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Abstract
The coupled effect of earthquakes and rainfall is rarely investigated in landslide susceptibility assessments although it could be
crucial to predict landslide occurrences. This is even more critical in the context of early warning systems and especially in cases
of extreme precipitation regimes in post-seismic conditions, where the rock masses are already damaged due to the ground
shaking. Here, we investigate this concept by accounting for the legacy of seismic ground shaking in rainfall-induced landslide
(RFIL) scenarios. We do this to identify whether ground shaking plays a role in the susceptibility to post-seismic rainfall-induced
landslides and to identify whether this legacy effect persists through time. With this motivation, we use binary logistic regression
and examine time series of landslides associated with four earthquakes occurred in Indonesia: 2012 Sulawesi (Mw = 6.3), 2016
Reuleut (Mw = 6.5), 2017 Kasiguncu (Mw = 6.6) and 2018 Palu (Mw = 7.5) earthquakes. The dataset includes one co-seismic and
three post-seismic landslide inventories for each earthquake. We use the peak ground acceleration map of the last strongest
earthquake in each case as a predisposing factor of landslides representing the effect of ground shaking. We observe that, at least
for the study areas under consideration and in a probabilistic context, the earthquake legacy contributes to increase the post-
seismic RFIL susceptibility. This positive contribution decays through time. Specifically, we observe that ground motion is a
significant predisposing factor controlling the spatial distribution of RFIL in the post-seismic period 110 days after an earthquake.
We also show that this effect dissipates within 3 years at most.
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Introduction

The conditions promoting the occurrence of a landslide are
governed by various climatic, morphologic, geomorpholo-
gic, geotechnical, seismic and anthropic factors and their
complex interactions (Budimir et al. 2015; Reichenbach
et al. 2018). These causative factors are categorized as pre-
disposing conditions and triggering factors (e.g. IAEG
2001; Tanyaş et al. 2019a; Fan et al. 2019). Predisposing

conditions (e.g. weathering, morphology) typically refer to
slowly changing processes which tend to keep the slope in a
marginally stable state (IAEG 2001). Landslide triggering
factors (i.e. rainfall, earthquake, human activity, snowmelt,
volcanic processes), on the other hand, generally refer to
external stresses that cause an immediate response in terms
of slope stability (Crosta et al. 2012). Therefore, triggering
factors might be most crucial in terms of rapid assessment of
landslide hazard because they mostly dictate the timing of
landsliding.

Earthquakes and rainfall are the most frequently observed
triggering factors (Petley 2012), and a body of literature fo-
cuses on landslide hazard assessment associated with both
rainfall-induced landslides (RFIL) (Crozier 1999; Rossi et al.
2012; Kirschbaum and Stanley 2018) and earthquake-induced
landslides (EQIL) (Godt et al. 2008; Robinson et al. 2017;
Nowicki Jessee et al. 2018; Tanyaş et al. 2019a). However,
the coupled effects of earthquakes and rainfall are rarely ex-
amined (e.g. Bontemps et al. 2020; Chen et al. 2020a;
Sæmundsson et al. 2018; Sassa et al. 2007).

* Hakan Tanyaş
h.tanyas@utwente.nl

1 Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, Netherlands

2 Hydrological Sciences Laboratory, NASA Goddard Space Flight
Center, Greenbelt, MD, USA

3 USRA, Universities Space Research Association, Columbia, MD,
USA

https://doi.org/10.1007/s10064-021-02238-x

/ Published online: 18 April 2021

Bulletin of Engineering Geology and the Environment (2021) 80:4323–4345

http://crossmark.crossref.org/dialog/?doi=10.1007/s10064-021-02238-x&domain=pdf
http://orcid.org/0000-0002-0609-2140
https://orcid.org/0000-0001-5547-2839
https://orcid.org/0000-0003-4348-7288
mailto:h.tanyas@utwente.nl


To capture the coupled effects of earthquakes and rainfall,
first we need to refer to the concepts of triggering and predis-
posing factors. There are two possible scenarios (Fig.
1): scenario A where an earthquake triggers landslides
after a rainfall event(s), and scenario B where rock
masses that are already disturbed by ground shaking
subsequent rainfall event triggers landslides.

In scenario A, the preconditioning effect of rainfall follow-
ed by (or during) an earthquake is dependent on rainfall inten-
sity and duration, which may cause an increase in pore
pressure and a reduction in the ratio of resisting forces
to driving forces (factor of safety, FoS) (Sassa et al.
2007; Wang et al. 2007; Faris and Wang 2014; Zhang
et al. 2019; Martino et al. 2020).

In scenario B, the preconditioning effect of seismic shaking
followed by a rainfall event could be related to multiple earth-
quakes, which may have previously and permanently modi-
fied the force balance in a given hillslope (Saba et al. 2010;
Fan et al. 2018). Because of the multiple earthquakes respon-
sible for the damage given to rock masses, the accumulated
effect of seismic shaking in a given areamay add another level
of complexity that is difficult to account for.

There are several studies showing how earthquakes in-
crease landslide susceptibility and play a major role in RFIL
events in post-seismic periods (Lin et al. 2006; Saba et al.
2010; Tang et al. 2016; Yang et al. 2017; Fan et al. 2018;
Tian et al. 2020; Kincey et al. 2020). Specifically, for the
2008Wenchuan earthquake, the post-seismic landslide evolu-
tion has been examined in several articles (e.g. Chen et al.
2020a; Tang et al. 2016; Xiong et al. 2020; Zhang and
Zhang 2017). For instance, Fan et al. (2018) assess post-
seismic slope failures for a subset of the area affected by
landslides since 2008 and until 2015. They report an elevated
landslide susceptibility after the Wenchuan earthquake, with
the majority of landslides being observed as remobilized co-
seismic failures. They examine the elevated susceptibility by
monitoring the variation in landslide rate, which is a term
referring to the number of landslides mapped over a period
of time. They show that the landslide rate gradually decreases
and returns to its pre-earthquake level within approximately
seven years. Fan et al. (2018) also note that the recovery of the

landslide rate to pre-earthquake periods may be longer in areas
affected by stronger earthquakes. Chen et al. 2020a) examine
another subset of the area affected by co-seismic landslides for
the Wenchuan earthquake, in the period between 2008 and
2018. And, they report that hillslopes and landslide deposits
largely stabilize 10 years after the earthquake. Besides, several
studies suggest a possible link between these long periods
where we observe an elevated landslide susceptibility and
large co-seismic landslide deposits (e.g. Chen et al. 2020a;
Fan et al. 2018; Xiong et al. 2020; Yunus et al. 2020) estimat-
ed to sum up to 2.8 km3 specifically for the Wenchuan case
(Li et al. 2014). As regards the factors controlling the length of
the period characterized by the elevated landslide susceptibil-
ity, Fan et al. (2018) refer to possible contributions of various
processes such as progressive strengthening of the deposits
due to grain coarsening (Hu et al. 2018) and, in particular,
revegetation (Chen et al. 2020b; Yunus et al. 2020). In fact,
studies examining the same concept associated with vegeta-
tion recovery argue that landslide recovery has not been fully
completed yet (Xiong et al. 2020; Yunus et al. 2020), and it
may take up to 25 years in total (Chen et al. 2020b).

