimization can be mathematically 
conceptualized as navigating the hyperparameter space 
to find the optimal point θopt  that yields, shown in Eq. 7.

the process of using Optuna to optimize the hyperparam-
eters of an ANN regressor to maximize the R2 score. The 
process involves defining a suitable objective function, itera-
tively exploring the hyperparameter space, and evaluating 
the model’s performance based on R2.

The “Explainable neural network” section describes the 
proposed model structure and feature importance of the 
hyperparameters.

Explainable neural network

The xNN model uses the Optuna automatic hyperparameter 
tuning algorithm described in the “Optuna automatic hyper-
parameter tuning” section. The number of hidden neurons, 
the number of layers, the learning rate, and the weight decay 
parameters were determined 100 times through trials with 
Optuna. Afterwards, the model was retrained based on the 
best trial parameters. The Optuna can provide the important 
features of the hyperparameters for the model and relation-
ship hyperparameters with each other. Table 3 presents the 
selected hyperparameters and their values. Figure 6 illus-
trates the features and significance of the hyperparameters 
for the model.

Additionally, Fig.  7 demonstrates the Optuna deci-
sion process as a parallel coordinate plot for the proposed 
xANN model structure. Optuna is a Bayesian method, and 
it allows us to pursue global optimization by progressively 

(7)�opt = argmax� R
2 (�)

constructing a probabilistic model that maps hyperparam-
eter values to the objective function. This model encapsu-
lates assumptions regarding the function’s behavior, cre-
ating a posterior distribution over the objective function 
(Frazier 2018).

Shapley additive explanation (SHAP)

SHAP is based on game theory and is used to extract 
important features for the output (Wen et al. 2021; Kav-
zoglu and Teke 2022; Kilic et al. 2023). Therefore, mean-
ingful features provide explainable neural networks. SHAP 
has different explainer models, such as a tree explainer 
for tree-based algorithms, a kernel explainer for kernel-
based and neural networks, and a deep explainer for a deep 
neural network model (Lundberg and Lee 2017). In this 
research, the kernel explainer was integrated into the neu-
ral network model to explain the model black box. Accord-
ing to (shap. KernelExplainer), the kernel model utilizes a 
specific weighted linear regression to calculate the impor-
tance of each feature. The evaluated essential values are 

Fig. 6  The outcome of tuning the optimal hyperparameters for the proposed xNN model. The learning rate is the most critical parameter for the 
neural network model, while weight decay is not significant

Table 3  xNN model hyperparameter and hyperparameter values

Hyperparameters Values

Number of layers 7
Number of hidden neurons {100, 41,94,10,34,5,6}
Learning rate 0.014
Weight decay 2.87e-05
Loss function Mean squared error
Optimizer Adam
Epoch 100
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Shapley values from game theory and the coefficient from 
a linear regression.

Evaluation metrics

The explainable neural network model was evaluated using 
R2, MSE, and MAE to evaluate the model performance. 
Equation 8 expresses the equation R2. R2 calculates the 
extent to which the model inputs account for the variability 
in the dependent variable (Chicco et al. 2021).

where ŷi is the estimated value of the data, yi is the actual 
value, 

−
y
i
 is the mean of the prediction value, and n is the total 

dataset number.
The MSE is applicable when identifying outliers is nec-

essary. The L2 norm is particularly effective at assigning 
greater importance to these data points. To elaborate, when 
the model generates an inferior prediction, the error ampli-
fication is intensified through the squaring mechanism in 
the function. Equation 9 indicates the equation of the MSE 
(Chicco et al. 2021).

(8)R2 = 1 −

∑n

i=1
(̂yi − yi)

2

∑n

i=1

�

−
yi − yi

�2

(9)MSE =
1

m

m
∑

i=1

(

Xi − Yi
)2

where Xi is the predicted value and Yi is the actual value.
The MAE is suitable in cases where outliers indicate 

flawed segments within the dataset. The MAE does not 
excessively penalize outliers during training, offering a 
comprehensive and constrained performance evaluation for 
the model. Conversely, when the test set contains numerous 
outliers, the model’s performance will be moderate. Equa-
tion 10 shows the formulation of the MAE.

where Xi is the predicted value and Yi is the actual value.

Results

The performance of the model was evaluated using R2, 
MSE, and MAE. The test data provided the model’s perfor-
mance with an R² of 98.7%, an MSE of 2.40, and an MAE 
of 0.003. Ten percent of the dataset was split as unseen data 
to evaluate the model’s generalization capabilities. Based 
on the unseen data, the model achieved an R2 value of 89%, 
an MAE of 0.01, and a root mean square error (RMSE) of 
0.01. In addition, the model outcome was visualized using 
predicted and actual plots. Figure 8 illustrates the model pre-
diction performance compared to the actual values. It can be 
observed that a majority of the data points cluster around the 

(10)MAE =
1

m

m
∑

i=1

|

|

Xi − Yi
|

|

Fig. 7  High-dimensional parameter relationships in the xANN model. 
The parameters on the plot are as follows: lr is the learning rate, n_
layers is the number of layers, and n_units_l0-6 is the number of units 
in different layers. From 0 to 6, the “weight_decay” axis shows the 

regularization strength, and the color gradient provides an at-a-glance 
indication of which trials resulted in higher objective values, which 
can help in identifying the best set of hyperparameters for the model
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best-fit line, proving the model’s ability to predict specific 
energy values accurately.

