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Abstract

The volume fraction within a bimrock or bimsoil is an essential parameter that is useful for estimating the engineering properties of
heterogeneous geomaterials. This paper presents analytical and numerical solutions to quantify the uncertainty of volume fraction
measurements in bimrock/bimsoil using a scan-line method. The analytical solutions for the mean and variance of volume fraction
estimates are based on a representative volume element model. The numerical solution is obtained through simulations of scan-line
measurements. This work also employs physical tests using CT scan images from artificial bimrock/bimsoil to validate these
solutions. The results demonstrate that the uncertainties of the volume fraction depend on the magnitude of the volume fraction
of the blocks, the diameter of the blocks, and the length of the scan line. The proposed analytical and numerical solutions are
compared with existing physical experimental tests and analytical solutions. An illustrative example to demonstrate the estimation of
the uncertainty of volume fraction using the scan-line measurement is present. Finally, an example application of the volume fraction
characterization in the geological engineering, in terms of Young’s modulus estimation and characterization, is provided.

Keywords Bimrock - Bimsoil - Volume fraction - Scan-line method - Uncertainty - Representative volume element - Young’s
modulus

Introduction

The volume fraction (V) within a bimrock or bimsoil is an
essential parameter that is useful for estimating the engineer-
ing characterization of heterogeneous geomaterials. The vol-
ume fraction plays an important role in the strength (Afifipour
and Moarefvand 2014a; Barbero et al. 2008; Coli et al. 2011,
2012; Lindquist 1994; Lindquist and Goodman 1994; Medley
2001; Gokceoglu 2002; Kahraman and Alber 2006, 2008,
2009; Kalender et al. 2014; Sonmez et al. 2004, 2006a,
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2016; Tien et al. 2015; Xia et al. 2017), deformability
(Lindquist 1994; Lindquist and Goodman 1994; Kahraman
and Alber 2006, 2009; Barbero et al. 2008; Afifipour and
Moarefvand 2014a; Tien et al. 2015; Sonmez et al. 2004,
2006b, 2016; Xu et al. 2011; Tsesarsky et al. 2014), failure
modes (Medley and Sanz Rehermann 2004; Afifipour and
Moarefvand 2014b; Zhang et al. 2019), engineering properties
(Medley and Sanz Rehermann 2004), or other physical prop-
erties (Kahraman et al. 2015) of geomaterials.

The V; of interest could be the portion of discrete-phase
inclusions (e.g., certain minerals, blocks, and particulates) or
continuous-phase matrix in a composite material. In this study,
the volume fraction of a block, V4, is defined as the ratio of the
block volume over the total volume, which is the same as the
volumetric block proportion, VBP, established in some litera-
ture (Lindquist 1994; Lindquist and Goodman 1994; Kahraman
and Alber 2006, 2008, 2009; Kahraman et al. 2015; Kalender
et al. 2014; Medley 1994, 1997, 2001; Medley and Goodman
1994; Medley and Sanz Rehermann 2004; Sonmez et al. 2004,
2006a, b, 2016; Tsesarsky et al. 2014; Tien et al. 2010).

Measurements of V¢ can be made through stereology and
can be obtained via 0D, 1D, 2D, or 3D measurements
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depending on the dimension of the sampling windows used
(Russ and Dehoff 1999). That is, 0D measurements are sam-
pled by points, 1D by lines, 2D by areas, and 3D by volumes.
Thus, “volume” is used in a generalized sense, with the
resulting “volume” fraction being the ratio of the phase “vol-
ume” over the total volume sampled. That is, the volume
fraction is defined as the point fraction, Py, for 0D, the line
fraction, L¢, for 1D, the area fraction, Ag, for 2D, and the
volume fraction, Vi, for 3D. The Delesse principle (1847)
shows that all these different dimensional measurements can
lead to the same results, namely:

Vei=A¢r=L¢ = Pys. (1)

It is difficult to determine the true volume fraction for
bimrocks/bimsoils, especially for large scales. The com-
mon practice is to employ either 1D or 2D measurements,
or both (Sonmez et al. 2004). Many investigators resolved
to use aerial fractions of outcrops (2D surfaces), augment-
ed with field and laboratory tests to obtain the geometric
information of bimrock/bimsoil from outcrops (Medley
1994; Xu et al. 2008, 2011; Coli et al. 2012; Kahraman
et al. 2015; Ymeti et al. 2017; Liu et al. 2018; Meng et al.
2018; Yang et al. 2019). However, it is not always possi-
ble to obtain areal fraction of blocks through image anal-
ysis if the blocks are dyed by matrix or the chromatism
between blocks and matrix is small. As illustrated in Fig.
1, 1D measurement is perhaps the easiest and most effi-
cient way to obtain an aerial fraction of block (A) in both
laboratory and field scenarios. The 1D measurement has
also been used for the estimation of area fraction A; of a
surface (i.e., a cross-section, an image), as in the estima-
tion of lake area from remote sensing images (Stein and
Yifru 2010) and air voids from concrete surface (ASTM
2012).