The overview above summarizes the recent literature on
post-seismic landslide recovery time, taking Wenchuan sim-
ply as a reference. Notably, differences still exist in the liter-
ature in terms of recovery times in other geographic areas and
even on the exact definition of recovery time itself (Kincey
et al. 2020). In fact, if on the one hand, the concept of recovery
time has found a large support across the whole geoscientific
community. On the other hand, scientific debates are still tak-
ing place on the required time window for the recovery to take
place. Taking aside the differences in opinion among research
groups, one key element has certainly been agreed upon, and
this corresponds to the physics behind this process.
Specifically, Ambraseys and Srbulov (1995), already a few
decades ago, summarized the stages of landslide genesis in
co-seismic and two post-seismic phases. Co-seismically, pop-
ulations of landslides trigger across a given landscape as a
function of ground motion and its duration, together with the
geometry of the slope, and the undrained strength of the ma-
terial mobilised during the earthquake. In the first post-seismic
phase, landslides can trigger in response to rainfall if the

Fig. 1 Schematic diagram
showing two possible scenarios
ending up with earthquake-
induced landslides (EQIL, sce-
nario A) and rainfall-induced
landslides (RFIL, scenario B). t0
and t1 indicate the chronologic
order of events in two scenarios
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residual undrained shear strength (disturbed by the previous
ground shaking) on the slip surface is less than that required to
maintain static equilibrium. The second post-seismic stage is
governed by creep and consolidation processes, together with
destabilising hydrostatic forces. These govern the landslide
pattern of occurrence whenever the given landscape is ex-
posed to high or extreme precipitation. These post-seismic
phases clearly emerge in a recent study published by Tian
et al. (2020), where the authors summarize the current litera-
ture of post-seismic landslide evolution and determine
two primary drivers: the amount of co-seismic source
material and the precipitation pattern. They also note
that stronger and more numerous earthquake aftershocks
can prolong the recovery time.

Nevertheless, the abovementioned studies mostly focus on
landslide rates observed at pre-, co- and post-seismic periods
but not the predisposing effect of ground shaking in a multi-
variate scheme implemented to model post-seismic landslides.
There is no proposed method to explicitly account for the
legacy of previous earthquakes as a predisposing factor in
RFIL susceptibility assessment. However, some proxies (e.g.
distance to fault, distance to earthquake epicenter) are sug-
gested to use in landslide susceptibility assessments to capture
part of this effect (e.g. Gallen et al. 2015; Kritikos et al. 2015;
Massey et al. 2018; Parker et al. 2015). For instance,
Kirschbaum and Stanley (2018) propose a predictive model
for RFIL where the landslide susceptibility map created in-
cluding a variable regarding the seismicity. In particular, they
use distance to fault lines among the conditioning factor. They
then combine the landslide susceptibility map with the land-
slide triggering rainfall threshold. Furthermore, Quesada-
Román et al. (2019) focus on capturing the predisposing effect
of earthquakes in RFIL susceptibility assessments via numer-
ical methods and use distance to the epicenter as a proxy.
Specifically, they run a logistic regression model for land-
slides triggered by the 2016 Hurricane Otto, Costa Rica, 4
months after the 2016 Bijagua earthquake, which affected
the same site. They show that a higher landslide density is
observed close to the epicentral area where intense precipita-
tion was also recorded. However, either distance to fault
line or distance to epicenter has some limitations be-
cause these approaches do not consider the distribution
of ground shaking, which can vary irrespective of dis-
tance from the fault line/epicenter.

A more comprehensive alternative to distance fault
lineament/epicenter is represented by ground motion parame-
ters (GMPs). GMPs (e.g. peak ground acceleration, PGA;
Modified Mercalli Intensity, MMI) are commonly used in
predictive model developed for EQIL (Nowicki et al. 2014;
Nowicki Jessee et al. 2018; Tanyaş et al. 2019a).

This study aims to capture the role of ground motion as a
predisposing factor in a landslide susceptibility assessment for
RFIL in Indonesia. We map multi-temporal landslide

inventories covering both co- and post-seismic phases associ-
ated with four earthquakes occurred in Indonesia: 2012
Sulawesi (Mw = 6.3), 2016 Reuleut (Mw = 6.5), 2017
Kasiguncu (Mw = 6.6) and 2018 Palu (Mw = 7.5) earthquakes.
We hypothesize that the peak ground acceleration (PGA) map
of the last strongest earthquake can partially explain the spatial
distribution of landslides triggered by rainfall after an earth-
quake. To test this hypothesis in the validity domain of the
areas under study, we opt to test the PGA contribution in RFIL
susceptibility models built by using a binary logistic
regression (BLR), which is the most common statistical
model used in landslide susceptibility assessments (e.g.
Reichenbach et al. 2018). Then, we run two separate
tests to address the question mentioned above.

The first one involves fitting a BLR model to examine the
relative contributions of both PGA map and two morphomet-
ric covariates (i.e. slope and distance to stream) in landslide
susceptibility assessments carried out for co- and post- seismic
multi-temporal landslide inventories. In doing so, we
monitor how the contribution of PGA (i.e. regression
coefficient of PGA) changes through time from co-
seismic to post-seismic periods.

The second test consists of fitting a BLR model for a case
where ground motion and rainfall data are contextually avail-
able. In this case, the susceptibility model features morpho-
metric properties, the PGA of the last strongest earthquake,
together with rainfall proxies (i.e. daily accumulated and 7-
day antecedent precipitation) associated with RFIL. This op-
eration ensures not only that we can estimate the PGA contri-
bution to the estimated probability but also that we can com-
pare it to the contribution of the rainfall proxies.

We should note that all our analyses are representative only
for the areal boundaries encompassing multi-temporal inven-
tories, which are mapped for a subset of the total area affected
by co-seismic landslides. Notably, the characteristics of land-
slides may vary spatially, and therefore, the contribution of
PGA that we assess in the susceptibility analyses is represen-
tative for the boundaries of examined areas.

Materials and study areas

We examine two seismically active sites (study areas A and B)
from Indonesia (Fig. 2) and create multi-temporal landslide
inventories via visual interpretation of PlanetScope (3–5 m),
rapid eye (5 m) images acquired from Planet Labs (Planet
Team 2017) and high-resolution Google Earth scenes.

To create the multi-temporal landslide inventories, we exam-
ine all available satellite images and choose the largest available
cloud-free regions, for both sites. All the multi-temporal images
we use for mapping convey the real landslide distribution over
time during co- and post-seismic phases. Notably, the inventories
are not created following a fixed temporal resolution.Wemap as
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many inventories as the imagery availability allowed. In each
inventory, landslides that have previously occurred are eliminat-
ed, and only new failures are included. We systematically exam-
ine the satellite scenes through visual observation and map land-
slides as polygons.We delineate landslide source and deposition-
al areas as a part of the same polygon.

The study cases we examine are different from most of the
previously investigated situations in the geomorphological lit-
erature where the effect of major earthquakes (7.9 >Mw > 7.0)
(e.g. 1999 Chi-Chi, 2005 Kashmir, 2008 Wenchuan, 2015
Gorkha earthquakes) is tested against a large sample of co-
seismic landslides (Lin et al. 2006; Saba et al. 2010; Fan et al.

Fig. 2 This figure shows the areal
extent of the study areas and the
number of landslides/unstable
slope units for the examined
multi-temporal inventories re-
spectively for a, b study area A
and c, d study area B. The epi-
central locations of earthquakes
(Mw > 5) occurred since 2010 are
indicated by stars in panels a and
c. Timelines in y axes of panels b
and d are arbitrarily spaced. The
elevation legend given in panel a
and the legend indicating the date
of the earthquakes given in panel
c is common for both panels a and
c
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2018; Kincey et al. 2020). For those earthquakes mentioned
above, USGS ShakeMap reports maximum PGA values rang-
ing from 0.83 to 1.36 g (PGAmax,chi-chi = 0.83 g,
PGAmax,Kashmir = 1.36 g, PGAmax,Wenchuan = 1.14 g and
PGAmax,Gorkha = 0.87 g) (Worden and Wald 2016). Here, we
examine two sites where ground motion originated from
strong earthquakes (6.9 > Mw > 6.0) with one exception,
which is the 2018 Palu earthquake. Overall, the maximum
PGA values are lower than other cases examined in the liter-
ature (PGAmax,Sigli = 0.20 g, PGAmax,Reuleut = 0.60 g,
PGAmax,Sulawesi = 0.32 g, PGAmax,Kasiguncu = 0.25 g and
PGAmax,Palu = 0.85 g) (Worden and Wald 2016) (Table 1).

