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Introduction

Construction aggregates derived from primary resources 
either by crushing of sound rock masses (crushed stone 
aggregates) or from naturally occurring unbound clastic 
sediments (natural sand and gravel aggregates) make the 
most voluminous mineral raw material exploited by humans 
nowadays (Fookes 1991; Přikryl 2017). Extremely low per-
unit cost of the extracted raw material (Přikryl et al. 2016) 
makes aggregates highly sensitive to transport distance from 
a quarry to the construction site. According to this basic 
relationship, constructional aggregates quarries should be 
preferably located close to their markets—construction sites. 
Aggregates belong to the essential materials needed for the 
development and maintenance of the infrastructure and built 
environment of our civilization. They can also be considered 
as one of the critical materials securing standards of our 
well-being.

Various aspects of aggregates desire research interest 
from at least three research communities: geologists (includ-
ing engineering geologists) who participate in the evalua-
tion of aggregate deposits and quality of aggregates, civil 
engineers who utilize them, and environmental scientists 
who increasingly face the problems related to impacts of 
extensive aggregate exploitation. Lack of sound and detailed 
investigation of rock materials aimed as a source of con-
struction aggregates (often consequence of apparent cheap-
ness of the raw material and the products—constructional 
aggregate) can have serious consequences: both in terms of 
safety of the built environment and its durability (Fookes 
1997; van Loon 2002). Necessity of premature maintenance 
or even replacement of deteriorating built structures inevi-
tably involves substantial additional cost. Aggregates thus 
deserve much more attention from geologists than it was 

common in past decades (Prentice 1990; Bobrowsky 1998; 
McNally 1998; Primel and Tourenq 2000; Smith and Collis 
2001; Lorenz and Gwosdz 2003; Bustillo Revuelta 2021). 
It is evident that geologists became to be more and more 
involved in the evaluation of causes of premature damage of 
civil engineering structures by using their standard tools—
microscopy and related analytical techniques (Verhoef and 
Van de Wall 1998, French 1991; Ingham 2009, 2011, 2019; 
Poole and Sims 2016).

World production of aggregates

In contrast to other mineral raw materials for which yearly 
production statistics are fairly documented by national geo-
logical surveys even on the worldwide scale (e.g., Mineral 
Commodity Summaries by U.S. Geological Survey 2021, 
British Geological Survey Mineral Production Data – Brown 
et al. 2021), sound statistical data on the annual produc-
tion of construction geomaterials in general, and specifi-
cally of aggregates, is available only for some countries and/
or continents (e.g., USA, European countries) (Kecojevic 
et al. 2004; Menegaki and Kaliampakos 2010). Overall avail-
ability and low per-unit cost are considered to be the main 
reasons for poor reporting of aggregate quarrying in mineral 
production statistics (Miatto et al. 2017).

Despite lack of comparable data on world-scale (Miatto 
et al. 2017), several sound estimates give evidence for recent 
annual (period of 2015–2020) demand for constructional 
aggregates ranging from 40 to 50 Gt (e.g., Tam et al. 2018; 
O’Brien 2016). However, regional distribution of aggre-
gate consumption is highly variable. At present, about half 
of aggregate demand occurs in China (some 15–20 Gt per 
year), making it the largest aggregate market in the world, 
followed by India (about 5.5 Gt per year) as the second larg-
est one. These two most populated countries, along with 
some other highly populated, rapidly developing countries in 
Southeast Asia and Latin America, experience high demand 
for aggregates and other constructional geomaterials spe-
cifically due to very ambitious new infrastructural projects 
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(Schandl and West 2010, 2012). As noted by Miatto et al. 
(2017), the growth pattern of material consumption in con-
struction correlates more fairly with the increase in GDP 
than with the actual level of GDP in these countries.

Concerning the most developed countries (e.g., mem-
ber states of EU, USA or Japan), typical aggregate demand 
ranging from 5 to 6 t per capita and year are driven mainly 
by maintenance or rebuilding of existing infrastructure, 
although development of new infrastructure such as high-
speed railways plays important role as well due to strict 
requirements on aggregate quality (Indraratna et al. 2011; 
Nurmikolu 2012; Zhang et al. 2019).