On the other hand, the model prediction error was 
assessed with a prediction error histogram to indicate the 
model performance. Figure 9 shows the frequencies of dif-
ferent error ranges, where the x-axis denotes the error mag-
nitude and the y-axis represents the frequency and density 
of occurrences.

A well-performing model would exhibit a symmetric and 
narrow distribution around zero error, indicating minimal 
prediction discrepancies. Figure 9 shows a central peak 
around zero error, which suggests that the model generally 
provides accurate predictions.

Figure 10 shows the model performance in terms of the 
learning curve. During the training processes of the 100 
epochs, the model was trained on increasing amounts of 
data. The model learning curve includes training and valida-
tion errors based on the MSE against the number of training 
iterations. According to Fig. 10, the model demonstrated 
that training and validation errors gradually decrease and 
appear to stabilize; thus, the learning is effective and gen-
eralizable well.

Additionally, the xANN model was validated using 
an unseen dataset. The unseen data can be used to simu-
late a real-world scenario to prove model generalizability. 
Figure 11 illustrates the unseen data-predicted and actual 
results. The model provided robust predictions with an R2 
of 89%. The observed difference between the test score 
(98.7%) and the unseen data score (89%) can be attributed 
to data drift, which occurs when the distribution of the input 
data changes over time. If the test data fails to represent 
these changes, the model’s performance on unseen data may 
deteriorate.

Figure 12 shows the frequency distributions of the unseen 
data and the actual and predicted data densities. Most 
unseen data reasonably match the actual and predicted data 
densities.

In addition, the model explanation is critical in preventing 
the model’s black box and providing an explainable neu-
ral network. In the “Shapley additive explanation (SHAP)” 
section, SHAP was incorporated with a neural network to 

Fig. 8  Each data point (red dots) on the plot corresponds to an obser-
vation in the dataset, where the x-axis represents the actual specific 
energy values and the y-axis displays the predicted values

Fig. 9  The xNN model prediction error distribution. The bar charts 
represent the frequency of occurrences, and the navy-blue curve cor-
responds to density

Fig. 10  The xNN model learning curve. The blue line represents 
training loss, and the orange line shows the validation curve. The 
MSE values decrease gradually without creating a gap between train-
ing and validation
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Fig. 11  The unseen dataset 
prediction performance for the 
model validation. The x-axis 
refers to the actual specific 
energy, and the y-axis corre-
sponds to the predicted unseen 
specific energy

Fig. 12  The unseen data density 
shows the difference between 
the actual and predicted data 
points

Fig. 13  SHAP force plot showing the feature importance of the input parameters. Red indicates a high contribution, while blue indicates a low 
contribution. The scale from 0.575 to 0.850 corresponds to the base of the SHAP model
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explain the contribution of operator decisions for specific 
energy. Figures 13 and 14 show the force and summary plot 
of the SHAP, respectively. Figures 13 and 14 allow us to 
determine the underlying reason for the operator’s energy 
consumption. Figure 13 shows that the original pressing 
force (MPa), earth pressure (kN/m2), jack stroke (mm), cut-
ter torque (kN.m), and cutter current (A) of the MSTBM 
are the most critical parameters for energy prediction. In 
contrast, the thrust propulsion force (kN) is less important 
for the specific energy.

In addition to Fig. 13, Fig. 14 demonstrates the feature 
importance of the TBM parameters using a SHAP summary 
plot. The cutter torque, cutter current, and slurry density (t/
m3) are the most significant parameters.

Figure 13 is related to the microlevel explanation of indi-
vidual predictions, and Fig. 14 is linked to a macrolevel 
understanding of the model. The model is shown in Fig. 13 
to illustrate the decision-making process for individual 
predictions.

Discussion

This research has provided significant insights into the rela-
tionship between influencing the decision of a TBM operator 
and the specific energy consumption during pipe excavation. 
Eleven operational parameters were selected among the 27 
operational parameters using Fig. 4 in the “Data preprocess-
ing” section. However, three of the chosen parameters are the 

most critical for the specific energy consumption in pipe exca-
vation, as shown in Fig. 13. The cutter current is more criti-
cal than the cutter torque, and the jack speed for predicting a 
specific energy owing to the cutter current is directly related 
to the machine driving motors. Figure 13 indicates that the 
thrust propulsion force impact is lower than that of the other 
operational parameters of the MSTBM for predicting the spe-
cific energy. Figure 15 (a) illustrates the changes in the cutter 
current and specific energy with respect to the excavation dis-
tance. When the cutter current increases, the specific energy of 
the machine tends to increase. It can be interpreted that more 
challenging cutting conditions require more power for cutting. 
Figure 15 (b) illustrates the relationship between the cutter 
torque and specific energy. A higher torque, which indicates 
greater resistance against the cutter head, generally leads to 
higher specific energy values, suggesting that more effort (and 
thus energy) is needed to excavate the material. Figure 15 (c) 
presents the machine jack speed control and its variation and 
energy consumption. Mokhtari and Mooney (2020) stated that 
the operator attempts to control the jack speed when the TBM 
increases the advance rate to maintain face stability.