Further, according to the Delesse principle (1847), the ex-
pected value of Ay, is equal to V,, if the sampling area is suffi-
ciently large such that it can represent the geometry of true

(a)
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bimrocks/bimsoils. In this paper, we assume that scan-line
measurements of the outcrops, images, or surfaces can reveal
the 3D geometry of bimrocks/bimsoils. Accordingly, this pa-
per uses V;, to express the areal fraction of block.

To avoid sampling bias, 1D lines sampling should be
applied systematically. This is readily achieved using
equally spaced, straight parallel lines (Fig. 1) that capture
spatial variability within a given system. This systematic
1D line measurement is referred to herein as the scan-line
method. To apply the scan-line method, the length of the
sampling lines has to be selected, which may be estimated
based on the confidence intervals. Quantification of the
uncertainty in Vj, is thus the first step to apply the scan-
line method.

Various approaches have been proposed in the past to guide
the selection of the required sampling length. For instance,
some rules of thumb have been proposed. Holmes (1921)
recommended that the total length of the lines be 100 times
the average diameter of the grains being measured. Krumbein
and Pettijohn (1938) considered that a total traverse length
equal to 1000 times the largest particle would give a fair de-
gree of accuracy. ASTM C457-11 (2012) requires the line
length to be 1000 to 3000 times the maximum diameter of
the void. Analytical solutions provide improved recommen-
dations, but so far are limited to the cases where V;is small.
Hilliard and Cahn (1961) presented an analytical solution,
which is only valid when the V¢ of a void is less than 5%, as
follows:

CV(Vy) = CVI(L,)

L _ \/ Lo
E(Lc) [CV(LC)Z + 1} E(Lc)

where E(*) represents the expected value, CV(*) represents the
coefficient of variance, L indicates the total length of the scan
line, and L. is the length of the interception when the scan line
passes through a void. If the particle shape is circular, Eq. (2)
can be simplified as follows:

(b)

Fig. 1 Scan line(s) measured on an outcrop. a Graphic model of mélange (Medley 1994). b Lateritic gravel formation, Taoyuan, Taiwan (Kuo 2005)
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CV(Vy) = CV(Vf)\/Dze = W/%E;S(Vf) (3)

Medley and Goodman (1994) developed empirical solu-
tions. They applied hand-tracing on a photograph of
mélange cores to evaluate the convergence of V}, with respect
to the scan-line sampling lengths. Medley (1994) further pre-
pared a series of bimrock samples when investigating the un-
certainty associated with volume fraction estimation, with the
known V,, varying within the range of 13 to 55%. Medley
further developed a chart to determine the uncertainty factor
for various scan-line lengths and V;, (Medley 1997, 2001).

In the following, the concept of “represented volume ele-
ment,” or RVE, is introduced first. A new analytical solution
on V,, measurement uncertainty that is based on RVE is then
presented. This is followed a detailed description of the veri-
fication efforts. The verification is carried out first by numer-
ical simulation and further by applying to controlled physical
tests. A new empirical equation is derived from the numerical
simulation results. Finally, an example is presented for esti-
mation of the uncertainty of volume fraction; the results are
further used to estimate the deformability parameters, includ-
ing the shear modulus and Young’s modulus.

Methodology: analytical solution
and numerical simulation

Representative volume element

The measurement of the volume fraction of inclusions
within a rock matrix is used as an example for introducing
the RVE concept. Consider the case that circular inclusions
of the same size are randomly and uniformly distributed
within a 2D matrix, RVE can be thought of a square ele-
ment with a circular inclusion that has a volume fraction
within the element the same as V}, to be measured. A ran-
domly drawn scan line, as shown in Fig. 2, would repeat-
edly hit and miss the inclusions. If the RVE is
superimposed and aligned with the nearby circular inclu-
sion that intersects with the scan line, as depicted in Fig. 2,
it becomes clear that estimates of V}, using scan lines can
conceptually be obtained by simply studying a single RVE.
When the blocks are uniformly and randomly distributed
within a matrix, a straight line of length L becomes N line
segments randomly drawn inside the RVE, where NLg
equals L and L is the width of the RVE. From this, a
theoretical derivation makes it possible to estimate V,,
using random variables.

It is important to note that RVE, the natural of the
phase, inclusion determines how high V;, can go. For in-
stance, in a 2D setting with uniform circular inclusions

the maximum V,, that can be attained is 78.5% (= m/
(2R)*) when the circular inclusions circumscribe the
boundary of RVE. While in a 3D setting, since a sphere
circumscribes to the boundary of a cube RVE can work
with V;, only up 52.4% (= 4/373/(2R)*). But in reality,
these limits can be broken when the inclusions have dif-
ferent sizes. To model that, the inclusions should be com-
posed of polydisperse circle or spheres within an RVE.
Such formulations are presented also.