Modes of aggregates end‑use

Concerning the mode of utilization, aggregates are princi-
pally used either in a bound state (concrete) or unbound. 
Aggregates make essential part of the most widely used 
constructional material—concrete, which is vital for many 
other purposes in transport-infrastructural, commercial—and 
residential building, and other building projects. In concrete, 
different size fractions of coarse and fine aggregates make up 
about 75–85% of its mass (Alexander and Mindess 2005). 
Therefore, considering recent annual production of cement 
worldwide (4–4.2 Gt), about half of aggregates (from the 
total of 40–50 Gt) is spent in the manufacturing of hydraulic 
cement concrete (similar estimates can be found elsewhere—
see e.g., Gagg 2014). Another 2 Gt of aggregates are bound 
by bitumens in asphaltic concrete (with typical mixing 
proportions 95% of aggregate and 5% of bitumen) annu-
ally. The acceleration of aggregate consumption worldwide 
during the twentieth century can be thus linked with enor-
mously increased consumption of concrete which replaced 
most of the traditional constructional geomaterials such as 
natural stone and/or bricks (Pries and Janszen 1995). Despite 
well-meant trials to make concrete utilization more environ-
mentally friendly (Mehta 2002; Meyer 2009; Langer 2016; 
Sonebi et al. 2016), cement production and concrete utiliza-
tion still range to human activities with the highest energetic 
and ecological footprints (Horvath 2004, Solís-Guzmán and 
Marrero 2015).

Basic types of aggregates

Aggregates from primary resources

Most of the construction aggregates (Table 1) still come 
from primary natural resources—natural sands and gravels, 
or crushed stone aggregates (Poulin et al. 1994; Smith and 
Collis 2001), although importance of secondary sources 
(industrial by-products or wastes, manufactured aggregates, 

construction and demolition wastes) is rapidly increasing 
(De Mulder 1984). Each type of aggregate has certain 
advantages but also many disadvantages (Table 2) which are 
not solely related to their properties and performance in use 
but also to other factors such as impact on the environment.

Even when considering primary sources of aggregates 
alone, crushed stone and sands cannot substitute each other 
in specific modes of utilization. For example, mortar design 
requires mostly natural sands from fluvial deposits due to 
favorable shape and morphology of sand particles. Short-
age in supply of high-quality natural sands or their physi-
cal absence led to increased research in potential usage of 
crushed stone fine fractions either in mortars or in concrete 
as one of the most important so-called alternative fine aggre-
gates (Kirthika et al. 2020). Crushed stone fines (specifically 
sizes below 0.063 mm in 0/4 mm fraction) are in oversupply 
(Guimaraes et al. 2007) with some limitations in application, 
therefore many modes of their alternative utilization were 
investigated during past decades including use in construc-
tion (Hameed and Sekar 2009; Manasseh 2010; Mundra 
et al. 2016), ceramic industry (Buruchenko et al. 2020), car-
bon sequestration (Rigopoulos et al. 2018), etc. To achieve 
desirable shape characteristics and particle size distribution, 
vertical shaft impacting accompanied with air classification 
allows for production of crushed stone fines equal to natural 
sand (Cepuritis et al. 2015). Partial replacement (up to 50%) 
of natural sand by crushed stone fines do not deteriorate 
mechanical properties or durability of concrete in general 
(Westerholm et al. 2008; Çelik and Marar 1996; Jadhav and 
Kulkarni 2013), in some cases (up to 30% replacement) it 
even improves them (Manguriu et al. 2013).

Aggregates from alternative sources

As aggregates should make “inert” filler specifically when 
used in a bound state in concrete, other materials can hardly 
be used as an alternative. However, recent quest for new 
sources of aggregates, fuelled by construction boom in Asia 
and by efforts for more sustainable utilization of available 
mineral resources, leads to intensive search for involvement 
of rubbish from demolished structures (so-called construc-
tion demolition waste, CDW) or of some manufactured 
aggregates (such as expanded lightweight aggregate) that 
are also derived from processed natural raw materials.

