Skip to main content
Log in

Probabilistic slope stability analysis in Kahrizak landfill: effect of spatial variation of MSW’s geotechnical properties

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The geotechnical properties of municipal solid waste (MSW) in landfills vary considerably depending on the composition, time, and the rate of waste density. This variability in geotechnical properties leads to many uncertainties in the analysis of landfill slope stability. This study, using probabilistic methods investigates the slope stability and the probability of failure of a Kahrizak landfill under the conditions of spatial variability of physical and geotechnical properties of MSW. To achieve this goal, the random field theory has been used with a finite difference numerical method in the framework of the Monte Carlo simulation. MSW’s shear strength parameters such as cohesion and friction angle as well as the unit weight of layers are considered as random variables. An extensive literature review was conducted to address the probable variation of above-mentioned parameters in Kahrizak landfill. The results of several different laboratory researches on MSW samples collected from Kahrizak landfill were also employed in the modelings. Output results are presented in the form of probability distributions of the factor of safety as well as the probability of failure corresponding to these distributions. Moreover, the effect of various parameters such as coefficient of variation and correlation distance of input parameters on these output results has been investigated. The results show that considering the spatial variability in probabilistic methods would help to determine the various mechanisms affecting the performance and the probability of failure of the landfill slope. In addition, the output of such probabilistic analyses can be used as guidance for engineers to design safe and reliable landfill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aburatani S, Matsui T, Kamon M, Wada M (1998) Geotechnical characteristics of incinerated MSW ash reclamation sites of Osaka Bay Phoenix project. Environ. Geotech., Seco e Pinto, ed., 95–100

  • Alidoust P, Keramati M, Shariatmadari N (2018) Laboratory studies on effect of fiber content on dynamic characteristics of municipal solid waste. Waste Manag, Elsevier BV 76:126–137. https://doi.org/10.1016/j.wasman.2018.02.038

    Article  Google Scholar 

  • Ang AH, Tang WH (2007) Probability concepts in engineering: emphasis on applications in civil & environmental engineering, vol 1. Wiley, New York

    Google Scholar 

  • Babu GLS, Reddy KR, Srivastava A (2014) Influence of spatially variable geotechnical properties of MSW on stability of landfill slopes. J Hazard Toxic Radioact Waste [internet]. American Society of Civil Engineers (ASCE) 18(1):27–37. https://doi.org/10.1061/(asce)hz.2153-5515.0000177

    Article  Google Scholar 

  • Baecher GB, Christian JT (2003) Reliability and statistics in geotechnical engineering. Wiley, Chichester

    Google Scholar 

  • Bhattacharya G, Chowdhury R, Metya S (2017) Residual factor as a variable in slope reliability analysis. Bull Eng Geol Environ. Springer Nature 78(1):147–166. https://doi.org/10.1007/s10064-017-1085-5

    Article  Google Scholar 

  • Blight G (2008) Slope failures in municipal solid waste dumps and landfills: a review. Waste Manag Res. SAGE Publications 26(5):448–463. https://doi.org/10.1177/0734242x07087975

    Article  Google Scholar 

  • Caicedo B, Giraldo E, Yamin L, Soler N (2002a) In: 175 (ed) The landslide of Dona Juana landfill in Bogota. A case study. Proc., 4th Int. congress on environmental geotechnics, Vol. 1, Balkema, Rotterdam, The Netherlands, p 171

  • Caicedo B, Yamin L, Giraldo E, Coronado O (2002b) Geomechanical properties of municipal solid waste in Dona Juana sanitary landfill. Proc., 4th Int. congress on environmental geotechnics, Vol. 1, Balkema, Rotterdam, The Netherlands, pp 177–182

  • Chang M (2005) Three-dimensional stability analysis of the Kettleman Hills landfill slope failure based on observed sliding-block mechanism. Comput Geotech. Elsevier BV 32(8):587–599. https://doi.org/10.1016/j.compgeo.2005.11.002

    Article  Google Scholar 

  • Ching J, Phoon KK, Wu SH (2016) Impact of statistical uncertainty on geotechnical reliability estimation. J Eng Mech 142(6)

  • Chugh AK, Stark TD, DeJong KA (2007) Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio, USA. Can Geotech J. Canadian Science Publishing 44(1):33–53. https://doi.org/10.1139/t06-089

    Article  Google Scholar 

  • Dawson EM, Roth WH, Drescher A (1999) Slope stability analysis by strength reduction. Géotechnique. Thomas Telford Ltd. 49(6):835–840. https://doi.org/10.1680/geot.1999.49.6.835

