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Abstract
This paper studies contests with complementary prizes where each agent simultane-
ously distributes a fixed budget over multiple battlefields. Each battlefield has a single
prize which is divided among the competitors in proportion to an arbitrary power
function of their investment levels. A unique pure strategy Nash equilibrium is shown
to exist under arbitrarily sensitive battlefield success functions if objective functions
exhibit constant subunitary elasticity of substitution between prize shares. In contrast,
Blotto contests with linear objectives have only mixed strategy Nash equilibria if
battlefield success functions are sufficiently sensitive to investment levels. Sufficient
complementarity between prize shares allows pure strategy Nash equilibria to exist
under arbitrarily sensitive battlefield success functions.

Keywords Contest · Complement · Battlefield · Divisible · Equilibrium · Efficient

JEL Classification C72 · D74 · D4

1 Introduction

An agent’s value for one resource often depends on their other resources. Military
factions compete for both air supremacy and ground supremacy. Themarginal increase
in control over a contested region from additional air supremacymay depend in part on
a faction’s level of ground supremacy.1 Ride hailing firms compete for both riders and
drivers.2 The marginal revenue from an additional driver depends in part on the firm’s
success marketing their platform to riders. Social media platforms compete for both
users and advertisers. The marginal revenue from an additional user depends in part
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1 Pirnie Bruce et al. (2005) discusses complementarity between air and ground supremacy.
2 Farris et al. (2014) discusses competition for drivers between ride sharing firms.
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on the number of advertisers.3 Pharmaceutical firms compete to convince both doctors
and patients of their product’s effectiveness.4 The marginal revenue from persuading
an additional patient may depend in part on the firm’s success in convincing doctors.

This paper studiesmulti-battle contestswhere each agent simultaneously distributes
a fixed budget between a finite number of battlefields. As in the Blotto contest of Borel
(1921), contesting costs are sunk before agents allocate resources between battlefields.
Each battlefield has a single prize which is divided among the competitors in propor-
tion to a power function of the corresponding investment levels. Each agent seeks
to maximize an objective function with constant subunitary elasticity of substitution
between prize shares. A unique pure strategy Nash equilibrium is shown to exist under
which resource allocations are proportional to prize values.

The unique Nash equilibrium is shown to be Pareto efficient over the set of feasible
outcomes. Nonequilibrium outcomes often give every agent a lower payoff than they
earn in equilibrium. No strategy profile gives every agent a higher payoff than they
earn in equilibrium. Both the “size of the pie” and the “division of the pie” may vary,
so these contests are not zero-sum games. In the two-agent case, equilibrium payoffs
are shown to be minimax payoffs, so any deviation from equilibrium by one agent can
be exploited by the other to obtain an above-equilibrium payoff.

If battlefield success functions are sufficiently sensitive to investment levels,
conventional Blotto contests with linear objectives have only mixed strategy Nash
equilibria (Roberson 2006; Jin and Zhou 2018). In contrast, the present paper shows
that Blotto contests with arbitrarily sensitive battlefield success functions have pure
strategy Nash equilibria if objective functions exhibit constant subunitary elasticity of
substitution between prize shares.

The remainder of this paper is organized as follows. Section2 discusses the related
literature. Section3 describes the contest. Section4 considers the best response cor-
respondence. Section5 characterizes the Nash equilibrium. Section6 discusses the
efficiency of equilibrium and Sect. 7 concludes. Proofs are provided in the appendix.

2 Related literature

Borel (1921) describes the standard Blotto5 contest where battlefield success func-
tions take the auction6 form and payoffs are proportional to the number of battles
won. Roberson (2006) notes that such contests have no pure strategy Nash equilib-
ria. Subsequent work has investigated Blotto contests with lottery7 success functions.
Friedman (1958) identifies pure strategy Nash equilibria in Blotto contests where bat-
tlefield success is proportional to investment levels. Jin and Zhou (2018) show that
Blotto contests where objective functions are linear in battlefield success probabilities

3 Fulgoni and Lipsman (2014) describes complementary users and advertisers.
4 See Hurwitz and Caves (1988) for more on rent seeking by pharmaceutical firms.
5 In a Blotto contest, each agent allocates a fixed budget over multiple battlefields.
6 Under the auction success function, the agent who allocates the most resources to a given battle wins it
with certainty.
7 Under lottery success functions, an agent’s probability of success in a given battle depends on the amount
of resources they allocate to it.
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have no pure strategyNash equilibria if battlefield success probabilities are sufficiently
sensitive to investment levels.