Emerging shortages in supply of aggregates from pri-
mary resources might be, at least partly, solved by the use 
of alternative materials, generally considered as wastes or 
by-products. Waste generation is inevitable for most human 
activities; but instead of waste landfilling, it can be often 
upgraded and used as alternative resources. This specifically 
concerns wastes from construction activities (construction 
and demolition waste (CDW)), and from mining and mineral 
raw materials processing waste (MMPW). On a European 
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level alone, these two categories of wastes contribute to 
more than 60% of total waste generated. Moreover, most of 
CDW and part of MMPW can be considered as inert, thus 
suitable for further use after appropriate processing.

Possible use of CDW as an alternative source of aggre-
gates received enormous attention during past decades 
(Wilburn and Goonan 1998; Oikonomou 2005; Huang et al. 
2007; Malešev et al. 2010; De Brito and Saikia 2012; Silva 
et al. 2014; Kabir et al. 2016; Cardoso et al. 2016; Akhtar 
and Sarmah 2018) as it makes the largest waste category. 
Despite numerous promising results, some uncertainties still 
remain. These concern specifically the fact that the employ-
ment of CDW aggregates in heavy duty applications is still 
not solved due to many constraints which make CDW aggre-
gates less suitable than the primary aggregates.

Production chain of aggregates

Utilization of primary aggregates is linked with local geol-
ogy and market (Poulin et al. 1994). While market is primar-
ily influenced by construction activities within the frame of 
human civilization (anthroposphere), generation of aggre-
gates is vitally linked with geology (i.e., any deposit of either 

natural sand/gravel or rock mass suitable for crushed stone 
resulted from genetic processes within lithosphere as a part 
of geosphere).

Location of an aggregate quarry is generally required 
close to the site of consumption (or to the market area), mak-
ing one of typical features of this low cost ex-work material. 
The availability of specific types of aggregates in the region 
of consumption is thus primarily driven by local geology 
as transports over larger distances are economically unfa-
vorable, specifically when considering road and/or railway.

Specifically, before WW2, aggregate quarries were 
opened whenever the raw material was required. However, 
rationalization of the construction industry with still grow-
ing necessity to use material of certain “standard” quality 
led to the concentration of quarrying and to the decrease 
of number of quarries with much larger production. To 
make opening an aggregate quarry a successful project, 
several important criteria must be fulfilled such as: proved 
quality and quantity of raw material, sufficient volume of 
extractable reserves, and reduction of potential environmen-
tal impacts and/or social conflicts from mining operation 
(Langer 1988). Reduction of number of aggregate quarries 
and increasing volumes extracted from remaining during 
post-2WW period lead to the emergence of the mega- and 

Table 1   Construction aggregates’ typology based on various properties (based mostly on Lorenz and Gwosdz 2003, partly also on McNally 
1998, and own consideration of the author)

Property Subdivision of construction aggregate types Examples

Origin Primary (natural) Natural sand/gravel Sands, gravels, sand/gravel
Crushed stone Blasted and crushed rock masses

Manufactured (synthetic, secondary) Lightweight based on various mineral 
raw materials

Bloating clay/claystones, vermiculite, 
perlite

By-products/wastes from various  
industrial processes

Coal combustion products (fly ash, bottom 
ash, boiler slag), slags from iron-ore 
metallurgy, etc

Construction and demolition waste Crushed concrete, crushed bricks, crushed 
construction rubbish

Bulk density Lightweight (porous) (less than 2000 kg/m3) Natural lightweight (pumice, scoria, volcanic 
ash, diatomite), expanded manufactured 
(clays, claystones, and schists, expanded 
vermiculite, expanded perlite), foamed 
by-products/wastes (foamed blast furnace 
slags, foamed glass)

Normal-weight (common dense) (2000–3000 kg/m3) Most of the rock types
Heavy-weight (high density) (above 3000 kg/m3) Some high-density (ultra)basic rocks, 

barite, magnetite
Grain size ultrafine (less than 0.125 mm) Filler (rock flour, Dmax 0.09 mm),  

settleable fines (Dmax 0.063 mm)
fine (less than 4 mm) Screened factions 0/2, 0/4
coarse (above 4 mm) Screened factions 4/8, 8/16, 32/63
Aggregate mixture (from 0 up to 125 mm) Screened factions 0/16, 0/22, 0/32, 0/90