Mathematical derivation

The analytical solution is first derived with the following con-
siderations (assumptions): (i) The inclusions are circular; (ii)
the scan lines are assumed to be vertical within a RVE; (iii) the
inclusions distribution within the matrix follows isotropic,
uniform, and random (called /UR) conditions; (iv) the RVE
is square with a width L, contains a circular inclusion of
diameter D; (v) the value of Vj, is in the range of 0 to 7/4.” It
thus gives the expected V;,

2
Erve(Vb) = —,

S

where 0<Eggy (Vy)<m/4. (4)

From the RVE model (Fig. 3), a scan line passing through x
would intercept the inclusion with an intercept length, L., as
follows,

D , D D
Lc:2 T_xv ?S SE (5)
L.=0, otherwise
The relationship of L, with V,, is simply
E L
Vi :ERVE(Lb) :%(07where OSVbS’]T/4, (6)
which further gives
wD?
Erve(L) = . 7
wve(le) = L (7)

The variance of linear fraction of block (L) in an RVE,
VzreW(Ly) can be expressed by

Vrve(Ly) = Erve (Lbz)_ERVE(Lb)27 where 0<Eggy (Ly) <7/4.

(8)

And Eq. (8) can also be expressed by L. and L as shown as

follows:
I (f—:) de ( )dx 2. o)

é‘ dx fésdx

Vrve(Ly) =

@ Springer
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Fig. 2 Conceptual diagram of an Scan-line

RVE model

Bimrock
And Eq. (9) can be rewritten as
D D
Vrve(Ls) = 3 Erve (ch)*L—ERVE(Lc)2 . (10)
S S

Substituting Eq. (7) into Eq. (10), Eq. (10) can be repre-
sented using L. and Ly, as follows:

7 Egve (L 3
Virve(Ly) = %LCBERVE(Lb)Z_ERVE(Lb)Za (11)
Erve(Le)

where 0<Eggy (Lp)<m/4.

Scan-line

Length of scan-line, L,
Diameter of block, D
Length of intercept, L,

1

Length of baseline, L,
Fig. 3 Mathematical model of an RVE
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As shown in Fig. 2, each scan line can be viewed as a
summation process. Thus, the statistics of its L, will converge
to a Gaussian distribution, which can be explained through the
central limit theorem (CLT) (Wackerly et al. 2008). The mean
value and uncertainty of L, estimation at various sampling
sizes (N = L/L) can be determined as follows:

E(Ly) = Erve(Ly)

V(Ly) = %VRVE(Lb)

,where 0<E(L,)<7/4, (12)

where V(*) represents variance.
By substituting Eq. (6) and Eq. (11) into Eq. (12), the fol-
lowing is obtained:

2 3
V(L) =+ { [’2 ((L; ))}E(Lb)f 2E (L*:)/%E (L) },where 0<E(Ly)<r/4. (13)

Equation (13) can determine the uncertainty of the lin-
ear fraction of a block by accessing the length of the scan
line, the intercept lengths, and the expected linear fraction
of the block, which can be obtained from a scan-line
measurement.

Although a block diameter cannot be measured directly
using the scan-line method, D can be calculated using Eq.
(7). Hence, Eq. (13) can be rewritten as

\/TE(Ly)*
V(Ly) % % = %E(Lb)f%, where 0<E(Ly)<m/4. (14)

Equation (14) is the same as the analytical solution pro-
posed by Tien et al. (2010), which can estimate the uncertainty

of a scan-line measurement under monodisperse block
inclusion.
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Fig. 4 Conceptual diagram of
tackling polydisperse inclusions
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Most block dispersions are polydisperse. Clearly, Eq.
(13) or Eq. (14) cannot be used under this condition. To
tackle this issue, this study employs the concept of the
“total sum of squares” (7SS) (Wackerly et al. 2008),
which includes the “sum of squares for treatment” (SS7,
the first term of Eq. (15)), and the “sum of squares for
error” (SSE, the second term of Eq. (15)), where SST can
be viewed as the measurement uncertainty from the block
size variability and SSE can be viewed as the measure-
ment uncertainties from the spatial probability of each
block size:

k /s _\2 k n \2
7SS =ny (Y,-*Y) +Y Y (Yﬂ) . (15)
i=1 i=1j=1
;77T mapping of mapping of =~ ",

! \ block B block B | L
I - }
() Q9

o o (/ J:I (u |
( \'I N 2
: /n’ ) {
,:’:\ o o LuzJ
) ) ©
it .f', "\\) ) CU
o L‘\__,,.- mapping of
block A i L—H) block A
. § ( } /‘—“H-. § =’
] — e’ \ O
O 5 ( Y B
| 2 NS ( I . |
“se—<" mapping of Theoet
block B block B
|« >l
I B "l

Fig. 5 Conceptual diagram of the periodic boundary

D, = 1.0D O Q T 2D feature,
Vi =0.2 O Q O C; = Api/(Ap1+Apt+As3)
D, = 0.6D o C ) 2D feature,
Vi =0.2 ) ® o C, = Apo/(Api+Apy+Ap;)
@ o ()
1;3 :_0(')32[) o ° o g 1 2D feature;
s = 0. © © 0 9 @ Cs = Aps/(Apr+Apy+Ap3)

A polydisperse inclusion (Fig. 4a) can be reassembled as
shown in Fig. 4b, with each block size having the same Ay,
indicating there are no A¢ variations between each block size.
Thus, the SST is equal to zero, and the 7SS is equal to the SSE.