Study area A

Study area A was primarily hit by two earthquakes of magni-
tude greater than 6 (US Geological Survey 2017) since 2010:
21th January 2013 Sigli (Mw = 6.1) and 6th December 2016
Reuleut (Mw = 6.5) earthquakes (Fig. 2a). We scan an area of
1356 km2 to create multi-temporal inventories. For the 2013
Sigli earthquake, we map only one post-seismic landslide in-
ventory using satellite scenes acquired on 27th July 2016,
about 3 years after the earthquake. This means that landslide
data with temporal depth is not available for the Sigli earth-
quake. Therefore, we cannot include this post-seismic land-
slide inventory because it will not support the analyses
through time. For the 2016 Reuleut earthquake, which oc-
curred along a strike-slip fault, we map one co-seismic and
three post-seismic landslide inventories (Fig. 2b). The maxi-
mum PGA estimated for this earthquake is 0.06 g, whereas
PGA values range between 0.05 and 0.47 g in the study area
(Fig. 3).We also observe that in all inventories, landslide sizes
are relatively small and the average size of co-seismic land-
slides (6227m2) is larger than the post-seismic ones (1181,
4849 and 4257 m2) (Fig. 4a).

Intermediate, basic volcanic and mixed sedimentary rocks
appear as the dominant lithologic units in which landslides are
triggered (Sayre et al. 2014). The spatial distributions of land-
slides associated with each inventory are presented in Fig. 3, and
details of the landslide inventories are also given in Table 1.

Study area A shows a rare situation where we have more
post-seismic landslides than co-seismic ones. Specifically, the
Reuleut earthquake triggered only 60 co-seismic landslides
we interpreted as shallow translational slides, whereas the
post-seismic inventory compiled 110 days after the earth-
quake contains 742 rainfall-triggered landslides. We consider
it as a rare case because, in the literature, the peak landslide
rate is mostly associated to co-seismic landslide event
(Guzofski et al. 2007; Saba et al. 2010; Tang et al. 2016). In
study area A, we also see that, in all post-seismic inventories,
less than 1% of the landslide population is associated with
reactivated co-seismic landslides, and the rest is characterized
by new landslides.

Study area B

Study area B (Fig. 2c) was affected by three major earth-
quakes of magnitude greater than 6 (US Geological Survey
2017) since 2010: 18th August 2012 Sulawesi (Indonesia,Mw

= 6.3), 29th May 2017 Kasiguncu (Indonesia, Mw = 6.6) and
28th September 2018 Palu (Indonesia, Mw = 7.5). We use the
co-seismic landslide inventories of these earthquakes, which
were already mapped and examined by Lombardo and Tanyas
(2020). We expand the dataset and also map post-seismic
landslide inventories. To map the landslides, we examine an
area of 1078 km2, where metamorphic and acid plutonic rocks
are the dominant lithologic units (Sayre et al. 2014).

Since we map landslides over the same areal extent, we
inevitably examine a different subset of the earthquake affect-
ed area for each earthquake in terms of level of ground shak-
ing. For instance, in the Sulawesi earthquake (strike-slip), the
examined area crosses the epicentral area, whereas in the
Kasiguncu case (normal fault), it does not cover the area we
observe the highest ground shaking (Fig. 5). Specifically, the
maximum PGA estimate is 0.25 g in the Kasiguncu earth-
quake, whereas PGA values range between 0.03 and 0.16 g
in the examined area. As for the Palu earthquake, which oc-
curred along left-lateral strike-slip fault with north-north-
westward strike (Socquet et al. 2019), the study area still
covers a wide range of PGA values changing between 0.11
and 0.70 g (Fig. 5 and Table 1).

It is important to note that the first post-seismic Sulawesi
inventory is created approximately a year after the earthquake,
and the inventory includes mostly co-seismic landslides, with a
minor amount due to RFIL. Therefore, we consider it as a co-
seismic landslide inventory, although some RFIL noise cannot
be excluded.

In total, we create 18 inventories of co- and post-seismic
landslides (the latter being triggered by different rainfall events)
associated with each earthquake in study area B (Fig. 2d).
However, some post-seismic landslide inventories include only
a few landslides. To increase the sample of landslides and avoid
large uncertainties in the statistical analyses, we therefore aggre-
gate some of the landslide inventories. In turn, we work with
three post-seismic inventories for each earthquake (Table 1).
The details of the aggregation are given in “Methods,” and the
spatial distribution of aggregated landslides is presented in Fig. 5.

Overall, the co-seismic landslide inventories include 520, 386
and 725 landslides triggered by the Sulawesi, Kasiguncu and Palu
earthquakes, respectively. In each case, the majority of landslides
are characterized as shallow slides. Also, in each case, the percent-
age of post-seismic landslide that appears to have interacted with
previous failures is less than 5%. In other word, the majority of
post-seismic landslides are new failures. Similar to the Reuleut
case, also in these multi-temporal inventories, landslide size area
relatively small and overall, co-seismic landslides are larger than
their post-seismic counterparts (Fig. 4 b, c and d).
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Other datasets

To test our assumption that ground motion plays a relevant role
in RFIL, we implement a statistically based susceptibility mod-
el. This model features morphometric properties derived from
Shuttle Radar Topography Mission (SRTM) digital elevation
models (DEM) (approximately 30-m resolution) (NASA JPL
2013), estimates of ground shaking parameters released by the
US Geological Survey ShakeMap (approximately 1-km resolu-
tion) (Worden and Wald 2016) and precipitation data provided
by the Global Precipitation Measurement (GPM) Integrated
Multi-Satellite Retrievals (IMERG) Final Run product (approx-
imately 11-km resolution) (Huffman et al. 2019). The precipi-
tation data is available through Giovanni (v.4.32) (Acker and
Leptoukh 2007) online data system.

Methods

We structure our analyses in a three-stepped procedure
summarized in Fig. 6. In step 1, we identify a suitable

landscape partitions and pre-process morphometric, seis-
mic variables and rainfall proxies to organize the dataset
required to run a susceptibility model for each study
area. In step 2, as part of susceptibility analyses, we
examine ground shaking as a predisposing factor of
landslides and investigate its relevance in each model
trained by using the available inventories. As a result,
we monitor how the PGA role in each model changes
through time. In step 3, we focus on study area A and
examine the coupled effect of PGA and rainfall proxies
on the spatial distribution of a RFIL inventory. In par-
ticular, we use the first post-seismic inventory associat-
ed with the Reuleut earthquake (Mw = 6.5) because it
appears as a rare event where many RFIL occur on a
site although only a few landslides are triggered by the
earthquake. Our rationale is that the higher post-seismic
landslide rate (compared to its co-seismic counterpart)
may be due to the legacy effect of the Reuleut earth-
quake. If this is the case, then the PGA of the Reuleut
earthquake should be able to explain part of the spatial
dependence in a susceptibility model built with RFIL.

Fig. 3 Areal extents of multi-
temporal inventories we mapped
for study area A showing land-
slides triggered by a the 2016
Reuleut earthquake and c, d rain-
fall in post-seismic period of the
Reuleut earthquake. Black con-
tour lines show PGA values are
acquired from the USGS
ShakeMap system (Worden and
Wald 2016). Acquisition dates of
pre- and post- scenes used to map
landslides are indicated at the top
left of each panel
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Step 1

We first mask the flat regions, which are not prone to landslid-
ing, to increase the accuracy of the landslide susceptibility
model (Kritikos et al. 2015; Tanyaş et al. 2019b). We use
the methods developed by Alvioli et al. (2018) to automati-
cally define and remove flat areas. Specifically, we use
GRASS GIS (Neteler and Mitasova 2013) r.geomorphon
script of Jasiewicz and Stepinski (2013) to identify various
landform classes. This algorithm calculates landforms and as-
sociated geometry using pattern recognition. The algorithm
self-adapts to identify the most suitable spatial scale at each
location and checks the visibility of the neighborhood to as-
sign one of the terrestrial forms. Following the identification
of pixels, we use the method developed by Alvioli et al.
(2018), which gets rid of the sparse “flat” pixel. The algorithm
starts from the pixels classified as “flat” by r.geomorphons
and shrinks the borders of the flat raster map by a few pixels
and then grows it again; the procedure is repeated until sparse
pixels disappear. As a result of this procedure, we mask flat
regions and exclude them for the rest of analyses.

We divide the study areas into mapping units. This is a
crucial step in any susceptibility assessment because the cho-
sen mapping unit determines how dependent and independent
variables are represented in space and are used to prepare the
training and validation subsets for susceptibility modelling

(Rossi and Reichenbach 2016). Also, the single mapping units
are the geographic objects for which the probability of land-
slide occurrence is estimated.