Fraction d/D Narrow (D/d close to 2) Screened factions 2/4, 4/8, 8/16, 16/32, 
32/63

Wide (D/d above 2) Screened factions 4/11, 4/32, 8/32
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superquarry concepts (Maltz 1994; Barton 1996; Black 
1996). These large quarries are preferably planned in less 
inhabited coastal areas, being thus linked with another trend 
in constructional aggregate industry—internalization or glo-
balization of stone production and its trade (Cowell 2000; 
Bendixen et al. 2021). International transport of aggregates 
is promoted by several factors such as geological one (physi-
cal lack of suitable aggregates or presence of aggregates of 
poor quality), societal/environmental (permitting problems 
related to mining licenses, etc.), or logistical/economical 
(interstate land shipping is often much more expensive than 
international sea transport) (Langer 1995).

Prevalence of sand and gravel production over crushed 
stone is another typical characteristic of past aggregate indus-
try in many developed countries regardless of their local geo-
logical conditions (Fig. 1). This might be partly affected by 
apparently lower energetic demand on unit production from 
natural sand/gravel deposits compared to crushed stone. How-
ever, increasing global demand for construction aggregates, 
developments/requirements of modern concrete technology, 
and accelerated impact on ecosystems related to extraction of 
sand/gravel aggregates either along rivers or in marine envi-
ronments resulted in a questioning the intensity of natural sand 
and gravel production (Gavriletea 2017; Torres et al. 2021 and 
references therein). However, it should be noted that despite 
declining production/consumption of natural sand/gravel 
aggregates in many developed countries, the same materials 
still are still largely produced in many less developed regions 
of the world (Goswami 1984a; Erskine et al. 1985; Hamad 
et al. 1996; Al-Harthi and Abo-Saada 1997; Al-Harthi and 
Amin 1999; Drew et al. 2002; Padmalal et al. 2008; Ako et al. 
2014; Brunier et al. 2014).

Local conditions of a deposit are also crucial: presence 
of larger amounts of impurities (such as mineralized fault 
zones in rock masses or clay-rich beds in sedimentary depos-
its make utilization of the deposit more difficult due neces-
sity of selective mining or increased processing expenses 
(Hamad et al. 2000; Räisänen and Torppa 2005; Engidasew  
and Barbieri 2014; Bahrami et  al. 2015; Afolagboye  
et al. 2016; Vignaroli et al. 2017). Rock masses with com-
plex weathering characteristics or containing hazardous 
minerals such as asbestos require special attention during 
exploration and testing of aggregate properties (Stubbs 
and Smith 1997; Vignaroli et al. 2013). Modern techniques 
allowing quick evaluation of exploratory, technical and 
regional planning data such as Geographic Information 
System (GIS), Decision Support Systems (DSS) or proba-
bilistic prediction models are of great help in selection of 
new quarrying sites (Langer et al. 2002; Robinson and Kapo 
2004; Robinson et al. 2004; Robinson and Larkins 2007; 
Karakaş 2014; Barakat et al. 2015, 2016). This means that 
genesis of the deposit of construction aggregates and its 
specific conditions are fundamental primary factors which Ta
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must be reflected even during exploration for new resources 
(Smith and Collis 2001).

Construction aggregates are obtained either by blasting, 
crushing and screening of solid rock masses (bedrock)—
the so-called crushed aggregate, or from excavated unbound 
sediments—naturally occurring sands and gravels. Most of 
the operations for aggregates are traditional surficial (open-
air) from hard-rock quarries or sand-pits; however, various 
environmental concerns related to the impact of these surfi-
cial operations can make underground extraction of hard-
rock aggregates and economically viable alternative (Stocks 
1979, Lee and White 1993, Benardos et al. 2001, Millar 
et al. 2012).

Properties

Any construction material must possess certain properties 
to ensure stability and durability of the structure built out of 
it. Among the generalized quality requirements, aggregates’ 
“soundness” is of utmost importance (Fookes 1980, 1997; 
Fookes and Walker 2011, 2012). It refers to the ability of 
aggregate source rock to withstand destructive forces from 
various environmental conditions (such as cyclic changes 
of water content, freezing/thawing, salt crystallization, 

temperature changes, etc.) and from various types of 
mechanical loads related to prevalent modes of end-use. 
Soundness of aggregates also refers to unwanted chemical 
reactions of source rock mineral constituents (e.g., oxida-
tion of sulphide ore minerals, presence of reactive forms 
of silica); therefore, it can be considered as a synonym to 
durability sensu lato, similar to durability concept used in 
natural stone studies (Přikryl 2013).