Hence, Eq. (15) can be rewritten as:

kT

7SS = Z Z[Lb ij*E(Lb)jlz — i niV(Lb).

i=1j=1 i

(16)

Then, the total number of measurements in Eq. (16) is
divided, which can be rewritten as follows:

Viss(Ly) = [V(Ly)f(d)dd

(17)

.. 10,000

y(cm)

y 260'
x (cm)

Fig. 6 Scan lines for determining the uncertainty of V;, estimation

through a statistical approach
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Table 1 Parametric studies for

numerical simulations Volume fraction of block, V;, (%)

Length of scan line,

Block proportion®, C:C>:C3  Block size, D

3.14,6.28,12.6,25.1,37.7,50.3

4.71,9.43,18.9,28.3,37.8,47.1,
56.5

L/D,

30, 60, 120, 240 0:1:0 5cm

30, 60, 120, 240 10:1:1, 3:2:1, 1:1:1, 1:1:10 10 cm, 5 cm, 2.5
cm

#Block proportion C;:C5:Cs of block diameters equal to 10 cm, 5 ¢cm, and 2.5 ¢m, respectively.

where f(d) represents the possibility density function of
intercepts from the ith block size, which can also be represent-
ed as the block proportion, Ci = ith block area / total block
area.

Substituting Eq. (14) into Eq. (17), and allowing the 7SS to
have an equivalent diameter, D,, the following is obtained:

(18)

Equation (18) can also be expressed in series as follows:

D. = IDf(d)dd.

D.—= S CD,. (19)
=1

L

Substituting Eq. (7) into Eq. (18), the resulting equation
can be rewritten as:

4
D= ;IE(LC) £ (d)dd. (20)
Assuming that for each block £(L) = a;E(L.)cq, Where a; is
a multiple factor based on the equivalent block size and
E(Lc)eq s an equivalent intercept mean, Eq. (15) can then be
rewritten as

b ij[aE(Lc)eq}ada 4

=—FE(L.),,-
T Iazda T ( )eq

e (21)
The results of Eq. (21) are the same as those of Eq. (7),
which means Eq. (13) can be used to determine the uncertain-
ty of Ly in polydisperse inclusions. In addition, Eq. (14)
should be rewritten as follows:
L

V(L —
(b)xDe

8 7E(Ly)*

— _T(E(Lb)_ ,where 0<E(Ly)<7/4. (22)

For a reliability design or other in situ investigations,
most engineers apply CV = /V(.)/E(+) to determine the
uncertainty of the measurement. Equations (13) and (22)
can therefore also be presented as a CV, which are
expressed as

@ Springer

— l E(ch) 1 _ 2E(Lc)
V=N { = 7 wE(Lb)}7 23)
L 8 T
CV(Lb)\/; B \/37rE(Lb) N\ 4E(Ly) (24)

n
where 0 < E(Ly,) </4, D, = Y, C;D;, or D, = 2E(L).
=1
Equations (23) and (24) present an analytical solution for
the uncertainty of the volume fraction measurements using
scan-line method. This analytical solution is applicable when

E(Ly) is in the range of 0 < E(Ly,) < /4.

Numerical simulations

This paper presents a MATLAB code that can address a
volume fraction measurement in a bimrock/bimsoil using
a scan line. A 2D domain with uniform and random cir-
cular block dispersions in a square domain was generated.
A series of scan lines were placed on the feature. A series
of L, were obtained. The mean and standard deviation of
Ly, were calculated.

Periodic boundary

While generating the 2D domain, it is impossible to avoid
wall (or edge) effects (Bentz and Garboczi 1999), which
result in non-uniform dispersion near the edges. To reduce
the effect of the edge, four strips (2D in width) were
trimmed from the four edges of an extended square (the
generated domain) (Tien et al. 2010). However, this ap-
proach may result in Vi, scatter. To tackle this issue, a
periodic boundary is applied in this study. If a block in-
tersects one edge of the boundaries, the outside part of the
block will be mapped onto its opposite side, as shown in
Fig. 5. The advantages of the periodic boundary method
are to eliminate the wall effect and to generate features
with the precisely desired volume fraction.
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Fig. 7 Histograms of linear
fractions of blocks measured by
various scan-line lengths (L/D, =
30, 60, 120, 240) for a—d V}, =
0.05 and e-h V, = 0.5
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O  Monodisperse, C1:C:C3 = 0:1:0
Polydisperse, Ci:C;:C3=10:1:1

X Polydisperse, C1:C;:C3=6:4:2

& Polydisperse, C1:C:C3=4:4:4
Polydisperse, C;:C,:C3 =1:1:10

— = Numerical solution, Eq. (25), R2=0.99

— Analytical solution

Fig. 8 Normalized coefficients of 7
variance (CV(Lp)(L/Do)*>) vs
volumetric fraction (V}) 6 |
5 L
0
Satw
Q
S~
=
x 3 |
=
=
=
O,
1 L
0
0

Sizes of domain and block

The size of the domain should be sufficiently large to
accommodate a large number of blocks embedded into
the matrix to meet the conditions of being statistically
isotropic and homogeneous. In this study, the size of the
domain is 400 cm x 400 cm. The diameters of the blocks
are 2.5 cm, 5 cm, and 10 cm.