Among the mapping units proposed, grid cells and slope
units (SUs) are the most common terrain partitioning methods
available in the literature (Reichenbach et al. 2018). We
choose the SU, because they internally reflect similar hydro-
logical and geomorphological conditions and are considered a
well suited terrain subdivision for landslide susceptibility
modelling (Carrara 1988; Guzzetti et al. 2006; Alvioli et al.
2016). SUs subdivide the terrain between streamlines and
ridges under the constrain of slope and aspect within-unit ho-
mogeneity (Alvioli et al. 2016). For the automatic partitioning
of a landscape into SUs, we use r.slopeunits, an open source
software developed by Alvioli et al. (2016).

We use only a few independent variables to limit cross-
model differences due to variable interactions, allowing us to
study in detail how the seismic shaking effect changes over
time. Specifically, we use slope steepness and distance to
stream as morphometric variables and peak ground accelera-
tion (PGA) as a proxy for ground shaking. Slope steepness
controls the ratio of resisting forces to driving forces and is
notoriously related to the occurrence of landslides. Slope
steepness is the most frequently used covariates of the entire
landslide susceptibility literature (Reichenbach et al. 2018),
and it also appeared statistically significant in 95% of all

Fig. 4 Plots showing the size
distribution of multi-temporal
landslide inventories created for a
2016 Reuleut (Mw = 6.5), b 2012
Sulawesi (Mw = 6.3), c 2017
Kasiguncu (Mw = 6.6) and d 2018
Palu (Mw = 7.5) earthquakes.
Black lines indicate co-seismic
landslides inventories whereas
red, blue and green lines refer to
first, second and third post-
seismic landslide inventories,
respectively
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landslide logistic regression studies (Budimir et al. 2015).
Distance to stream is another important covariate particularly
for rainfall-triggered landslides and used as a proxy reflecting
hydrogeological stresses affecting hillslope stability (Budimir
e t a l . 2015; Reichenbach et a l . 2018) . Overa l l ,
hydrogeological conditions are assumed to be less favourable

towards the river channel due to the concentration of the
groundwater flow and the destabilizing effect of river incision
that contributes to slope instability (Reichenbach et al. 2018).

This covariate set will be used only to support the analyses
in step 2 (Fig. 6), in which rainfall proxies will not be consid-
ered. Therefore, we will disregard the potential contribution of

Fig. 5 Areal extents of multi-
temporal inventories we mapped
for study area B showing land-
slides triggered by a the 2012
Sulawesi earthquake and b–d
rainfall in post-seismic period of
the Sulawesi earthquake, e the
2017 Kasiguncu earthquake and
f–h rainfall in post-seismic period
of the Kasiguncu earthquake, i the
2018 Palu earthquake and j–l
rainfall in post-seismic period of
the Palu earthquake. Black con-
tour lines show PGA values are
acquired from the USGS
ShakeMap system (Worden and
Wald 2016). Acquisition dates of
pre- and post-scenes used to map
landslides are indicated at the top
of each panel
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rainfall patterns due to our lack of knowledge on which spe-
cific rainfall event(s) may be responsible for the slope failures.
On the other hand, in step 3, we focus on a particular RFIL
event(s) where we can estimate the most likely precipitation
proxies triggering landslides (Fig. 6). We will elaborate this
point in step 3 below.

To express the presence/absence of the landslide distribu-
tion over each study area at the SU level, we consider unstable
conditions for SU covered by landslide polygons for a surface
greater than 2%. This threshold value has been applied in
several studies (Guzzetti et al. 2006; Galli et al. 2008; Rossi
et al. 2010) to limit the mapping inaccuracy when digitizing
the landslide inventory. This means that, if more than 2% of a
SU is intersected by landslide(s), the SU is unstable, and in the
susceptibility model, it refers to the presence condition.

Some of the post-seismic inventories contain only a
few landslides (Fig. 2 b and d), which implies that
some models may be affected by large uncertainties.
For instance, we have seven post-seismic landslide in-
ventories for the 2017 Kasiguncu earthquake, and the
first two of them include 52 and 44 SUs (Fig. 2d)
intersected by landslides (i.e. unstable SUs), whereas
latter have two, three and one unstable SUs (Fig. 2d).
To create the third post-seismic landslide inventory, we
thus aggregate those inventories with only a few sam-
ples. We do so without interrupting the temporal order
of inventories. The aggregated landslide inventories are
presented in Fig. 5, where the acquisition dates of pre-
and post-scenes used to map landslides are also
indicated.

Fig. 6 Workflow of the applied
three-stepped procedure. Notably,
each analytical step is associated
with 1000 bootstrap simulations
to retrieve the sampling distribu-
tion and confidence intervals of
each parameter. Step 2 indicates
the exploratory analyses carried
out in areas A and B. These are
aimed at retrieving the temporal
evolution of the covariates’ ef-
fects. And, the temporal evolution
of the performance as we measure
the effect of the PGA. Step 3 in-
dicates the analyses carried out in
area A, where we have run a
consistent modelling protocol to
the one presented in step 2, but
this time simultaneously includ-
ing ground motion and precipita-
tion indices as covariates
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We summarize the characteristics of the covariates’ distri-
bution within each SU using mean and standard deviation for
each of the selected independent variables (Lombardo et al.
2019; Tanyaş et al. 2019a). Due to the coarse resolution of the
precipitation proxies, we summarize the rainfall distribution
per mapping unit uniquely by using the mean. Prior to any
modelling step, we initially standardize each independent var-
iable by mean zero-unit variance. This can be achieved by
subtracting the mean value of each covariate (centring) and
divide by the standard deviation. This operation ensures
that the estimated regression coefficients will also be in
the same unitless scale, making their effects on the final
susceptibility model comparable (Camilo et al. 2017;
Lombardo and Mai 2018).

Step 2

We use the binary logistic regression (BLR) method to assess
the contribution of PGA in landslide susceptibility analysis
conducted for each inventory. BLR is the most common ap-
proach used in the geoscientific literature to predict where
landslides may occur (e.g. Budimir et al. 2015; Reichenbach
et al. 2018). This statistical method is a multi-variate regres-
sion used when the target variable (Y) is expressed by two
classes (i.e. presence/absence or stable/unstable slopes or
0/1). In landslide susceptibility studies, the aim is to model
the conditional probability p(Y = 1|Xn), or in brief P(x), that Y
is positive given a set of n covariates (Xn). As for the covari-
ates, they can be both numerical and categorical in nature.

A BLR is denoted as follows:

p Y ¼ 1jX nð Þ ¼ P xð Þ ¼ exp β0 þ ∑N
n¼1βnX n

� �� �
= 1þ exp β0 þ ∑N

n¼1βnX n
� �� �

ð1Þ
where β0 is the global intercept and βn is the vector of regres-
sion coefficients associated with each covariate Xn, and the
results are probabilities confined between 0 and 1. The same
equation can be re-written as follows:

log p Y ¼ 1jX nð Þ= 1−p Y ¼ 1jXnð Þð Þ½ � ¼ ηP xð Þ ¼ β0 þ ∑N
n¼1βnX n ð2Þ

Where the left term is referred to as logit, later denoted as η
or logit link function, and the solution is sought by estimating
β0 and βn. The probability for the ith slope unit in the study
area can be calculated knowing the observed class, yi and the
associated vector of covariates, xi, via the likelihood function.
For the ith slope unit, the probability of the slope unit to be
unstable or stable is either p, if yi = 1, or 1 − p, if yi = 0. The
likelihood can be then written as:

ℓ β0;β1;…;βnð Þ ¼ ∏I
i¼1P xið Þyi 1−P xið Þf g1−yi ð3Þ

The logarithm of the likelihood or log-likelihood turns the
above products into sums, as follows:

ℓ β0;β1;…; βnð Þ ¼ ∑i:yi¼1log P xið Þf g þ ∑i:yi¼0log 1−P xið Þf g ð4Þ

which is then maximized by differentiating the log-
likelihood with respect to the parameters, by setting the deriv-
atives equal to zero. Alternatively, one can minimize the neg-
ative log-likelihood, which is identical to solve Eq. 4, but
numerically easier to handle.