Properties of construction aggregates are tested by vari-
ous test methods, which partly differ from the testing of 
fundamental physical properties. Tests for the assessment 
aggregates’ quality are often based on empirical approaches 
and prevalent modes of use. The principal categories of 
aggregate properties can be listed as:

•	 Mineralogical and petrographic description
•	 Geometrical characteristics
•	 Physical properties
•	 Mechanical performance
•	 Resistance to weathering, decay and deleterious chemical 

reactions.

As quality of aggregates is primarily governed by compo-
sitional and genetic factors of aggregate source rocks, focus 
on the characterization of mineralogical composition and 

Fig. 1   Trends in the produc-
tion of primary constructional 
aggregates in the Czech Repub-
lic during the past 50 years 
show two important features: 
(1) significant drop in primary 
aggregate production due to the 
change of economy at the end of 
1980s, and (2) a clear switch to 
the prevalence of crushed stone 
over natural sands and gravels 
during last two decades. Own 
graphics based on mineral raw 
production data from the Czech 
Geological Survey
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detailed petrographic description of these rock masses is 
fundamental for correct interpretation of other technological 
tests and for understanding of their durability (Ramsay 1965; 
Hartley 1974; Ramsay et al. 1974; Kazi and Al-Mansour  
1980b; Brattli 1992; Irfan 1994; Korkanç and Tuğrul 2004; 
Räisänen and Mertamo 2004; Räisänen and Torppa 2005; 
Al-Oraimi et al. 2006; Kılıç et al. 2008; Hofer et al. 2013; 
Naeem et al. 2014; Tuncay et al. 2016; Krutilová and Přikryl 
2017; Ajalloeian and Kamani 2019). Due to the low cost of 
extracted material, mineralogical-petrographic study often 
achieves little attention in exploration and/or exploitation, 
but it becomes extremely important if some deterioration 
problems are encountered in structures built of certain 
types of aggregates showing greater vulnerability to vari-
ous decay mechanisms (Miskovsky 2004; Miskovsky et al. 
2004; Koukis et al. 2007; Loorents et al. 2007; Johansson 
et al. 2009; Loorents and Kondelchuk 2009; Tuğrul and 
Yılmaz 2012; Hasdemir et al. 2016). During past decades, 
mineralogical-petrographic characterization of aggregates 
highly benefited from the adoption of quantitative analyses 
of rock microstructures by computer-assisted image analy-
ses (Přikryl 2001, 2006; Åkesson et al. 2003) and from the 
increased interest of the detailed study of rock microfab-
rics and/or decay characteristics of aggregates source rocks 
and their influence on technological properties of pro-
duced aggregates (Shakoor et al. 1982; Goswami 1984b; 
Akpokodje and Hudec 1994; Brattli 1994; Kühnel et al. 
1994; Tuğrul and Zarif 1999; Räisänen et al. 2003, 2005;  
Persson and Göransson 2005; Pomonis et al. 2007; Rigopoulos  
et al. 2010, 2012, 2013, 2014; Ündül and Tuğrul 2012;  
Diamantis et al. 2014).

When utilized in concrete (about half of current produc-
tion of aggregates), compositional aspects of aggregate 
source rocks are of utmost importance specifically due to 
unwanted deleterious reactions of certain mineral phases in 
highly alkaline environments (e.g., Fookes 1980). This can 
initiate the so-called alkali aggregate reaction (AAR) and its 
counterpart—alkali silica reaction (ASR) which are amongst 
the most widely investigated phenomena of aggregates now-
adays (Fournier and Bérubé 2000). Although the basic prin-
ciples of these reactions have been well-understood during 
recent decades (Broekmans 2012; Lindgård et al. 2012), the 
extreme variability of aggregate composition and of local 
conditions of concrete exposure to specific environments 
still desire extensive research. Full understanding of these 
reactions is impossible without the development of new 
laboratory techniques which would allow for better recog-
nition of changes such as physical properties of aggregates 
exhibiting various degrees of reactivity.