Simulation procedures
The numerical simulation procedures are as follows:

I. Define a square domain of size B x B
II. Determine V;, within this domain

HI. Place circular blocks randomly, and do not allow any
overlap between blocks

IV. Generate a large number of scan lines (say 10,000) in
Fig. 6. Then, calculate linear fractions of blocks, Ly, for
each line

Repeat steps (1) through (4) 100 times for each V,,; thus, this
work regenerates a heterogeneous rock mass 100 times for each
Vi, and calculates the total mean Ly, (100 x 10,000) and CV.

Parametric studies

Parametric studies were performed to evaluate the effects on
the uncertainty of volume fraction estimation. Several

Fig. 9 Block size distribution of 100
Medley’s (1997) physical model
tests
80
X 0
B
]
=
S
-
S 40
$
a
20
0
100
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Table 2 Block size distribution of Medley’s (1997) physical model

Elliptical block size (a:b:c) Average diameter® (Dsp) Percentage of block number Block proportion (C;)
6:3:3 mm 3.78 mm 79.7% 6.04%

12:6:6 mm 7.56 mm 16.2% 9.83%

24:12:12 mm 15.1 mm 3.29% 16.0%

48:24:24 mm 30.2 mm 0.668% 25.9%

96:48:48 mm 60.5 mm 0.136% 42.2%

A Dsp = Vabe

5
*D. =% 3 CiDsp, = 2 (3.78 x 0.0604 + 7.56 x 0.0983 + 15.1 x 0.16 + 30.2 x 0.259 + 60.5 x 0.422) = 32.5 mm
i=1

parameters, block sizes, relative lengths of scan lines, L/D.,
and volume fractions of blocks, V;, were selected. Three block
sizes were used: D; = 10 cm, D>, = 5 ¢cm, and D3 = 2.5 c¢m,
including monodisperse and polydisperse types. Four differ-
ent relative lengths of scan lines (L/D,.) were studied, includ-
ing L/D, = 30, L/D, = 60, L/D, = 120, and L/D, = 240. The
range of V,, is from 3.14 to 70.1%. The parameters for the
simulated bimrock/bimsoil are as shown in Table 1.

Simulation results

Parametric study for the relative length of a scan line The
simulation results are shown in Fig. 7. Cases of lower
and higher V;, are given as examples. It can be clearly
seen that V,, affects the uncertainty and distribution of
Ly, even under the same dimensionless length of a scan
line (or sampling size). For lower V,, (= 0.0506) (shown in
Fig. 7a as a lower dimensionless length of a scan line, L/
D, = 30), the distribution of L, shows a non-normal or a
non-log-normal distribution. As L/D, increases, the distri-
bution becomes more similar to a normal distribution, as

shown in Fig. 7a—d. For higher V,, (= 0.506) for L/D. = 30
(shown in Fig. 7a), the distribution of Z;, has an approx-
imately normal distribution. The CV of Ly is inversely
proportional to the square root of L/D., which can be
predicted by the analytical solution (Eq. (19)) and ex-
plained based on the CLT.

Equivalent diameter of the blocks For polydisperse cases, the
equivalent diameter of the blocks can be calculated using Eq.
(19). For example, the diameters of blocks Dy, D, and D5 are
10 cm, 5 cm, and 2.5 cm, respectively, and the ratio of block
proportions is C1:C5:C3 = 6:4:2. The equivalent diameter of
the block is

De=10x6/12+5x4/1242.5x2/12 = 7.08m.

There is a correlation between the measurement uncertainty
and block sizes, as shown in Eq. (19). From previous para-
metric studies, the uncertainty is proportional to the square
root of the sampling size. Therefore, CV(L,,) multiplied by
(L/D.) could be a constant at a particular Vj,. Other similar

Fig. 10 CVs of the volume 038
fraction measured from Medley’s
(1997) model and the present 0.7
study

0.6
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Table 3 CVs of block volume fractions: experimental data, analytical solutions, and numerical solution
Volume fraction of  Equivalent Length of scan CV(L[,)(L/De)O‘5
blocks, V,, diameter, D, (cm)  line, L/D,
Experimental Hilliard and This study
data Cahn (1961)
Analytical ~ Numerical
solution solution
Medley’s (1997) 0.13 3.25 17-830 2.11 2.55 2.01 2.24
physical model 37 325 14-672 0.762 1.63 1.04 1.10
0.42 3.25 13-627 0.773 1.42 0.883 0.807
0.55 3.25 9-472 0.495 1.24 0.590 0.536
Case I 0.554 0.366 16.9 0.582 1.24 0.585 0.530
Case II 0.505 0.0698 279 0.617 1.30 0.659 0.620
Case 111 0.417 0.0707 275 0.770 1.43 0.814 0.814
Case IV 0.300 0.0700 279 1.23 1.68 1.10 1.17
Case V 0.179 0.0637 30.6 1.64 2.18 1.80 1.79
Case VI 0.103 0.0698 27.9 2.43 2.87 2.34 2.59
Case VII 0.0452 0.0704 27.7 4.05 433 3.82 4.12

studies (Tien et al. 2010, 2011, 2012, 2015) also concluded
this phenomenon.

A parametric study of block sizes is shown in Fig. 8.
All the uncertainties of Vj, estimations for the various
block sizes are located on a curved line. This means the
numerical simulations for various block sizes followed
Eq. (19).