In the BLR scheme summarized above, we use two types
of covariates: (1) a time-invariant morphometric set (slopeμ,
slopeσ, Dist2Streamμ, Dist2Streamσ) and (2) time-variant
groundmotion parameter (PGAμ, PGAσ) to infer the function-
al relation with respect to the stable/unstable condition. And
we develop only explanatory models to make inference in a
way that can support expert-based interpretation of the process
at hand. Therefore, we use the whole number of SU observa-
tions and associated covariate values and do not make cross-
validation. This is because we aim to understand instability
processes with respect to ground motion and precipitation
stresses but not to develop a predictive model. A predictive
model is used to forecast future events, by calibrating it over a
subset of the available information and validating it over the
remaining cases.

However, by fitting the whole data, we obtain single pa-
rameter estimates, neglecting the model uncertainty. To re-
trieve the uncertainty associated with each estimate we present
in this manuscript, we then implement an additional bootstrap
step. Bootstrapping is a simulation-based technique, for which
data is resampled with replacement (e.g. Zhang et al. 2017)
each time generating a new dataset generated from the distri-
bution of the original one. This offers the chance to fit numer-
ous times the given explanatory model, therefore retrieving
the sampling distribution and confidence intervals for other-
wise single parameters. In this work, we used the R (R-Team
2014) package boot (Canty 2002) to retrieve the distribution
of each regression coefficient. To evaluate the overall model-
ling performance, we use receiver operating characteristic
curves and their integrated area under the curve (ROC and
AUC, respectively; Hosmer and Lemeshow (2000). For clar-
ity, we remind here the reader that the ROC curves are con-
structed in a plane defined between the true positive rate
(TPR) and false positive rate (FPR). TPR and it can be calcu-
lated from any confusion matrix as the ratio between true
positives (TP) over the sum of TP and false negatives
(FN) (see, Rahmati et al. 2019). FPR can be calculated
from any confusion matrix as the ratio between false
positives (FP) over the sum of FP and true negatives
(TN) (see, Rahmati et al. 2019).

Overall, we implement 1000 bootstrap replicates. From
each model we built, we store the information related to the
regression coefficients. The coefficients are unitless and there-
fore are comparable among the covariates because they are in
the same scale and have the same covariate sets across the
models considered in step 2 (Fig. 6).
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To evaluate the modelling performance, we use the receiv-
er operating characteristics (ROC) curve. This curve is built
by computing confusion matrices for specific cutoff values
used to binarize the estimated probability. In other words,
for a specific probability cutoff, one can calculate the propor-
tion of true positives and true negatives. Then by using a large
number of cutoffs, one can plot the pair of coordinates in a 2D
plane described by 1-specificity (or FP/FP + TN) and sensi-
tivity (or TP/TP + FN) (TP true positive, TN true negative, FP
false positive and FN false negative; details can be found in
Fawcett 2006). Because building a ROC curve requires the
use of a large number of cutoff, the ROC is often referred to as
one of the most efficient and cutoff-independent metric
for statistical classifiers (Hosmer and Lemeshow 2000).
The integral of the ROC curve or the AUC is then used
to rank classification performance (see, Hosmer and
Lemeshow 2000).

We also use run alternative models by excluding the PGA
signal from each model we present. As a result, we aim at
assessing whether the inclusion of the ground motion contrib-
utes to explain RFIL landslides (also known as jackknife test,
e.g. Lombardo et al. 2016). And if so, how its inclusion con-
tributes through time. Specifically, for each jackknife test, we
calculate the difference in AUCs for each model, built with
and without the PGA layers. We recall here that all the anal-
yses contain a bootstrap step. To ensure an equal comparison
between models with and without PGA, the 1000 resampled
datasets are consistent in both cases.

Step 3

We extend the analyses by fitting a BLR model specifically
for the post-Reuleut earthquake landslide inventory. In this
case, we consider rainfall-related proxies in addition to mor-
phometric and seismic factors (Fig. 6), aiming at testing if the
signature of the ground motion effect can still be retrieved
from RFILs. Since the first post-Reuleut RFIL inventory
was mapped 110 days after the earthquake, we cannot point
to a specific rainfall trigger for this RFIL inventory. Therefore,
we use two rainfall proxies to represent potential triggering
scenarios: daily accumulated and 7-day antecedent precipita-
tion from IMERG data. Out of the large number of rainfall
pattern realizations within 110 days, we opted to isolate the
most likely candidate to have triggered landslides in two ana-
lytical steps.

1. —we examine the 20-year time series (1th January 2000
to 31st March 2020) of daily accumulated precipitation
expressed as one average value representative of each area
under consideration. Using the same dataset, we also gen-
erate a time series of 7-day antecedent precipitation. We
then derive the distributions of daily and antecedent pre-
cipitation, extracting from each of the two all the values

above the 95th percentile. For each extreme event, we
resample the IMERG product to the same resolution of
the PGA grid (approximately 1-km resolution) via an in-
verse distance weighted interpolator (Watson and Philip
1985); this being done for spatial consistency between
rainfall and ground shaking proxies.

2. —we introduce the rainfall events extracted in the previ-
ous step as independent variables in a post-seismic RFIL
susceptibility model. Specifically, we do this for the first
post-seismic RFIL inventory associated with Reuleut
earthquake. However, adding every possible realization
of these extreme rainfall events is not suitable because
some events may not be related to the RFIL; therefore,
they can act as noise in the model. Moreover, these rain-
fall events could cause issues related to the presence of
multi-collinearity (when two or more covariates are
linearly related; see Amato et al. 2019) or high dimension-
ality of the covariate space (when the number of
covariates is very large or even larger than the number
of observations; see Castro Camilo et al. 2017). These
issues can be addressed by implementing various regular-
ization techniques, and among those, the least absolute
shrinkage and selection operator (LASSO; Tibshirani
1996) has proven to be a valid tool (Camilo et al. 2017),
which is why we chose it to reject the non-contributing
rainfall events mentioned above.

LASSO constrains the number of covariates by adding a
penalty term referred to as L1-norm, which corresponds to the
sum of the absolute coefficients. The penalty acts on the like-
lihood shown in Eq. 5:

ℓ* ¼ ℓ−λ∑N
n¼1jβnj ð5Þ

where ℓ∗ is the new likelihood, ∑
N

n¼1
jβnj is the L1-norm and λ is

introduced to balance the two terms. This procedure forces to
zero the regression coefficients that have a negligible contri-
bution to the model. This requires the term λ to be estimated.
Its domain is confined between zero and infinity. More spe-
cifically, when λ = 0, then all the regression coefficients re-
main unchangedwhereas, when λ→∞, then all the regression
coefficients are shrunk to zero. The parameter λ is commonly
retrieved via cross-validation routines. For instance, the R (R-
Team 2014) package glmnet (Friedman et al. 2009) by default
examines 100 λ values, each one included in a 10-fold cross-
validation scheme. As for the metric the shrinkage is com-
pared to, we have again selected the AUC (Hosmer and
Lemeshow 2000).

From the selected covariate subset and to maintain consis-
tency with respect to the analyses carried throughout the man-
uscript, we then run 1000 bootstrap replicates to retrieve the
sampling distribution of the ground motion and rainfall
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regression coefficients, together with the morphometric ones.
This procedure is graphically summarized in step 2 (Fig. 6),
and we also remind the readers that all the estimated coeffi-
cients are expressed in the same scale to ensure the reciprocal
comparison.

Results

For both sites, we created SUs with median SU size of 0.46
km2 (study area A) and 0.48 km2 (study area B) (Fig. 7).
These are the two respective spatial partitions we use to run
a BLR for each inventory using six covariates (βDist2Stμ,
βDist2Stσ, βSlopeμ, βSlopeσ, βPGAμ, βPGAσ).