Size and shape of fragments are two basic geometric 
parameters that influence quality of aggregates for most of 
their uses (Turk and Dearman 1988; Barksdale et al. 1991; 
Rao and Prasad 2004; Chen et al. 2005; Uthus et al. 2007; 

Ganapati and Adiseshu 2013; Xirouchakis 2013). Shape of 
crushed stone particles is governed by the rock micro- and 
macrofabric, and by processing—crushing (Bouquety et al. 
2007). It is well known that particles with elongated shape are  
less mechanically resistant (Lees 1964; Lees & Kennedy  
1975; Ramsay et  al. 1974). Similar to mineralogical- 
petrographic studies, research interest focused on the poten-
tial of shape characterization by image analysis (Fernlund 
1998, 2005a, b, c; Mora et al. 1998; Persson 1998; Wang 
1999; Rao et al. 2002; Chandan et al. 2004; Maerz 2004; 
Erdogan et al. 2006; Al-Rousan et al. 2007; Fernlund et al. 
2007; Arasan et al. 2010; Profitis et al. 2012) and on the 
adoption of automatic image analysis during aggregate pro-
duction (Brzezicki and Kasperkiewicz 1999). Aggregate par-
ticle shape measurement (Fig. 2) by means of image analysis 
provides a set of precise data which can be easily evaluated 
by conventionally used shape-rating charts (Fig. 3). Image 
analyses of aggregate particles also allow for precise deter-
mination of specific shape parameters such as angularity 
or surface roughness (Masad et al. 2000; Mora and Kwan 
2000). Use of advanced techniques of data processing such 
as fractals increases our understanding of particle geometry 
and surface roughness (Li et al. 1993). Advanced imaging 
of particle shapes by X-ray CT techniques presents another 
promising direction in visualization of complex 3D shapes 
of aggregate particles (Garboczi 2002; Masad et al. 2005). 
Image analysis of the shape of aggregate particles is also 
very useful in the evaluation of various laboratory tests on 
aggregate mechanical performance (Guo et al. 2018).

Aggregate mechanical properties are essential in many 
applications either in unbound state—used as, e.g., railway 
ballast (Ferestade et al. 2017) or in bound state—e.g., in 
concrete (Beushausen and Dittmer 2015). Aggregate par-
ticles are exposed to various mechanical loads when used, 
e.g., in railway construction (cyclic crushing and attrition) 
and/or road surfacing aggregates (abrasion, polishing and/or 
attrition) (Paige-Green 2007; Descantes and Hamard 2015; 
Đokić et al. 2015; Palassi and Danesh 2015; Török 2015; 
Czinder and Török 2017). As these loads represent combi-
nations of several forces, it is hard to predict the mechanical 
performance of aggregates from a single standardized rock 
mechanical test such as uniaxial compression or tension. 
Various empirical tests on mechanical performance of aggre-
gates (e.g., Los Angeles Attrition Value (LAAV), micro-
Deval test, Aggregate Crushing Value (ACV), Aggregate 
Impact Value (AIC), etc.; for details of these test compare 
reference textbooks such as Smith and Collis 2001) simulate 
combination of several mechanical loads (see Fig. 4) which 
are not identical to laboratory testing of rock mechanical 
properties as one of the fundamental physical properties 
(Erichsen et al. 2011).

It is thus not surprising that previously published 
research papers report quite variable correlation between 
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mechanical performance of aggregates and rock mechani-
cal characteristics of their source rocks. Some authors 
claim sound inverse relationship between LAAV and 
uniaxial compressive strength (Ballivy and Dayre 1984; 
Cargill and Shakoor 1990; West 1994; Kahraman and 
Fener 2007; Ugur et  al. 2010; Ozcelik 2011; Czinder 
et al. 2021). According to other studies (Kazi and Al-
Mansour 1980a; Shakoor and Brown 1996; Al-Harthi 
2001; Kahraman and Gunaydin 2007; Kahraman and 