    Article  Google Scholar 

  • Del Greco O, Oggeri C (1994) Shear resistance tests on municipal solid wastes. Proc., 1st ICEG, BiTech publishers, Edmonton

  • Dixon N, Jones DRV (2005) Engineering properties of municipal solid waste. Geotext Geomembr. Elsevier BV 23(3):205–233. https://doi.org/10.1016/j.geotexmem.2004.11.002

    Article  Google Scholar 

  • Eid HT, Stark TD, Evans WD, Sherry PE (2000) Municipal solid waste slope failure. I: waste and foundation soil properties. J Geotech Geoenviron American Society of Civil Engineers (ASCE) 126(5):397–407. https://doi.org/10.1061/(asce)1090-0241(2000)126:5(397

    Article  Google Scholar 

  • El-Ramly H, Morgenstern NR, Cruden DM (2002) Probabilistic slope stability analysis for practice. Can Geotech J. Canadian Science Publishing 39(3):665–683. https://doi.org/10.1139/t02-034

    Article  Google Scholar 

  • Ering P, Babu GLS (2015) Slope stability and deformation analysis of Bangalore MSW landfills using constitutive model. Int J Geomech. American Society of Civil Engineers (ASCE) 16(4):04015092. https://doi.org/10.1061/(asce)gm.1943-5622.0000587

    Article  Google Scholar 

  • Feng SJ (2005) Static and dynamic strength properties of municipal solid waste and stability analyses of landfill. PhD thesis of Zhejiang University, Hangzhou. (in Chinese)

  • Feng SJ, Cao BY, Bai ZB, Yin ZY (2016) Constitutive model for municipal solid waste considering the effect of biodegradation. Géotechnique Letters 6(4):244–249

    Article  Google Scholar 

  • Feng S-J, Chen Z-W, Chen H-X, Zheng Q-T, Liu R (2018) Slope stability of landfills considering leachate recirculation using vertical wells. Eng Geol. Elsevier BV 241:76–85. https://doi.org/10.1016/j.enggeo.2018.05.013

    Article  Google Scholar 

  • Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, Hoboken. https://doi.org/10.1002/9780470284704

    Book  Google Scholar 

  • Gabr M, Valero S (1995) Geotechnical properties of municipal solid waste. Geotech Test J. ASTM International 18(2):241–251. https://doi.org/10.1520/gtj10324j

    Article  Google Scholar 

  • Griffiths DV, Fenton GA (2001) Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited. Géotechnique. Thomas Telford Ltd. 51(4):351–359. https://doi.org/10.1680/geot.51.4.351.39396

    Article  Google Scholar 

  • Griffiths DV, Fenton GA (2004) Probabilistic slope stability analysis by finite elements. J Geotech Geoenviron. American Society of Civil Engineers (ASCE) 130(5):507–518. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507

    Article  Google Scholar 

  • Griffiths DV, Fenton GA (2007) Probabilistic methods in geotechnical engineering. In: CISM Courses and Lectures. Springer, Vienna. https://doi.org/10.1007/978-3-211-73366-0

    Chapter  Google Scholar 

  • Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Géotechnique Thomas Telford Ltd 3:387–403. https://doi.org/10.1680/geot.1999.49.3.387

    Article  Google Scholar 

  • Griffiths DV, Fenton GA, Denavit MD (2007) Traditional and advanced probabilistic slope stability analysis. In: Probabilistic Applications in Geotechnical Engineering. American Society of Civil Engineers, Reston. https://doi.org/10.1061/40914(233)19

    Chapter  Google Scholar 

  • Grisolia M, Napoleoni Q, Tangredi G (1995) The use of triaxial tests for the mechanical characterization of municipal solid waste. Proc., 5th Int. landfill symposium -Sardinia ‘95, Cagliari (I), Environmental Sanitary Engineering Centre (CISA), Vol. 2, Balkema, Rotherdam, The Netherlands, 761–767

  • Grisolia M, Napoleoni Q (1996) Geotechnical characterization of municipal solid waste: choice of design parameters. Proc., 2nd Int. congress on environ. Geotech., Balkema, Rotherdam, The Netherlands, pp 641–646

    Google Scholar 

  • Hossain MS (2002) Mechanics of compressibility and strength of solid waste in bioreactor landfills, PhD dissertation, Department of Civil Engineering. North Carolina State University at Raleigh, NC