Regression curve for numerical solutions Based on the re-
sults of the numerical simulations, a relationship between
CV, V,, and L/D. was obtained via a regression procedure
(R* = 0.99):

CV+/L/D. = 0.259(logVy)* + 0.242(logV)*

25
—0.734(logVy)*—1.88(logVs) (25)

Fig. 11 Cross-sectional images of
the Iceland sand sample. a
Original CT scan image. b Binary
image (case I)

@ Springer

A comparison of the analytical and numerical solutions is
shown in Fig. 8.

Validation: physical model test and CT scan
images

The results of the physical model developed by Medley
(1997) and the CT scan images are adapted to validate the

analytical and numerical solutions.

Physical model

The physical bimrock models were composed of plaster of
Paris matrices in which were embedded ellipsoidal blocks to
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Fig. 12 CT scan images of K ,:;l* N
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investigate the uncertainty of a V,, estimate when using a scan ~ Francisco. However, the PSD was for 3D bimrock features.
line. The V}, of physical bimrock models ranged from 13 to  Hence, obtaining the D, from a 3D PSD is necessary.

55%. The particle size distribution followed a specific fractal If a surface cuts though a 3D monodisperse block in-
dimension (Medley 1997), which was in agreement with the clusion, then D, can be calculated from Eq. (19) as fol-
particle size distribution (PSD) of mélanges from San  lows:

@ Springer



1662

Y.-C. Luetal.

Fig. 13 Comparison of the CVs
of block volume fractions:
experimental data, analytical
solutions, and numerical solution

CV(Ly) x (L/D,)**

Analytical solution

= = =Numerical solution

Hilliard and Cahn (1961)

O CT-5can (Case I™VII)

X Medley (1997)

o in which D;p is the block diameter in a 3D feature.
De = IDf(d)dd = — Dsp, (26) W 3D ) e
32 If a surface passes though the 3D polydisperse inclusion,
then, by substituting Eq. (26) into Eq. (18), and using a PSD
where . . .
for the expression, the following is obtained:
2
wd” /4 9
f(d) = 3—/ D = —ID3pf (dpsp)ddpsp (28)
D3 /6 32
27 .
d=2 Dsp 2 —Dsp <x <D3D (27) where f(dpgp) represents a PSD function.
4 o2 T2 Medley’s (1997) physical model included five different
d=0, else elliptical block sizes, whose minor, middle, and major semi
Table 4 Measured intercept
lengths of the illustration of the Intercept Intercept length (cm)
scan-line method (Kuo 2005) number
Scan-line no.
1 2 3 4 5 6 7 8 9 10 11
1 5.7 6.2 1.1 3 4.2 53 42 4.7 42 2.5 4.5
2 3.6 2.1 2.15 1.7 4.1 32 1.8 1.05 53 38 1.25
3 9.3 4.9 5.8 2.8 1.35 1.3 21 9.1 1.3 4.8 7.5
4 32 1.1 4.1 4.7 2.7 7.5 115 4.7 3.7 4.5 3.1
5 35 34 5.1 3.5 2.4 56 46 2.7 4.85 3.7 5.6
6 4.2 3.0 2.7 29 3.7 33 315 2.8 6.8 4.4 0.65
7 5.6 9.2 2.8 3.6 3 3.6 3.8 2.1 4.3 29
8 4.4 5.7 5.8 32 0.8 35 33
9 5.1 3.1 3.1 29 3
10 4.75 3.7 32 4.1
11 2.65 55
12 2.1
13 1.2
Total 35.1 4415 2095 214 3085 35 3095 32.05 3585 4025 447
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Fig. 14 Histogram of numerical simulation results for Ly, for the case of
Vi, =0.338, D.=6.29 cm, and L = 1100 cm

axes were respectively 3, 3, and 6 mm; 6, 6, and 12 mm,;
12, 12, and 24 mm; 24, 24, and 48 mm; and 48, 48, and 96
mm, respectively. If the orientation of an elliptical block
follows uniformly random conditions, then the 1D mea-
surement results (mean and uncertainty) will be close to
the spherical block dispersion (Tien et al. 2011). The ellip-
tical blocks can be represented as an effective sphere,
which has the same volume as the ellipsoids. A PSD of
the blocks in Medley’s physical model is shown in Fig. 9.

After substituting the PSD (Fig. 9) into Eq. (28), the equiv-
alent block diameter, D, is equal to 32.5 mm. The detailed
calculations are shown in Table 2.

Furthermore, this work compares the proposed analytical
solution with Eq. (24), the numerical simulation, and
Medley’s model. The results indicate that the proposed solu-
tion is in good agreement with Medley’s physical model tests,
as shown in Fig. 10 and Table 3.

CT scan images

This study uses a CT scan to obtain internal cross-section
images from Iceland sand and crushed rock.