Toraman 2008; Kahraman and Fener 2008; Ugur et al. 
2010; Jamil and Khan 2014; Afolagboye et  al. 2017; 
Capik and Yilmaz 2017; Török and Czinder 2017;  
Esfahani et al. 2019; Teymen 2019; Abdelhedi et al. 2020), 
mechanical performance of aggregates can be even pre-
dicted from some indirect mechanical tests (e.g., Schmidt 
rebound hardness, dynamic elastic properties, crushability 
tests) which are more easily to be performed compared 
to compressive strength determination. However, several 

Fig. 2   Photographs of crushed stone particles (Palaeozoic greywacke) 
arranged in longest-intermedium position (a) and longest-shortest 
position (b) make basis for particle shape processing by image analy-

sis software and for plotting the results into particle-shape rating dia-
gram (see next Fig. 3, author’s own data)
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studies pointed out that some other rock properties such 
as grain size, degree of cementation and or porosity must 
be considered as well (Kazi and Al-Mansour 1980b;  
Ballivy and Dayre 1984), which might explain which 
some petrographic or genetic varieties provided much 
better correlation between LAAV and UCS than the oth-
ers (Kasim and Shakoor 1996). To make experimental 
studies on relationships between mechanical performance 
of aggregates and rock mechanical characteristics of their 
source rocks more reliable, it is evident that researchers 
should focus also on deformational characteristics and 
energetic aspects of stress–strain behavior of these rocks 
which were ignored in previous studies.

Another source of uncertainty in often unclear corre-
lation between fundamental mechanical properties (rock 
mechanical properties) and mechanical performance of 
aggregates can be found in the test design and specifically 
in reporting of test results. It has been found that rather than 
reporting a single number (i.e., percentage of fines produced 
from the original size fraction), a tri-plot reporting (com-
posed of residue of the original size fraction, intermediate 
size fraction, and fine fraction) more faithfully reflects the 
real behaviour of aggregate during testing and shows better 

correlation to other properties (Ramsay 1965; Ramsay et al. 
1977; Erichsen 2015).

Criticality and sustainability of aggregates

As in the case of other, more precious mineral raw materials, 
the recent debate opened a question of aggregate’s criticality 
quite recently, trying to find a kind of consensus between 
rapidly growing urban areas which consume the largest 
volumes of construction materials (Campbell and Roberts 
2003; Hofmann et al. 2009; Fry 2011; Tuğrul et al. 2016), 
but which natural resources are declining or are physically 
not available any more. Criticality of natural resources has 
started to be used as a concept on how to express risks of 
non-availability of materials vital for development or func-
tioning of the society (Rosenau-Tornow et al. 2009; Graedel 
et al. 2012; Jin et al. 2016). In its general concept, critical-
ity of any mineral raw material can be expressed by 2- or 
3-components rating system, evaluating supply risk, vulner-
ability to supply restrictions, and environmental implica-
tions. Supply risk (both medium- and long-term) provides a 

Fig. 3   Results of the shape anal-
ysis of crushed stone particles 
shown in previous Fig. 2 (Pal-
aeozoic greywacke) document-
ing prevalence of platy to platy/
elongated particles, which shape 
can be at least partly explained 
by presence of sedimentary bed-
ding of the source rock (author’s 
own data)
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temporal perspective related to depletion of known reserves 
and geopolitical or social concerns which influence access 
to certain resources. Specifically in the case of aggregates, 
social concerns are amongst the most serious factors affect-
ing ability to open a new quarry, specifically in densely 
populated urban areas. Concerning vulnerability to supply 
restrictions, the case of constructional aggregates highly dif-
fer from the case of, e.g., critical metals. The overall “pen-
etrative” use of aggregates on all inhabited territories, the 
vulnerability should be discussed more likely on national 
or even regional level, than on global scale as in the case 
of metals.

Due to the irreplaceable role of aggregates in construc-
tion, their recent and future availability deserves special 
attention from regional planners (Langer 2002; Dulias 2010; 
Blachowski 2014). At the same time, perspective areas with 
high probability of possible opening of a new quarry should 
be avoided from other uses, specifically from overbuilding 
(Lopes et al. 2018), as growing cities are considered as one 
of the main reasons of sterilization of reserves/resources 
of mineral raw materials in general and specifically in the 
case of constructional geomaterials (Bronitsky and Wallace 
1974b; Poulin et al. 1994; Poulin and Sinding 1996).