Duffy and Matros (2015), Klumpp et al. (2019), and Anbarcı et al. (2020) consider
Blotto contests with majoritarian8 objectives and lottery success functions. Duffy and
Matros (2015) consider simultaneous battles while Klumpp et al. (2019) and Anbarcı
et al. (2020) consider sequential battles. Sela and Erez (2013) consider sequential
Blotto contests with linear objectives and lottery success functions. Clark and Konrad
(2007) and Kovenock and Roberson (2018) investigate two-player multi-battle con-
tests with best-shot9 and weakest-link10 objectives. Clark and Konrad (2007) consider
settings where the attacker has a best-shot objective and the defender has a weakest-
link objective. Kovenock and Roberson (2018) consider networks of battlefields with
best-shot andweakest-link objectives bothwithin and across networks. Clark andKon-
rad (2007) consider lottery success functions while Kovenock and Roberson (2018)
consider auction success functions.

The present paper considers blotto contests with divisible prizes. Instead of describ-
ing the probability that a given prize is awarded to a given agent, battlefield success
functions in the present paper describe the share of a given prize awarded to a given
agent. A unique pure strategy Nash equilibrium is shown to exist under arbitrarily sen-
sitive battlefield success functions if objective functions exhibit constant subunitary
elasticity of substitution between prize shares.

3 The contest

Consider a multi-battle contest where n ≥ 2 agents simultaneously distribute a fixed
budget over m battlefields. The set of agents is indexed by N = {1, 2, . . . , n}. The
set of battlefields is indexed by B = {1, 2, . . . ,m}. Each battlefield contains a single
divisible prize, so the set of prizes is also indexed by the set B. Let vb ∈ R++ denote
the value of the prize in battlefield b.

Let xib ∈ R+ denote the quantity of competitive resources invested by agent i in
battlefield b. As in the Blotto contest of Borel (1921) and Roberson (2006), agent i’s
total investment wi is sunk before they distribute their resources between battlefields.
Agent i’s allocation vector xi = (xi1, . . . , xim) ∈ R

m+ satisfies the budget constraint

m∑

b=1

xib = wi (1)

Let Xi = {
xi ∈ R

m+ : ∑m
k=1 xib = wi

}
denote agent i’s strategy set and let X =∏

i∈N Xi denote the set of all possible strategy profiles. Let yib (x) denote agent i’s
share of the prize in battlefield b under the strategy profile x . Let γb : X → �n−1
denote the battlefield success function such that γbi (x) = yib (x). The battlefield

8 An agent with amajoritarian objective aims tomaximize the probability that they win a weightedmajority
of battles.
9 An agent with a best-shot objective aims to maximize the probability that they win at least one battle.
10 An agent with a weakest-link objective aims to maximize the probability that they win all battles.
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success function γbi is assumed to be increasing in xib and decreasing x jb for j �= i .
It is assumed to be continuous, homogeneous of degree zero, and independent from
irrelevant alternatives such that

γbi
(
x ′) = γbi (x)

1 − γbk (x)
if x ′

kb = 0 and x ′
jb = x jb for j ∈ N \ {k} (2)

Clark and Riis (1998) show that all such battlefield success functions must be pro-
portional to a power function of the corresponding investment levels. Let μi ∈ R++
denote the strength of agent i’s competitive resources. Let a ∈ R++ denote the sensi-
tivity of the battlefield success function to investment levels such that agent i’s share
of the prize in battlefield b is

yib (x) = γbi (x) = μi xaib∑n
j=1 μ j xajb

if
n∑

j=1

x jb > 0 (3)

If zero competitive resources are allocated to battlefield b, then yib (x) = γbi (x) =
μi/

∑n
j=1 μ j . If a is very small then prize shares are relatively insensitive to resource

allocations. Conversely, if a is very large then nearly the entirety of the prize in
battlefield b is awarded to the agent who allocates the most resources to battlefield b.
Agent i’s battlefield success vector is yi (x) = (yi1 (x) , . . . , yim (x)) ∈ R

m+.
Each agent aims to maximize an objective function with constant elasticity of

substitution between prize shares. If yi (x) /∈ R
m++ then agent i’s payoff is πi (x) = 0.