    Google Scholar 

  • Houston WN, Houston SL, Liu JW, Elsayed A, Sanders CO (1995) In-situ testing methods for dynamic properties of MSW landfills. In Proceedings of specialty conference on earthquake design and performance of solid waste landfills, Geotechnical special publication 54, ASCE, San Diego, CA, October, 1995, 73–82

  • Huang J, Lyamin AV, Griffiths DV, Krabbenhoft K, Sloan SW (2013) Quantitative risk assessment of landslide by limit analysis and random fields. Comput Geotech. Elsevier BV 53:60–67. https://doi.org/10.1016/j.compgeo.2013.04.009

    Article  Google Scholar 

  • Itasca Consulting Group I (2015) FLAC Fast Lagrangian Analysis of Continua and FLAC/Slope –User’s Manual

  • Jahanfar A, Dubey B, Gharabaghi B, Movahed SB (2016) Landfill failure mobility analysis: a probabilistic approach. Int J Environ Chem Ecol Geol Geophys Eng 10:476–484. https://doi.org/10.5281/zenodo.1124319

    Article  Google Scholar 

  • Jahanfar A, Gharabaghi B, McBean EA, Dubey BK (2017) Municipal solid waste slope stability modeling: a probabilistic approach. J Geotech Geoenviron. American Society of Civil Engineers (ASCE) 143(8):04017035. https://doi.org/10.1061/(asce)gt.1943-5606.0001704

    Article  Google Scholar 

  • Jamshidi Chenari R, Alaie R (2015) Effects of anisotropy in correlation structure on the stability of an undrained clay slope. Georisk: Assessment and Management of Risk for engineered systems and Geohazards. Informa UK Limited 9(2):109–123. https://doi.org/10.1080/17499518.2015.1037844

    Article  Google Scholar 

  • Jessberger HL, Kockel R (1995) Determination and assessment of the mechanical properties of waste materials. In Symposium GREEN'93-Geotechnics related to the environment:313–322

  • Jiang SH, Huang J (2018) Modeling of non-stationary random field of undrained shear strength of soil for slope reliability analysis. Soils Found 58(1):185–198. https://doi.org/10.1016/j.sandf.2017.11.006

    Article  Google Scholar 

  • Karimpour-Fard M, Machado SL, Shariatmadari N, Noorzad A (2011) A laboratory study on the MSW mechanical behavior in triaxial apparatus. Waste Manag. Elsevier BV 31(8):1807–1819. https://doi.org/10.1016/j.wasman.2011.03.011

    Article  Google Scholar 

  • Kavazanjian E, Matasovic N, Bonaparte R, Schmertmann, GR (1995) Evaluation of MSW properties for seismic analysis. In Proceedings of the specialty conference on geotechnical practice in waste disposal. Part 1, 1126–1141

  • Kavazanjian ED Jr, Matasovic NE, Bachus RC (1999) Large-diameter static and cyclic laboratory testing of municipal solid waste. Proceedings Sardinia 99:437–444

    Google Scholar 

  • Koerner RM, Soong TY (2000) Stability assessment of ten large landfill failures. In: Advances in Transportation and Geoenvironmental Systems Using Geosynthetics. American Society of Civil Engineers, Reston. https://doi.org/10.1061/40515(291)1

    Chapter  Google Scholar 

  • Landva AO, Clark JI (1986) Geotechnical testing of wastefill. Proc., 39th Canadian Geotech. Conf. Ottawa, Canadian geotechnical society, Ottawa geotechnical group, Ottawa, ON, pp 371–385

  • Landva AO, Clark JI (1990) Geotechnics of waste fill-theory and practice. STP 1070, A. Landva and G.D. Knowles, eds., ASTM, 86–103

  • Li DQ, Jiang SH, Cao ZJ, Zhou W, Zhou CB, Zhang LM (2015) A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng Geol. Elsevier BV 187:60–72. https://doi.org/10.1016/j.enggeo.2014.12.003

    Article  Google Scholar 

  • Liu LL, Cheng YM, Wang XM, Zhang SH, Wu ZH (2017) System reliability analysis and risk assessment of a layered slope in spatially variable soils considering stratigraphic boundary uncertainty. Comput Geotech Elsevier BV 89:213–225. https://doi.org/10.1016/j.compgeo.2017.05.014

    Article  Google Scholar 

  • Machado SL, Carvalho MF, Vilar OM (2002) Constitutive model for municipal solid waste. J Geotech Geoenviron. American Society of Civil Engineers (ASCE) 128(11):940–951. https://doi.org/10.1061/(asce)1090-0241(2002)128:11(940