Figure 8 shows the regression coefficients of examined
covariates obtained for each of the modelled inventories.
The boxplots are obtained from 1000 bootstrap replicates
and represent the sampling distribution of the relative contri-
bution of each covariate to the probability of landslide occur-
rence. Overall, slope steepness and PGA have positive regres-
sion coefficients for all co-seismic inventories. To examine
how the regression coefficient of PGA changes through time,
we also plotted the coefficient obtained for each temporal
inventory as well as the corresponding AUC value (Fig. 9).
Same as above, the sampling distribution of each parameter is
retrieved by bootstrapping.

In study area A, for the co- and post-Reuleut susceptibility
models, we used the Reuleut PGA map. The results indicate
that the PGA has a positive weight on classifying a given
slope unit as “landslide” instead of “non-landslide” given the
choice of predictors (Fig. 9a). We observed a gradual decay in
both regression coefficients (Fig. 9a) and AUC values (Fig.
9b) from the 1st to 3rd post-seismic inventories, indicating

that the positive contribution of seismic shaking decreases
over 2 years (from 14th December 2016 to 5th January
2019). Specifically, within 2 years, the median regression co-
efficient of PGA decreases from ~0.6 to ~0.2.

For the co-Reuleut landslide inventory, the regression co-
efficient of PGA and the AUC of the corresponding suscepti-
bility model indicate a pattern we do not observe in the study
area B (Fig. 9). In particular, both the AUC and the PGA
regression coefficient of co-Reuleut inventory are lower than
their counterparts calculated for the first post-Reuleut land-
slide inventory (Fig. 9a). Notably, the uncertainty—here cal-
culated by bootstrapping for 1000 replicates—around the me-
dian of the PGA regression coefficients also changes through
time, which is due to the difference in sample sizes (or to the
fewer number of unstable SUs per temporal inventory).

As for the modelling performance, for each model, we
calculated the bootstrapped AUC distribution, whose median
values range from 0.64 to 0.72 overall (Fig. 9b). Specifically,
the median AUC estimated for and from the co-seismic to the
2nd post-seismic landslide inventory is above 0.6.
Conversely, almost the entire range of AUC calculated for
the 3rd post-seismic landslide inventory is below 0.6, which
is the limit of acceptable modelling performance (Hosmer and
Lemeshow 2000). The goal of this work is not necessarily to
obtain the best modelling performance, which could be
achieved by including additional covariates, but rather to cap-
ture the relative contribution of PGA through time. In this
regard, on the one hand, we did not add the rainfall signal
because the examined post-seismic landslides were triggered
by unknown rainfall events over a large time span. On the
other hand, we did not include additional terrain properties
to avoid the effect of variable interactions. By variable inter-
action, we refer to the fact that, in a multi-variate scheme, the

Fig. 7 Overview of slope units generated for a study area A and b study area B. The size characteristics of the slope unit partition are reported in the
boxplots, for each corresponding study area
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effect of one variable may depend on the value of another
variable. So, by assuming a much larger covariate set than

the one we used, our interpretation should have also accounted
for inter-dependencies among covariates, which we avoided

Fig. 8 Regression coefficients of
covariates obtained for each of the
modelled inventories. Acquisition
date of pre- and post-scenes used
to map landslides are indicated at
each panel

4336 H. Tanyaş et al.



by keeping the model as simple as possible to better asses the
contribution of ground motion.

As a result, the AUC values show reasonable modelling
performance for a model simply built on 6 covariates (Fig.
9). Results also show that the lowest AUC value is obtained
for the 3rd post-seismic RFIL inventory where we also iden-
tified the lowest positive weight on landslide occurrences as-
sociated with PGA layer. The statistically significant drop in
AUC value from 2nd (AUC = 0.70) to 3rd (AUC = 0.64) may
imply that the contribution of PGA impact may have decayed
over time (lower β values) and that, in general, the model is
less able to explain the unstable SU distribution over space.

For study area B, we again examined three post-seismic land-
slide inventories per each earthquake (Fig 9 c and d). By observ-
ing the post-Sulawesi susceptibility models, which are all
mapped approximately 3 years after the Sulawesi earthquake,
the mean PGA regression coefficient appears to be either very
low and positive or negative for all the post-seismic inventories
(Fig. 9c). This shows that the positive weight of PGA is low for
RFIL susceptibilitymodel conducted 3 years after an earthquake.
As for the modelling performance, we identified a gradual de-
crease in AUC values from co-seismic to post-seismic periods
(Fig. 9d) as we observed in study area A.

A similar situation is shown for the Palu earthquakes (Fig.
9 c and d), where the susceptibility model of co-seismic land-
slide inventory shows a positive regression coefficient that
decreases with time. In this case, the post-seismic landslide
inventories are mapped within a year from the Palu earth-
quake. Here, although we observed a decay, the regression
coefficients are still positive and relative higher than the
Sulawesi case.

Our observation out of three cases presented above (i.e.
Reuleut, Sulawesi and Palu) are consistent with each other.
Up to 3 years, the PGA in each model contributes to increase
the probability of landslide occurrence. However, the
Kasiguncu case reveals a slightly different pattern in terms
of variation in regression coefficient of PGA. In particular,
similar to other cases, the regression coefficient of PGA is
positive for the co-seismic phase and decays in post-seismic
period (Fig. 9c). Nevertheless, the Kasiguncu is different from
other cases since the median regression coefficient of PGA
associated with the second post-seismic inventory became
negative within 4months after the earthquake. This is the most
rapid decay among the examined cases. Also, the regression
coefficient in the third post-seismic inventory, which is
mapped a year after an earthquake, is relatively higher than

Fig. 9 Figure showing regression
coefficients and AUC values,
respectively, for the areas affected
by a, b the 2016 Reuleut
earthquake and c, d 2012
Sulawesi, 2017 Kasiguncu and
2018 Palu earthquakes. Yellow
stars show the date of earthquakes
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its former post-seismic counterparts, and this is not consistent
with other observations. We will elaborate this observation
from an interpretative standpoint in “Discussion.”

Aside from these observations on regression coefficient of
PGA, the AUC values show a gradual decay in each case
examined in study area B (Fig. 8d).

To further elaborate on the role of PGA, we also run alterna-
tive models excluding the PGA itself (hence keeping only
βDist2Stμ, βDist2Stσ, βSlopeμ, βSlopeσ). We do so by using exactly
the same sampling strategy to create 1000 bootstrap replicates.
As a result, we could calculate the performance difference be-
tween the initial models we presented above and the alternative
models. Figure 10 shows that the differences are always positive,
which implies that the ground motion, when included, captures
some spatial dependence in the landslide distribution which is
otherwise unaccounted for in the new set of alternative models
without PGA. As expected, relatively larger differences are as-
sociated to the models corresponding to co-seismic landslide
inventories. The Reuleut case is the only exception, though this
is not entirely surprising because the regression coefficients of
PGAwe calculated for the Reuleut inventories revealed the same
variation from co-seismic to post-seismic phases.

In the next phase of the analyses, we focus on the first post-
Reuleut RFIL inventory for which the estimates are shown in
Fig. 9a highlights that the PGA is a positive contributing fac-
tor. More specifically, we run a BLR-based susceptibility
model for this inventory, including all covariates we used in
step 2 plus a time series of rainfall proxies (daily accumulated
and 7-day antecedent precipitation) (Fig. 6). Each element of
the time series and associated proxies has been identified in

Fig. 11 a and b as an extreme event compared to the last 20
years of precipitation within the same season.

The red peaks in Fig. 11 show that a large number of extreme
rainfall events could be responsible for the first post-Reuleut
RFIL inventory. These rainfall events are graphically summa-
rized in Fig. 12. The plots show the spatial distribution of nor-
malized landslide density (i.e. number of landslides per km2

rescaled from zero to one) (Fig. 12a), PGA (Fig.12b), the iden-
tified daily accumulated (Fig. 12c–i) and 7-day antecedent (Fig.
12j–n) rainfall. The figure shows some degree of similarity be-
tween the spatial distribution of RFIL (Fig. 12a) and the PGA
(Fig. 12b), with a decreasing pattern from northeast to southwest.
Conversely, there is no explicit agreement between the landslide
distribution and any rainfall pattern.