As shown in the appendix, continuity implies that πi (x) = 0 if yi (x) /∈ R
m++.

Let ci ∈ R+ denote the degree of complementary between prizes for agent i . If
yi (x) ∈ R

m++ then agent i’s objective function is

πi (x) =
(

m∑

b=1

vb yib (x)−ci

)− 1
ci

(4)

Uzawa (1962) shows that constant elasticity of substitution between prize shares
implies the functional form of Eq. (4). For notational simplicity, dependence on the
strategy profile x is sometimes suppressed. The sum of the prize values is normalized
to unity. This is without loss of generality since linearly scaling the prize values by an
arbitrary constant λ ∈ R++ linearly scales the objective function by a corresponding
constant.

(
m∑

b=1

λvb y
−ci
ib

)− 1
ci

= λ
− 1

ci

(
m∑

b=1

vb y
−ci
ib

)− 1
ci

= λ
− 1

ci πi (5)

Agent i’s elasticity of substitution between prizes is ηi = (1 + ci )−1 (Uzawa 1962).
Since the level of complementary ci ∈ R+ is non-negative, the elasticity of substitution
is less than one. Acemoglu (2002) and León-Ledesma et al. (2010) note that factors
of production are complementary precisely when their elasticity of substitution is
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less than one. In the limit as ci → ∞, prizes are perfect complements and agent i’s
objective function converges to πi (x) = min {yi1 (x) , . . . , yim (x)}. In this limiting
case, there are multiple pure strategy Nash equilibria as illustrated by example 1.

Example 1 Consider a contest with two agents and two prizes where n = m = 2,
w1 = w2, and μ1 = μ2. If x1 = x2 = (θ, wi − θ) with θ ∈ (0, wi ) then yib = 1

2 .
In the limit as ci → ∞, prizes are perfect complements, so any unilateral deviation
would be unprofitable as it would give the deviator less of at least one prize.

4 Best responses

If any agent allocates a non-zero quantity of resources to battlefield b, then agent i’s
prize share yib is continuous in their allocation xib by Eq. (3). The objective function
(4) is therefore continuous over the interior of the strategy set since it is continuous
in prize shares. As illustrated by example 2, if all n agents allocate zero resources
to battlefield b then agent i could obtain the entirety of prize b by reallocating an
arbitrarily small quantity of resources to it.

Example 2 Consider a contest with two agents and two battlefields where a = 1,
v = ( 1

2 ,
1
2

)
, w = μ = c = (1, 1). Suppose both players allocate all of their resources

to battlefield 1, so x1 = x2 = (1, 0). Then agent 1’s battlefield success vector is
y1 = ( 1

2 ,
1
2

)
and the payoff to agent 1 is π1 = 1

2 . If agent 1 reallocates a small portion
ε of their resources frombattlefield 1 to battlefield 2 then their battlefield success vector

would equal y′
1 =

(
1−ε
2−ε

, 1
)
and their payoff would equal π ′

1 =
(
1
2

(
2−ε
1−ε

)
+ 1

2

)−1
.

Taking the limit as ε converges to zero obtains lim
ε→0

π ′
1 = 2

3 > 1
2 = π1.

Proposition 1 states that agent i’s objective function is strictly quasiconcave over
the interior of the strategy set. Since the objective function is differentiable over this
region, first order conditions are sufficient for maximization over the interior of the
strategy set.

Proposition 1 πi is strictly quasiconcave over xi ∈ R
n++.

Proof See Appendix A. 	