    Article  Google Scholar 

  • Machado SL, Karimpour-Fard M, Shariatmadari N, Carvalho MF, do Nascimento JC (2010) Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manag. Elsevier BV 30(12):2579–2591. https://doi.org/10.1016/j.wasman.2010.07.019

    Article  Google Scholar 

  • Mahler CF, De Lamare Netto A (2003) Shear resistance of mechanical biological pre-treated domestic urban waste. In Proceedings Sardinia, 6–10

  • Malkawi AI, Hassan WF, Abdulla FA (2000) Uncertainty and reliability analysis applied to slope stability. Struct Saf. Elsevier BV 22(2):161–187. https://doi.org/10.1016/s0167-4730(00)00006-0

    Article  Google Scholar 

  • Manassero M, Van Impe WF, Bouazza A (1996) Geotechnical properties of MSW. Proc of the Intern Congress on Environmental Geotechnics 3:1425–1474

    Google Scholar 

  • Mazzucato A, Simonini P, Colombo S (1999) Analysis of block slide in a MSW landfill. Proc., 7th Int. waste manage. Landfill Symp., Vol. 3, environmental sanitary engineering Centre (CISA), Cagliari, Italy, pp 537–544

  • Mitchell RA, Mitchell JK (1992) Stability evaluation of waste landfills. ASCE Specialty Conference on Stability and Performance of Slopes and Embankments. U.C. Berkeley. ASCE Geotechnical Special Publication No. 31. 1152–1187

  • Nguyen TS, Likitlersuang S (2019) Reliability analysis of unsaturated soil slope stability under infiltration considering hydraulic and shear strength parameters. Bulletin of Engineering Geology and the Environment. Springer Nature. 1–17 https://doi.org/10.1007/s10064-019-01513-2

  • Pelkey SA, Valsangkar AJ, Landva A (2001) Shear displacement dependent strength of municipal solid waste and its major constituent. Geotech Test J 24(4):381–390. https://doi.org/10.1520/gtj11135j

    Article  Google Scholar 

  • Phoon KK, Kulhawy FH (1999a) Evaluation of geotechnical property variability. Can Geotech J. Canadian Science Publishing 36(4):625–639. https://doi.org/10.1139/t99-039

    Article  Google Scholar 

  • Phoon KK, Kulhawy FH (1999b) Characterization of geotechnical variability. Can Geotech J. Canadian Science Publishing 36(4):612–624. https://doi.org/10.1139/t99-038

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C++. In: The art of scientific computing, 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Rajesh S, Babel K, Mishra SK (2016) Reliability-based assessment of municipal solid waste landfill slope. J Hazard Toxic Radioact Waste. American Society of Civil Engineers (ASCE) 21(2):04016016. https://doi.org/10.1061/(asce)hz.2153-5515.0000333

    Article  Google Scholar 

  • Reddy KR, Gangathulasi J, Hettiarachchi H, Bogner J (2008) Geotechnical properties of municipal solid waste subjected to leachate recirculation. In GeoCongress 2008: Geotechnics of Waste Management and Remediation, pp. 144–151

  • Reddy KR, Gangathulasi J, Parakalla NS, Hettiarachchi H, Bogner JE, Lagier T (2009a) Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations. Waste Manag Res 27(6):578–587

    Article  Google Scholar 

  • Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulasi J, Bogner JE (2009b) Geotechnical properties of fresh municipal solid waste at Orchard Hills landfill, USA. Waste Manag 29(2):952–959

    Article  Google Scholar 

  • Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE (2011) Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manag 31(11):2275–2286

    Article  Google Scholar 

  • Reddy KR, Kulkarni HS, Srivastava A, Babu GLS (2013) Influence of spatial variation of hydraulic conductivity of municipal solid waste on performance of bioreactor landfill. J Geotech Geoenviron. American Society of Civil Engineers (ASCE) 139(11):1968–1972. https://doi.org/10.1061/(asce)gt.1943-5606.0000930

    Article  Google Scholar 

  • Reddy KR, Kumar G, Giri RK, Basha BM (2018) Reliability assessment of bioreactor landfills using Monte Carlo simulation and coupled hydro-bio-mechanical model. Waste Manag. Elsevier BV 72:329–338. https://doi.org/10.1016/j.wasman.2017.11.010