Iceland sand

This sample consists of Iceland sand and an epoxy matrix
(Griéser, personal communication). The resolution of case

Table 5 The elastic parameters of laterite-gravel formation (Lin 1986)
Bulk modulus, K (GPa) Shear modulus, G (GPa)

Laterite 0.0243 0.0112

Gravel 1 27.0 12.5

I is 669 pixels x 669 pixels, corresponding to a real size
of 6.21 mm X 6.21 mm. The original CT scan images are
in grayscale. To separate the block and matrix more clear-
ly, the grayscale images are enhanced to binary images
through image processing (shown in Fig. 11). A scan-
line analysis code (SAC) was developed to detect which
blocks would be intersected by scan-lines under binary
images. The number of scan lines in the SAC depends
on the image resolution, i.e., if there are 669 pixels in
the horizontal direction, then there will be 669 scan lines
in the vertical direction. The SAC records the “linear frac-
tion of block” from each scan line and the “intercept
length” from each intercepted block.

In case I, the scan-line length, L, is 6.21 mm, and 669
scan lines are generated in the SAC. The SAC also re-
corded 12,511 intercept lengths, which can be substituted
into Eq. (21), and D, = 0.366 mm. A mean of L, = 55.4%
and a standard deviation of L, = 7.83% were obtained.

Comparisons of Hilliard and Cahn’s (1961) analytical so-
lution (Egs. (2) or (3)), the proposed analytical solution, and
the numerical solution are shown in Table 3. They indicate
that the proposed analytical and numerical solutions agree
well with statistical results from case 1.

Crushed rock

This sample consists of crushed rock (from Kaoping
River, Taiwan) and an epoxy matrix, identified as case II
(Fig. 12a). The image size is 483 pixels x 483 pixels, and
its physical size is 1.95 cm x 1.95 cm. Both cases I and 11
are high V}, (more than 50%) images. To obtain images
(cases III-VII) with low V},, a computer program was used
to delete blocks in case II randomly, as shown in Fig.
12b-f.

Comparisons of the CVs of the block volume fraction
for the CT scan images, Hilliard and Cahn’s (1961) ana-
lytical solution, and the present study are made in Table 3
and Fig. 13. It can be clearly seen that the proposed ana-
lytical solution and the numerical solution compare very
well with the measured data. However, Hilliard and
Cahn’s (1961) solution will overestimate in higher V,,
conditions.

Applications of scan-line measurements
Volume fraction estimation
The location shown in the illustration of the scan-line

method is at + 17 km, No. 114 Provincial Highway,
Taoyuan County, Taiwan. The geology of this location is
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a laterite-gravel formation (Kuo 2005). The laterite-gravel
formation in Taoyuan consists of matric laterite and grav-
el. The size of the sampling region is 1 m x 1 m, and the
total length of the scan line is 11 X 1 m = 11 m, as shown
in Fig. 1b (called case VIII). The boundary of the block
and matrix is 32 mm (Church et al. 1987).

The intercept lengths of the blocks are shown in Table 4.
From this table, L;, can be obtained as follows:

L. 371.8 cm

L:—:
>~ L T 1100 cm

= 0.338. (29)
After substituting the L. data into Eq. (21), D, can be de-

termined using:

Volume fraction of gravel, V,

Then, by substituting Ly, D,, and L into Eq. (24), the fol-
lowing is obtained:

L 8 s
V(L 1/— = -
(L) \/37TE (Ly) 4E(Lb)
1100 cm (31)
\/629cm 37T><0338 \/4><0338

=0.0751

=>CV(L

According to a numerical simulation of this case, the
histogram of the linear fractions of the rock is approxi-
mately a normal distribution, as shown in Fig. 14. The
standard deviation is equal to 0.0254. The 95% confi-
dence interval of Ly is 0.338 +2-0.0254. Based on the
data of the scan-line field measurement, the equivalent

Differential scheme

— Gg/G=

- Gg /G, =110

1100

G/ G, =550

Monte-Carlo simulation
(G / G, = 1100)

4 4 4743 cm
D.=—FE(lL,))=—X———=6.29cm 30
=) = x T , (30)
Fig. 16 The shear modulus of g0
laterite-gravel formation vs vol-
ume fraction of block 70
60 Ve
=
2 50t &
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5 aw}
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w20 }
10 F
0
0.1

@ Springer

0.2 0.3 0.4 0.5 0.6
Volume fraction of gravel, V,



Uncertainty of volume fraction in bimrock using the scan-line method and its application in the estimation... 1665

150

Mean = 26.6 MPa I monte-Carlo simulations

Normal distribution

CV=791%

100

Count

S0

%

25 30 35
Shear modulus, G (MPa)

Fig. 17 Histogram of shear modulus of laterite-gravel formation

diameter of the blocks is 6.29 cm. According to the
Delesse principle (1847), the expected V,, is 0.338 with
a 95% confidence level in the interval of 0.287 to 0.389.
In most geotechnical parameter investigations, CV < 10%
corresponds to “low variability” (Phoon et al. 1995).
However, if the acceptable CV is more tolerant, e.g., CV
= 20%, then the requirement is L = 1.55 m.