Strict quasiconcavity holds for ci > 0 because agent i’s payoff is then a strictly

increasing function of the strictly concave function

gi (xi ) = − 1

ci

m∑

b=1

vb yib (x)−ci (6)

Strict quasiconcavity also holds for the limiting case ci = 0 because agent i’s payoff
is then a strictly increasing function of the strictly concave function

logπi =
m∑

b=1

vb log yib (7)

123



D. Stephenson

Proposition 2 states that every resource allocation on the boundary of agent i’s
strategy set yields a strictly lower payoff than some other allocation in the interior of
their strategy set. Hence the boundary of the strategy set never contains a best response.
Since agent i’s payoff is strictly quasiconcave over the interior of their strategy set,
they cannot have multiple best responses. Taking a convex combination between any
two distinct best responses would yield a larger payoff.

Proposition 2 For every strategy profile x ∈ X such that xib = 0 for some b ∈ B
there exists x ′

i ∈ Xi such that πi
(
x ′
i , x−i

)
> πi (x).

Proof See Appendix A. 	

Proposition 2 implies that every best response lies in the interior of the strategy

set. Agent i would obtain zero share of prize b if they allocate zero resources to the
battlefield b and some other agent allocates a strictly positive amount. Conversely, if
no other agent allocates resources to battlefield b, then agent i could obtain the entirety
of prize b by allocating an arbitrarily small amount of resources to it. Proposition 3
characterizes the best response. Agent i maximizes their payoff by equalizing the
marginal benefit of investment in each battlefield.

Proposition 3 A strategy xi ∈ Xi maximizes agent i’s payoff πi if and only if for all
battlefields b, k ∈ B

vb (1 − yib)

yciibxib
= vk (1 − yik)

yciik xik
(8)

Proof See Appendix A. 	

These conditions are both necessary and sufficient for payoff maximization because

best responses are always unique and they always lie in the interior of the strategy
set. If agent i’s marginal payoff from investment in battlefield k was higher than their
marginal payoff from investment in battlefield b then agent i could achieve a higher
payoff by reallocating resources from battlefield b to battlefield k. Rearranging (8) to
isolate the allocation ratio yields

xib
xik

= vb y
−ci
ib (1 − yib)

vk y
−ci
ik (1 − yik)

(9)

Since ci is non-negative, the right hand side of Eq. (9) is decreasing in yib and
increasing in yik . If agent i is best responding and their share yib of prize b is larger
than their share yik of prize k, then their allocation ratio xib/xik must be less than the
corresponding value ratio vb/vk . Conversely, if yib was smaller than yik then xib/xik
must be greater than vb/vk . Example 3 illustrates why a best response may fail to exist
if an agent allocates all their resources to a single battlefield.

Example 3 Consider a contest with two agents and two battlefields where a = 1,
c1 = c2 = 1, μ1 = μ2, and v1 = v2. Suppose agent 1 allocates all of their resources
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to battlefield 1 such that x1 = (0, 1). Then agent 2 can obtain the entirety of prize 2 by
allocating an arbitrarily small quantity resources to battlefield 2. Hence π2 (x1, x2) <

π2
(
x1, x ′

2

)
where x2 = (1 − ε, ε) and x ′

2 = (
1 − ε

2 ,
ε
2

)
for all ε ∈ (0, 1). Hence no

interior strategy can be a best response for agent 2. Yet proposition 2 states that any
best response must lie in the interior of the strategy space, so agent 2 has no best
response to x1 = (0, 1).

If ci was less than zero, the objective function could fail to be quasiconcave. In such
settings, best responses might lie on the boundary of the strategy set and agents might
have multiple best responses. Example 4 considers a setting where ci = −2 and one
agent has multiple best responses on the boundary of their strategy set.

Example 4 Consider a contest with two agents and two battlefields where c1 = c2 =
−2, n = m = 2, a = 2, μ1 = μ2 = 1, and v1 = v2. The resulting payoff function is

πi (x) = v
1/2
1

(
yi1 (x)2 + yi2 (x)2

)1/2
. In this case, receiving the entirety of one prize

and none of the other is better than receiving half of each prize. If x1 = (0.5, 0.5),
then agent 2 can maximize their objective function by either allocating all of their
resources to battlefield 1 or by allocating all of their resources to battlefield 2.