On the other hand, the specific energy has been investi-
gated based on soil formation during pipe excavation. Fig-
ure 16 presents the specific energy consumption for each 
section of the pipe geology. The energy consumption is 
greater in the clay zone from 60 to 85 m of pipe excavation 
than in the sand and sandy clay zones. The main reason is 
that the operator increased the torque and tended to adjust 
the jack speed control in cohesive soil.

Fig. 14  The SHAP summary 
plot for the contribution of the 
TBM parameters
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Practical applications

The insights gained from this study have practical impli-
cations for the tunnelling industry. TBM operators can 
leverage the relationships between the cutter torque, jack 
stroke, cutter current of the driving motor, and specific 
energy to optimize excavation processes. By carefully 
adjusting the cutter torque, cutter current, and jack stroke 
based on the specific energy requirements of different geo-
logical zones, tunneling operations can be managed for 
higher efficiency and cost-effectiveness. The study also 
highlights the importance of specific energy consumption 
depending on geological information. This research shows 
the importance of selecting a TBM based on the geological 
setting to reduce energy consumption while monitoring 
the TBM parameters. Figure 17 illustrates the practical 
application of the xNN model.

Despite its strengths, the proposed model has several 
limitations. They are summarized as follows:

(1) The analysis focused on a specific set of micro slurry 
TBM parameters, but geomechanical parameters, cutter 
head design, and cutter tool types were not considered 
to derive specific energy formulas. They may influence 
the specific energy; therefore, further research could 
explore the impact of the additional features of the spe-
cific energy.

(2) The proposed model did not predict a different case 
due to the data availability. Therefore, the model can 
be applied to different scenarios to determine its per-
formance in some cases.

(3) The kernel explainer computation time is high, mak-
ing it a bottleneck for explainable artificial intelligence 
models.

(4) The model was constructed using operational param-
eters from micro tunnelling TBMs, implying that utiliz-
ing operational parameters from larger TBMs or those 
designed for hard rock conditions would yield divergent 
outcomes.

Fig. 15  a Machine cutter current and specific energy relationship, b cutter torque and specific energy consumption, and c machine jack speed 
control and specific energy changes
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Conclusions

This research thoroughly explored the use of explainable 
neural networks (xNNs) for predicting the specific energy 
consumption of mechanized soft ground tunnel boring 
machines (MSTBMs) under soft ground conditions. The 
xANN model, which uses 11 selected operational param-
eters, provided new insights into the prediction process 
and its influencing key factors. A unique aspect of this 
study is its focus on soft ground tunnelling, diverging 

from previous research that predominantly concentrated 
on hard rock mechanized tunnelling. This shift necessi-
tated an innovative approach to feature extraction, using 
correlation analysis to identify relevant parameters for the 
xNN model. Moreover, the research introduced a novel 
specific energy formula designed explicitly for soft ground 
MSTBM operations, addressing the inadequacies of exist-
ing models. A significant advancement of this study is the 
incorporation of the advanced Optuna algorithm, which 
facilitates automatic hyperparameter tuning, optimizes 

Fig. 16  The specific energy 
consumption based on the soil 
type. The pipe distance from 0 
to 9 m is embankment soil, 9 
to 40 m is sandy clay, 40 to 60 
m is sand, 60 to 63 m is clay 
brown, 63 to 83 m is clay blue, 
and 83 to 120 m is sandy clay. 
The clay zone from 60 to 83 
m exhibited the highest energy 
consumption for pipe excavation

Fig. 17  Practical application of 
the xNN flowchart. Real-time 
data can be transferred to the 
model, and the pretrained model 
applies feature importance 
via SHAP. The operator can 
identify energy consumption 
parameters and then take action 
to reduce energy consumption 
while monitoring the TBM 
parameters
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the model’s performance, and reduces manual interven-
tion. The SHAP technique further enhances the model by 
identifying crucial features that impact specific energy 
consumption, providing actionable insights for operators. 
One of the most noteworthy outcomes of this research is 
the model’s ability to provide feedback to the operator, 
enabling them to optimize machine parameters and adjust 
energy consumption in real time. This feature is particu-
larly beneficial for managing the energy demands of vari-
ous soil types, especially in clay zones where the energy 
consumption is notably high due to operational adjust-
ments. This research presents a groundbreaking xNN-
based approach for predicting the specific energy of MST-
BMs operating under soft ground conditions. The model 
paves the way for more efficient, adaptive, and sustainable 
tunnelling practices by enabling real-time feedback and 
parameter optimization.
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