Beyond the visual comparisons, to statistically isolate the most
likely triggering events, we initially perform a LASSO variable
selection. We assume that irrelevant rainfall patterns or events that
are not responsible for the landslide initiation should not be select-
ed by LASSO. We tested 100 λ values to shrink the parameter
space, running a 10-fold cross-validation for eachλ and storing the
associated AUC values. Figure 13 a graphically summarizes this
information. Twopossible bestλ choices are reported in the figure,
corresponding to the vertical dashed lines. The dashed line to the
left corresponds to themost conservative choice where a relatively
large number of covariates is still allowed to keep the AUC per-
formance stable or even to improve it. The dashed line to the right
corresponds to the most penalized model with acceptable AUC
performance with respect to the initial one featuring all the covar-
iates. The corresponding sets of covariates are fourteen and six,
respectively. From the second limit, the AUC rapidly decays.

Fig. 10 Figure showing the
difference between AUC values
calculated for two alternative
models; model with PGA minus
model without PGA
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Here, we stress something peculiar out of the two co-
variate sets. The most conservative model selects 14 co-
variates out of which 8 (magenta rhombi) are rainfall
proxies. These are associated with a negative regression
coefficient (Fig. 13b). This is an unrealistic effect. The
rainfall is the primary cause of the instability process;
therefore, it is expected to be positive. Hence, a negative
regression coefficient, even if statistically significant,
should suggest that the specific rainfall covariate does
not have any realist ic or interpretable meaning.
Therefore, our expert choice would be to remove the eight
rainfall proxies with an unexplainable role. Interestingly,
the second λ, which is more aggressive in constraining
the parameter space, selects six covariates (blue rhombi)
by removing the eight rainfall proxies. As a result, we
consider the second λ to be the most reasonable out of
the two. And, on the basis of the six selected covariates,
we have run an additional set of analyses featuring 1000
bootstrapped replicates whose distributions of regression
coefficients are plotted in Fig. 13c.

Results show that PGAμ has the largest contribution
to the model (Fig. 13c) and that the most likely rainfall
trigger corresponded to the 4th January 2017 event,
which appears to be the third contributor out of the
six, after slopeσ.

Discussion

In this study, we primarily used the regression coefficients of
ground shaking (i.e. PGA) to explore the relevance of the
earthquake legacy effect on RFIL susceptibility assessments.
We extent this consideration with a time-variant approach and
examine how the ground shaking effect changes through time.

Temporal evolution of earthquake legacy effect

Our findings are meant to open up an interesting scientific
discussion for earthquake legacy has not been explicitly in-
vestigated in the context of multi-temporal landslide suscepti-
bility models. In the geoscientific community, the legacy of
previously occurred earthquakes is already reported to be a
factor which increases the landslide susceptibility of any area
during the post-seismic phase (e.g. Tang et al. 2016; Yang
et al. 2017; Kincey et al., 2021). However, there is no agree-
ment on how long this elevated susceptibility will be main-
tained after an earthquake. Tian et al. (2020) indicate twomain
factors controlling this time period: the amount of co-seismic
source material and precipitation pattern. In other words, they
suggest that the elevated susceptibility could be nullified in a
relatively short period of time if there is not much co-seismic
source material but a strong precipitation pattern.

Fig. 11 Precipitation regime
represented by a daily
accumulated precipitation and b
7-day antecedent precipitation for
the area affected by the 2016
Reuleut earthquake. Yellow stars
show the date of the earthquake.
Vertical dashed black lines indi-
cate the dates of the satellite im-
agery used to map RFIL. The
mean and 95% confidence inter-
val of daily and antecedent pre-
cipitation are calculated from a
20-year time series and are shown
by black line and grey-shaded ar-
ea, respectively. Red lines indi-
cate the time period that precipi-
tation is higher than the historic
95th percentile
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This is exactly the case for the first post-seismic landslide
inventory of the Reuleut earthquake, where 7 extreme daily
and 5 extreme 7-day antecedent precipitation events have hit
the area after the Reuleut (Fig. 11). Here, we would like to
point out that our LASSO implementation allowed us to iso-
late the most likely trigger out of the 12 possible proxies
mentioned above.

It is important to highlight once more that the geoscience
community has not yet found a reference timewindow after an
earthquake for which the ground motion increases the land-
slide susceptibility. In this work, we cannot explicitly define
such a time window, especially in a globally valid context.

Our findings are certainly localized and should be framed in
the context of probabilistic models. Specifically, our findings
are representative for a tropical environment where large co-
seismic landslide deposits do not exist. Therefore, the contri-
bution of PGA layer could be different through time in another
environmental setting (e.g. Wenchuan), for instance, if large
amount of co-seismic materials deposited on hillslopes and/or
precipitation rate is relatively lower and not persistent com-
pared to the area we examined. Moreover, we examined only
a subset of the total area affected by earthquakes, and thus, our
findings are representative for the areal boundaries
encompassingmulti-temporal inventories. But, they also point

Fig. 12 Spatial distribution of
RFIL on the site hit by the 2016
Reuleut earthquake overlaid by a
normalized landslide density, b
PGA map of the 2016 Reuleut
earthquake, c–i daily accumulated
precipitation maps for the days
where precipitation amount is
relatively high (see Fig. 11a) and
j–n 7-day antecedent precipita-
tion maps for the periods where
precipitation amount is relatively
high (see Fig. 11b)
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out at an interesting assumption that earthquake legacy may
still play a significant role in the spatial distribution of RFIL.
Overall, we can highlight two main interesting observations.

First, the findings obtained in this study area may suggest a
temporal scale where no effects can be inferred from the
ground motion to RFIL inventories. In none of the cases, we
capture a positive PGA effect on the susceptibility model (the
mean regression coefficients appear to be negatives) 3 years
after earthquakes. This could be a result of the probabilistic
framework, and future studies with a longer time series may
provide further evidence to support this hypothesis, both with-
in the study area as well as in other geographic contexts. Also,
examining the whole area instead of a subset of area affected
by earthquake could provide a better insight into temporal
evolution of earthquake legacy effect.

Second, our LASSO selection extracted the closest extreme
rainfall to the earthquake. In addition to this, the PGA coeffi-
cient decreases through time (see Fig. 10 a and c). This might
indicate that, after the first extreme rainfall stress, the land-
scape may release the majority of the “available” landslides
conditioned by the shaking disturbance. In other words, dur-
ing the initial stages when the ground motion effect on the
susceptibility is at its highest after the earthquake, disturbed
hillslopes can more easily fail, following the spatial
footprint of the seismic shaking. As a result, the follow-
ing rainfall events may trigger landslides in other slopes
(different spatial distribution), leaving behind any sign
of ground motion related patterns.

The aforementioned interpretation could also explain why
the first post-seismic inventory associated with the Reuleut

earthquake triggered more landslides than the earthquake it-
self. As a matter of fact, seismic shaking could cause reduction
in soil and rock mass strength parameters in the near vicinity
of area affected by an earthquake. This reduction does not
necessarily cause failures on some hillslopes but decrease
FoS in way that subsequent rainfall event(s) could cause in-
stabilities. Given this explanation, we could assume that the
extreme rainfall event occurred on 4th of January 2017 has
triggered landslides on hillslopes which was already disturbed
by 6th December 2016 Reuleut earthquake.