5 Nash equilibrium

The marginal value of an increase in agent i’s share of one prize depends on their
share of other prizes. Complementarity between prizes incentivizes agent i to invest
more in battlefields where they are relatively less successful. Proposition 4 states that
agent i must receive the same share of each prize in equilibrium.

Proposition 4 In every pure strategy Nash equilibrium, yib = yik for every agent i
and all battlefields b and k.

Proof See Appendix A. 	

If agent i’s share of prize b was larger than their share of prize k then some other

agent j must have a larger share of prize k than prize b. Then agent i’s allocation ratio
xib/xik would be greater than agent j’s allocation ratio x jb/x jk by Eq. (3). If both
agents are best responding, Eq. (9)would then imply that agent i’s allocation ratiomust
be lower than agent j’s allocation ratio. Hence agent i must obtain the same share of
each prize in equilibrium and Eq. (9) implies that the equilibrium allocation ratio must
equal the corresponding value ratio. Theorem 1 characterizes the Nash equilibrium.

Theorem 1 The unique pure strategy Nash equilibrium is x∗
ib = wivb.

Proof See Appendix A. 	

The Nash equilibrium strategy profile depends on neither the level of complemen-

tarity ci nor on the sensitivity a of the battlefield success function. Yet proposition 3
implies that agent i’s best response generally depends on both of these parameters. In
equilibrium, yib = yik by proposition 4 and Eq. (9) reduces to

xib
xik

= vb

vk
(10)
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In this case, all of the terms involving a and ci cancel out, so neither parameter affects
the equilibrium investment ratio. The elasticity of substitution between prizes is given
by ηi = (1 + ci )−1 (Uzawa 1962). Hence ci is positive precisely when the elasticity
of substitution ηi is less than one. As discussed in Sect. 3, theorem 1 always holds
when ci ≥ 0. Example 5 shows that the proportional strategy profile described by
theorem 1 is still a Nash equilibrium in some contests with super-unitary elasticity of
substitution.

Example 5 If w1 = w2 = μ1 = μ2 = 1, v1 = v2 = 1
2 , and η1 = η2 = 2 then

c1 = c2 = − 1
2 and

πi (x) =
(
1

2
yi1 (x)

1
2 + 1

2
yi2 (x)

1
2

)2

= gi (x)
2 (11)

where gi (x) = 1

2
yi1 (x)

1
2 + 1

2
yi2 (x)

1
2 (12)

If a = 1 then yib (x) is strictly concave in xib so gi (x) is strictly concave in xi
and πi is strictly quasiconcave in xi . Hence the first order condition is sufficient for
maximization and the proportional strategy profile xib = 1

2 is a Nash equilibrium.

Example 6 illustrates why subunitary elasticity of substitution between prizes is
important for theorem 1. For every super-unitary elasticity of substitution ηi > 1
there exists a contest where the proportional strategy profile is not a Nash equilibrium.

Example 6 If w1 = w2 = μ1 = μ2 = 1 and c1 < 0 then

π1 (x) = (
v1yi1 (x)−c1 + v2yi2 (x)−c1

)− 1
c1 (13)

If v1 = ( 2
3

)−c1 , v2 = 1 − v1, and x1 = x2 = (v1, v2) then π1 (x1, x2) = 1
2 . If

x ′
1 = (1, 0) then

lim
a→∞π1

(
x ′
1, x2

) = v
− 1

c1
1 = 2

3
>

1

2
= lim

a→∞π1 (x1, x2) (14)

Hence x1 is not a best response to x2 if battlefield success functions are sufficiently
sensitive.

6 Efficiency

Proposition 5 states that agent i’s equilibrium payoff is a function of their endow-
ment wi . Equilibrium payoffs exhibit greater sensitivity to initial endowments when
battlefield success functions exhibit greater sensitivity to investment levels. Less sen-
sitive battlefield success functions make equilibrium payoffs less sensitive to initial
endowments without distorting equilibrium allocations.
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Proposition 5 The unique Nash equilibrium payoff to agent i is

π∗
i = μiw

a
i∑n

�=1 μ�w
a
�

(15)

Proof See Appendix A. 	