    Article  Google Scholar 

  • Shariatmadari N, Sadeghpour AH, Razaghian F (2014) Effects of aging on shear strength behavior of municipal solid waste. Int J Civil Eng 12(3):226–237

    Google Scholar 

  • Shariatmadari N, Sadeghpour AH, Mokhtari M (2015) Aging effect on physical properties of municipal solid waste at the Kahrizak landfill, Iran. Int J Civil Eng 13:126–136

    Google Scholar 

  • Sia AHI, Dixon N (2012) Numerical modelling of landfill lining system–waste interaction: implications of parameter variability. Geosynth Int. Thomas Telford Ltd 19(5):393–408. https://doi.org/10.1680/gein.12.00025

    Article  Google Scholar 

  • Siegel RA, Robertson RJ, Anderson DG (1990) Slope stability investigations at a landfill in southern California. In geotechnics of waste fills—theory and practice. ASTM International

  • Stark TD, Huvaj-Sarihan N, Li G (2009) Shear strength of municipal solid waste for stability analyses. Environ Geol. Springer Science and Business Media LLC 57(8):1911–1923. https://doi.org/10.1007/s00254-008-1480-0

    Article  Google Scholar 

  • Stoll OW (1971) Mechanical properties of milled refuse. In: Proceedings of the ASCE National Water Resources Engineering Meeting. Phoenix, Ariz, pp 11–15

    Google Scholar 

  • U.S. Army Corps of Engineers (USACE) (1997) Engineering and design: introduction to probability and reliability methods for use in geotechnical engineering, Eng. Circ. 1110–2-547. U.S. Dept. of the Army, Washington, DC

    Google Scholar 

  • Vanmarcke EH (1983) Random fields: analysis and synthesis. ISBN 0-262-72045-0. MIT Press, Cambridge

    Google Scholar 

  • Vilar OM, Carvalhod M (2004) Mechanical properties of municipal solid waste. J Test Eval 32(6):438–449

    Article  Google Scholar 

  • Wang Y, Zhao T (2017) Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling. Géotechnique 67(6):523–536

    Article  Google Scholar 

  • Wang Y, Cao Z, Au SK (2011) Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet. Can Geotech J. Canadian Science Publishing 48(1):162–172. https://doi.org/10.1139/t10-044

    Article  Google Scholar 

  • Withiam JL, Bushell TD, Germann HW (1995) Prediction and performance of municipal landfill slope. Proc., specialty Conf. Geoenviron 2000, Geotech. Spec. Publ., ASCE, New York, 46(2): 1005–1019

    Google Scholar 

  • Zekkos DP (2005) Evaluation of static and dynamic properties of municipal solid waste Ph.D. Dissertation, University of California

  • Zekkos D, Bray JD, Kavazanjian JE, Matasovic N, Rathje EM, Riemer MF, Stokoe KH (2006) Unit weight of municipal solid waste. J Geotech Geoenviron 132(10):1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250)

    Article  Google Scholar 

  • Zekkos D, Fei X (2016) Constant load and constant volume response of municipal solid waste in simple shear. Waste Manag. Elsevier BV 63:380–392. https://doi.org/10.1016/j.wasman.2016.09.029

    Article  Google Scholar 

  • Zhan TLT, Chen YM, Ling WA (2008) Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Eng Geol. Elsevier BV 97(3–4):97–111. https://doi.org/10.1016/j.enggeo.2007.11.006

    Article  Google Scholar 

  • Zhao T, Hu Y, Wang Y (2018) Statistical interpretation of spatially varying 2D data from sparse measurements using Bayesian compressive sampling. Eng Geol 246:162–175

    Article  Google Scholar 

  • Zhu D, Griffiths DV, Fenton GA (2018) Worst-case spatial correlation length in probabilistic slope stability analysis. Géotechnique. Thomas Telford Ltd 69(1):85–88. https://doi.org/10.1680/jgeot.17.t.050

    Article  Google Scholar 

  • Zwanenburg C, Knoeff JG, Hounjet MWA (2007) Geotechnical characterization of waste. Proc.11th international waste management and landfill symposium, Sardinia

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Karimpour-Fard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdizadeh, M.J., Shariatmadari, N. & Karimpour-Fard, M. Probabilistic slope stability analysis in Kahrizak landfill: effect of spatial variation of MSW’s geotechnical properties. Bull Eng Geol Environ 79, 2679–2695 (2020). https://doi.org/10.1007/s10064-019-01688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-019-01688-8

Keywords

Navigation