Notably, among the examined cases, the regression coeffi-
cients of PGA calculated for the post-Kasiguncu landslide
inventories show a variation in time that is not fully consistent
with three other cases (Reuleut, Sulawesi and Palu) (Fig. 10).
Specifically, the mean regression coefficient of PGA is around
zero for the second post-seismic inventory. This should not be
surprising looking at the intensity of ground shaking observed
in other cases. For instance, in the Reuleut earthquake, the
maximum PGA inside the boundary of the study area is
0.50 g (Fig. 3), and the regression coefficient gradually de-
creases and became closer to zero within two years (Fig. 10).
Also, in the Palu earthquake, the maximum PGA is 0.68 (Fig.
5), and PGA is still significant 1 year after an earthquake,
whereas in the Kasiguncu earthquake, the PGA counterpart
is 0.10 g (Fig. 5), which is much smaller than two other cases.
Therefore, the earthquake legacy could also disappear soon
after an earthquake. If the damaged hillslopes are not so wide-
spread and the damaged ones already failed in the first few
rainfall events right after an earthquake, the earthquake effects
could be nullified rapidly. Nevertheless, even considering the

Fig. 13 Panel a shows the results of the LASSO-penalization at varying
λ, summarized in terms of AUC values plotted along the y axis and the
number of resulting variables as a second axis to the top. The red squares
correspond to the mean AUC values estimated in a 10-fold CV scheme
for each λ. The error bar around corresponds to the 95% CI of the AUC
distribution across CV replicates. The first vertical bar to the left

corresponds to the best LASSO model (14 covariates out of 18), and
the right vertical bar shows the models at which the AUC starts to decay
quite fast because of the lack of covariate information (6 covariates out of
18). Panel b reports the LASSO-penalized regression coefficients for the
best model shown in panel a. Panel c shows the range of regression
coefficients calculated using 1000 bootstrap replicates.
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explanation given above, the distribution of the PGA coeffi-
cients estimated for the third post-seismic landslide inventory
appears as anomaly (Fig. 10). This anomaly could be caused
by the limitation of the dataset in terms of its areal coverage.
Since we do not have cloud-free satellite scenes to create the
multi-temporal inventories in a way to encompass the entire
area affected by landslides, we ended up mapping only a part
of it. This inevitably limited our capacity to monitor the evo-
lution of landslides over time. Therefore, the mentioned
anomaly might be a result of a similarity between the pattern
of rainfall event(s) occurred in between second and third post-
seismic landslides. Moreover, the time gap between these two
inventories is 1 year (27th September 2017–26th September
2018), and regrettably, clear identification of the rainfall
event(s) triggered these landslides is extremely complex if
possible at all, for such a long time window.

Further research directions

Overall, and in the validity domain of the study areas we
considered, we probabilistically showed that the PGA map
of the last strongest earthquake may be an informative predis-
posing factor for RFIL susceptibility models to be built after
an earthquake. And yet, we do not have enough observations
to retrieve a generic and applicable rule to do so within a
specific time frame. Our work investigates the boundary
conditions of the validity of this legacy effect, where
we statistically show its presence at least for a mini-
mum of 4 months and its absence within 3 years.
However, for larger earthquakes such as Wenchuan or
Gorkha, the persistence of elevated susceptibility condi-
tions is longer due to the strong level of disturbance.

This observation needs to be checked, and our hypothesis
further demonstrated in other studies to provide additional
evidence of the temporal changes of the ground motion lega-
cy, in various environmental settings. In fact, multi-temporal
EQIL and RFIL inventories in different environmental set-
tings are particularly important to provide a better vision re-
garding the earthquake legacy effect and its general validity.
Also, even if the legacy effect is a concept upon which the
community agrees and we were able to numerically capture it
here, several additional questions still need to be addressed.
For instance, a better constraint on the temporal decay of the
earthquake legacy still needs to be defined. Here, we retrieved
its persistence at a relatively coarse temporal resolution, which
may need to be further increased to investigate the phenome-
non even further. And, as mentioned before, the legacy signal
we have retrieved here may also change from a landscape and/
or climatic setting to another.

It is worth noting that we could not disregard some possible
sources of uncertainty in the data we used. For instance, a
more robust analysis and possible interpretation could have
been drawn mapping the whole landslide-affected area. In

another source of uncertainty, this time of numerical nature
could be due to the downscaling step we added to match the
rainfall and PGA spatial resolution. This step can certainly
have played a role in the model, but we expect it to have been
smoothed when aggregating at the SU level. These sources of
uncertainty may have propagated in the model and
therefore biased our interpretation. However, we stress
here that we have done our absolute best collecting the
data and including a bootstrap simulation step to at least
account for the model uncertainty.

In future studies, we will prioritize sites containing a large
amount of co-seismic landslide deposits on hillslopes, in a
high-relief mountainous environment where precipitation
rates are low and strongly seasonal. This should also provide
an alternative situation where the earthquake legacy may sta-
tistically behave in a different way, leading to different and
contrasting interpretations. This is certainly an interesting re-
search topic, but it also requires multi-temporal landslide in-
ventories to be available with high temporal resolution.

Overall, the topic on earthquake legacy effect from earth-
quakes to subsequent RFIL is still in its infancy. This is the
case because our knowledge is mostly limited by a few multi-
temporal landslide inventories. However, in the last two de-
cades, the geoscientific community started to focus on this
topic, due to the increasing availability of multi-temporal
landslide inventories. In fact, access to this information is
fundamental, and as the community progresses in collating
other inventories and the landscape evolution through time,
much more research could be developed. For instance, one of
the most important research directions would be understand-
ing the legacy effect from a mechanical standpoint, not only at
the slope scale but also in relation to large populations of
landslides. To do this, an even greater effort will need to be
put into place to geotechnically characterize the subsurface. In
other words, future improvements may be reached for instance
by selecting a smaller study site and examining the mechani-
cal properties of a landscape where groundmotion and rainfall
discharges are responsible for the reduction in the strength of
hillslope materials.

Conclusions

In this study, we focus on a rarely investigated concept in
landslide susceptibility assessments that looks at the coupled
effect of earthquakes and rainfall in triggering landslides
(Sassa et al. 2007). We approach the concept by initially con-
sidering seismic shaking as a predisposing factor over two
time series of landslide inventories, both triggered by earth-
quakes and rainfall. Subsequently, we focus on a specific case
aiming to capture the legacy effect of ground motion on RFIL
susceptibility and compare it to the precipitation effect. The
analyses have all been carried out in a BLR framework to
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study the distribution of covariate effects. These have been
estimated via 1000 bootstrap simulations. We also run an
additional LASSO-penalized framework to select the best set
of explanatory variables for RFIL.

Our findings suggest that the signal of ground shaking
evolves through time in post-seismic periods. Specifically,
we show that the PGA map of the last strongest earthquake
can be used as a predisposing factor for RFIL occurring after
the earthquake (i.e. up to 3 years) within the two study areas.
This seismic proxy captures part of the spatial dependence in
post-seismic RFILs, and it does so with a decreasing capacity
through time. In fact, on the basis of the four cases we exam-
ined, the signal completely disappears. In other words, the
mean or median regression coefficient in each case starts from
a largely positive value and decreases down to near-zero
values after approximately 3 years from the initial earthquake.
Furthermore, we observe that the coupled effect of earth-
quakes and rainfall, if co-existing in a susceptibility model,
improves the accuracy of the susceptibility estimates for sub-
sequent RFIL, induced by extreme precipitation discharges.
Regarding the latter, we statistically notice that the effect of
extreme precipitation and the ground motion legacy is partic-
ularly relevant if it occurs shortly after the earthquake for we
assume that the mobilization of weakened slopes is promoted
in this stage of the landscape evolution. Actually, for the spe-
cific case we examined, we statistically observed that the
ground motion legacy explains the RFIL distribution more
than the actual rainfall trigger (the PGA mean and/or median
regression coefficient is positive and larger than the rainfall
proxy). This consideration is also statistically significant as
the vast majority of the PGA coefficient distribution is larger
and outside the 95% confidence interval of the rainfall coeffi-
cient distribution.

It should be noted that both the cases we examined are
located in Indonesia, which are in a tropical environment.
Therefore, our conclusions still need to be verified in other
contexts. Future work could demonstrate similar ground mo-
tion and rainfall combined effects, which could represent a
further advancement in regional/global near-real time statisti-
cally and physically based susceptibility modelling, or early
warning systems. In fact, currently, none of these fundamental
applications for planning and preparedness contextually fea-
ture the potential triggering effect of seismic shaking and pre-
cipitation. Therefore, current models lack the ability to explain
the residual spatial dependence that the weakening effect of
the ground motion may exert onto a given landscape, thus
preparing it to potentially fail with a larger landslide rate than
the expected. However, to achieve such tasks, the geotechni-
cal characteristics of hillslope materials will need to be con-
tinuously monitored. Such monitoring context will make it
possible to assess the actual effects of ground motion and its
legacy effects on slope stability as the slope materials are
exposed to rainfall discharges through time.
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