Proposition 6 states that Nash equilibriummaximizes the total payoff to all n agents.

Consequently, the equilibrium strategy profile is Pareto efficient over the set of feasible
outcomes. Hence any non-equilibrium strategy profile that gives one agent a greater
payoff than they earn in equilibrium must give some other agent a lower payoff than
they earn in equilibrium.

Proposition 6 The maximum total payoff to all n agents over all feasible strategy
profiles x ∈ X is

max
x∈X

n∑

i=1

πi (x) = 1

Proof See Appendix A. 	

The Pareto efficiency of the unique Nash equilibrium immediately rules out the

possibility of strategy profiles that give every agent a higher payoff than they earn in
equilibrium. Proposition 7 states that, in the two agent case, either agent can obtain
an above-equilibrium payoff if their opponent employs a non-equilibrium strategy.
Consequently, Nash equilibrium payoffs are minimax payoffs in the two agent case.

Proposition 7 If agent j employs a non-equilibrium strategy and n = 2 then agent i
can obtain an above-equilibrium payoff.

Proof See Appendix A. 	

Many non-equilibrium outcomes are Pareto dominated by the equilibrium outcome.

Example 7 illustrates how non-equilibrium strategy profiles can give every player a
lower payoff than they earn in equilibrium. Both the “size of the pie” and the “division
of the pie” can vary, so these contests are not zero-sum games.

Example 7 Consider a contest with two players and two battlefields where a = 1, v =( 1
2 ,

1
2

)
, and w = μ = c = (1, 1). If x1 = x2 = ( 1

2 ,
1
2

)
then y1 (x) = y2 (x) = ( 1

2 ,
1
2

)
.

If x ′
1 = ( 1

3 ,
2
3

)
and x ′

2 = ( 2
3 ,

1
3

)
then y1

(
x ′) = ( 1

3 ,
2
3

)
and y2

(
x ′) = ( 2

3 ,
1
3

)
so

πi
(
x ′) =

(
1

2yi1 (x ′)
+ 1

2yi2 (x ′)

)−1

(16)

π1
(
x ′) = π2

(
x ′) = 4

9
<

1

2
= π1 (x) = π2 (x) (17)
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7 Conclusion

This paper considers multi-battle conflicts where agents allocate fixed budgets to com-
pete over divisible prizes. The share of a given prize awarded to a given agent is given
by an arbitrarily sensitive battlefield success function. Prize shares are proportional to
a power function of investments and payoffs exhibit constant elasticity in prize shares.
Blotto contests with linear objective functions have no pure strategy Nash equilibrium
if success functions are sufficiently sensitive to investment levels. Conversely, if prizes
exhibit subunitary elasticity of substitution, the proportional strategy profile is shown
to be the unique Nash equilibrium under arbitrarily sensitive success functions.

The unique Nash equilibrium is shown to be Pareto efficient over the set of feasible
outcomes. No strategy profile gives every player a higher payoff than they earn in
equilibrium and nonequilibrium strategy profiles often give every player a lower payoff
than they earn in equilibrium. Both the “size of the pie” and the “division of the pie”
can vary, so these contests are not zero-sum games. In the two agent case, equilibrium
payoffs are shown to be minimax payoffs. Any deviation from equilibrium by one
agent can be exploited by the other to obtain an above-equilibrium payoff.

Many settings involve competition over complementary prizes. Ride hailing firms
compete for both riders and drivers. Pharmaceutical firms compete to persuade both
doctors and patients. Military factions compete for both air supremacy and ground
supremacy. The existence of pure strategy Nash equilibria in such settings may depend
on the level of complementarity between prizes. If prizes are sufficiently comple-
mentary, pure strategy Nash equilibria can exist under arbitrarily sensitive success
functions. In contrast, Blotto contests where payoffs are linear in battlefield success
have only mixed strategy Nash equilibria if success functions are sufficiently sensitive
to investment levels. If policy makers are risk averse, they may prefer pure strategy
equilibria over mixed strategy equilibria. Complementarity between prizes can allow
pure strategy Nash equilibria to persist in the presence of highly sensitive success
functions.