The exponentially growing population and urbanization 
are underlined by soaring consumption of natural resources 
(Yeh and Huang 2012) from which constructional aggregates 
constitute the largest part (Bronitsky and Wallace 1974a, 
b; Campbell and Roberts 2003; Přikryl et al. 2016; Přikryl 
2017; Huang et al. 2018). It is well known that urban areas 
are characterized by much larger volumes of per capita con-
sumption of constructional geomaterials compared to rural 
ones (Sheridan 1967). However, exploitation of aggregates 
from geoenvironment is facing major two opposing trends 
nowadays: (1) still growing demand for aggregates in rap-
idly expanding and more densely populated urban areas on 
one hand, and (2) increasing negative attitudes to quarrying/
mining activities which can be sheltered under the NIMBY 
(i.e., Not In My BackYard) syndrome (Pelekasi et al. 2012). 
Despite the overall appreciation of resources of construction 
aggregates as infinite on a global scale, local or regional 
scarcity of aggregates emerged during last decades in some 
rapidly developing regions with extremely booming con-
struction activity such as in the Middle East and/or South-
east Asia (Graymore et al. 2008; Ioannidou et al. 2017).

Sustainability of aggregate resources (specifically the 
primary ones) became intensively discussed during recent 
decades (Ismail et al. 2013; Danielsen and Kuznetsova 2015; 
Langer 2016). In general, the sustainability concept of con-
structional aggregates must reflect their unique role in for-
mulation of major construction materials (such as concrete) 
on one hand, but also environmental and social responsibili-
ties of mining on the other hand (Langer 2016; Monteiro 
et al. 2018). Life cycle assessment (LCA) of aggregates 
including proper management of resources are considered 
as a key issue in minimizing conflicts between mining com-
panies and society (Danielsen and Kuznetsova 2016).

Conclusions

Construction aggregates are one of the essential materials 
supporting the modern construction industry. They are, and 
will remain, for sure, the most demanded mineral raw mate-
rial and will keep their top place in near future. It can be 
expected that the demand for aggregates will grow at least 
over the next several decades with projected population 
growth and increasing urbanization, which are two principal 
factors influencing the demand for infrastructural materials. 
Importance of aggregates has significantly increased during 
the twentieth century due to the spread of concrete as the 
dominant constructional material.

Construction aggregates are raw materials prevalently 
originating from natural sources—rock masses of vari-
ous genesis and composition. Properties of aggregates are 
inevitably linked to their composition, rock fabric and all 
postgenetic processes that affected them. Understanding of 

Fig. 4   Various mechanical loads involved in reduction of aggregate 
particle size during their testing and/or usage (adopted and modified 
after McNally 1998)
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aggregate properties (mostly based on the performance in 
use) should include sound knowledge on their mineralogical-
petrographic composition, which also affects their durability 
and serviceability.

Construction aggregates are raw materials which do not 
require too much sophisticated processing scheme: the exca-
vated material is either screened (natural sand and gravel), 
or crushed and screened (crushed stone) to respective size 
fractions suitable for final use. The simplicity of processing 
together with assumed overall availability make them raw 
materials with lowest intrinsic value at quarry sites. The cost 
of aggregates is highly sensitive to the transport distance 
between the site of production and the site of consumption. 
Higher demand for aggregates are experienced at more 
densely populated territories; however, the same territories 
face constraints from inhabitants against mining activities.

Growing world population and rapid urbanization of our 
recent civilization requires growing inputs of aggregates into 
the construction industry. Availability of primary resources 
of sound aggregates or their secondary alternatives (e.g., 
construction and demolition waste suitable as aggregates) 
for local construction activities will influence the economy 
of construction. Environmental concerns related to unwanted 
impacts of exploitation of primary aggregates (either by 
blasting / crushing of rock masses or by dredging of natu-
ral sands and gravels) increase pressure to use alternative 
sources of aggregates to sustain the construction indus-
try. However, their usage will require much more detailed 
investigation in order to minimize economic losses from the 
application of unsound aggregates.

Funding  This study was supported by the Czech Science Foundation 
project 18-08826S.
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