Estimation of deformability parameters (shear
modulus and Young’s modulus)

It is generally difficult to determine the deformability of
laterite-gravel by conventional laboratory and field tests.
The deformability of laterite-gravel may be calculated
based on micromechanics, for example, self-consistent
scheme (Hershey 1954; Hill 1965) and differential scheme
(McLaughlin 1977). The required input parameters for
micromechanics include bulk moduli (K) and shear mod-
uli (G) of laterite and gravel (Lin 1986) (as shown in
Table 5) and V; of gravel (denoted herein as V4,). The
elastic ratio of gravel and laterite, G of gravel over G of

140
Mean =67.5 MPa - Monte-Carlo simulations
120 #
wW=771% Normal distribution
100} "
| i
S
w i -

40

20

%o 55 60 65 70 75 80 85 90
Youngs modulus, E (MPa)

Fig. 18 Histogram of Young’s modulus of laterite-gravel formation

laterite (Gg/Gvr) or K of gravel over K of laterite (Kg/Ky),
are about 1100. The elastic modulus ratio (Young’s mod-
ulus over uniaxial compressive strength (Eg/UCSg) is
about 500. Based on the data from the scan-line measure-
ment of case VIII (in section 4.1), the mean and CVof V,
are 0.338 and 0.0751, respectively.

In this paper, we utilize differential scheme (Eq. (32) to Eq.
(33)) assuming V;, as a normal random variable and using
Monte Carlo approach.

dK  (K¢K\[K+K
avy \ 1-Vy J\Kg+K*)’

dG (GG ([ G+G
avy \1-Vy ]\ Gs+G* )’

where

(32)

(33)

# — .+ G(9K+8G
K =3G,G" = 6((E+2E))

Substitute K (which is equal to K when V,, = 0), G
(which is equal to G when V; = 0),Kg, Gg, and the nor-
mal random variable V} into the differential scheme
(McLaughlin 1977). Then, using the 4th order Runge-
Kutta method (Butcher 1996) to solve the partial differen-
tial equations of the differential scheme, the bulk modu-
lus,K, and shear modulus,G, of laterite-gravel formation
under a specific V}, value can then be obtained. The sim-
ulation results of bulk modulus and shear modulus are
shown in Figs. 15 and 16, respectively. The result shows
that the influence of stiffness of gravel is insignificant on
the overall deformability of laterite-gravel mixture. In ad-
dition, Young’s modulus (£) and Poisson ratio (v) can be
also obtained by substituting bulk modulus and shear
modulus into Eq. (34) and Eq. (35).

for spherical inclusion.

F= R0 (34)
3K+ G

v K26 (35)
2(31( + G)

Shear modulus and Young’s modulus are important de-
sign parameters in geological engineering. The histograms
of shear modulus and Young’s modulus obtained in this
study are shown in Figs. 17 and 18, respectively. These
histograms indicate that both design parameters follow
approximately normal distribution. The mean and CV of
shear modulus and Young’s modulus are shown in
Table 6, which can provide an estimate of the 95% con-
fidence interval of shear modulus in the range of 22.4 to
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Table 6 The simulation results of

elastic moduli of laterite-gravel L/ Mean CVof Meanof CVof Meanof CVof Meanof CVof Mean CV
D. ofVy, Vo(%) K(MPa) K(%) G(MPa) G(%) EMPa) E%) ofv ofv
(%)
175 0338 751 48.7 6.62 26.6 791 67.5 7.71 0269  0.926
30 0338 181 48.7 15.7 26.5 18.6 67.3 182 0271 2.02

30.8 MPa, and Young’s modulus in the range of 57.1 to
77.9 MPa.

It should be noted that the deformability of bimrocks/
bimsoils often exhibits spatial and tempo variations (Chen
et al. 2019). These variations may be induced by the ge-
ometry of bimrocks/bimsoils such as the volume fraction
of block. With the proposed approach, the variation of the
deformability parameters can be estimated, and the results
may be used, for example, for reliability-based design of
engineering systems in the bimrocks/bimsoils (Chen et al.
2019).

Summary and conclusions

This paper presented analytical and numerical solutions to
quantify the uncertainty of volume fraction measurements
in bimrock/bimsoil using a scan-line method. The pro-
posed method had been validated using published physi-
cal experimental data and analytical solutions. As the vol-
ume fraction estimated with the scan-line measurements is
linked to deformability parameters, such as modulus of
clasticity and shear modulus, an estimate of these param-
eters along with their uncertainty characteristics can read-
ily be made. Such information enables the deterministic,
as well as the reliability-based, analysis and design of
engineering systems in the bimrocks/bimsoils.

I.  This paper proposed an analytical solution to quantify
the uncertainty of volume fraction estimation in a
bimrock/bimsoil using a scan-line method. A geometry
model based on representative volume elements was
adapted to derive the uncertainty of the volume fraction
of a block. The solution is a function of the volume
fraction of the block (V}), the diameter of the block,
and the length of the scan line. The applicable range
of Vy, is between 0 and 7/4.

II.  For the numerical approach, a 2D domain was generated,
which used a “periodic boundary” to avoid the “wall ef-
fect.” The results of the numerical simulations agreed
well with the analytical solution.

@ Springer

II. Experimental results of the physical model and CT scan
images were adapted to validate the analytical and nu-
merical solutions. The proposed analytical and numeri-
cal solutions showed a good agreement with the
experiments.

IV. The proposed analytical solution for estimation of the
volume fraction is further extended into a determinis-
tic micromechanical model to estimate the mean and
variation of bimrock’s mechanical properties such as
the shear modulus and Young’s modulus. The varia-
tion of these deformability parameters is also
characterized.
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