Generalizations of the present model should be considered by future research. The
present paper considers objective functions that exhibit constant subunitary elasticity
of substitution between prize shares. Example 6 shows that there are prize valuations
under which the proportional strategy profile is not a Nash equilibrium if the elastic-
ity of substitution between prize shares is greater than one. Future research should
provide a more complete characterization of Nash equilibria in settings where the
elasticity of substitution between prizes is greater than one. The present paper allows
different prizes to have different values but assumes that a given prize has the same
value to every agent. Future research should consider settings where different agents
have different values for the same prize. The present paper assumes that prize shares
are equally sensitive to investment levels in each battlefield. Future research should
consider settings where different battlefield success functions exhibit different levels
of sensitivity.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
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Appendix A: Proofs

Proof of payoff continuity If yi ∈ R
m++then the payoff to agent i is

πi =
(

m∑

b=1

vb y
−ci
ib

)− 1
ci

= 1
(∑m

b=1 vb y
−ci
ib

) 1
ci

(18)

Since ci > 0, y−ci
ib increases without bound as yib converges to zero, so the sum∑m

b=1 vb y
−ci
ib increases without bound as as yib converges to zero. Hence πi converges

to zero as yib converges to zero. 	

Proof of Proposition 1 Let gi denote an increasing function of πi given by

gi = − 1

ciπ
ci
i

= − 1

ci

m∑

b=1

vb y
−ci
ib (19)

Differentiating yib with respect to xib yields

∂ yib
∂xib

= ∂

∂xib

[
μi xaib∑n
j=1 μ j xajb

]
=

∑
j �=i μ j xajb

(∑n
j=1 μ j xajb

)2 aμi x
a−1
ib

= a

xib

(∑
j �=i μ j xajb∑n
j=1 μ j xajb

)(
μi xaib∑n
j=1 μ j xajb

)
= a (1 − yib) yib

xib

So differentiating gi with respect to xi yields

∂gi
∂xib

= ∂gi
∂ yib

∂ yib
∂xib

= vb

y1+ci
ib

a (1 − yib) yib
xib

= avb (1 − yib)

yciibxib
(20)

Since the numerator of (20) is decreasing in xib and the denominator is increasing

in xib we have ∂2gi
∂x2ib

< 0. Since (20) is constant in xih for h �= b, the mixed second

order partial derivatives are given by ∂2gi
∂xib∂xih

= 0. Thus the matrix of second order
partial derivatives is negative definite, so gi is strictly concave in xi . Henceπi is strictly
quasiconcave in xi for ci > 0 since gi is a strictly increasing function of πi . If ci = 0
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then the payoff to agent i is given by

πi =
m∏

b=1

yvb
ib (21)

Taking the logarithm of both sides obtains

logπi =
m∑

b=1

vb log yib (22)

Differentiating with respect to xib yields

∂

∂xib

[
logπi

]
= vb

yib

∂ yib
∂xib

= a (1 − yib)

xib
(23)

Thus ∂2 logπi

∂x2ib
< 0 and ∂2 logπi

∂xib∂xih
= 0 for b �= h. Hence πi is strictly quasiconcave in

xi for ci = 0. 	

Proof of Proposition 2 Let x ∈ X such that xib = 0. Now consider the alternative
strategy x̂i ∈ Xi such that

x̂ik = ε
wi

m
+ (1 − ε) xik (24)

If x jb > 0 for some j �= i then πi (x) = 0 < πi
(
x̂i , x−i

)
. Alternatively, if x jb = 0

for all j then γbi (x) = μi/
∑n

j=1 μ j < 1 = yib
(
x̂i , x−i

)
for all ε > 0. Since x jb = 0

for all j ∈ N there exists at least one battlefield h ∈ B such that x jh > 0 for some
j �= i . Hence the limiting value of γhi

(
x̂i , x−i

)
as ε approaches zero from above is

given by

lim
ε↓0 γhi

(
x̂i , x−i

) = μi xih∑n
j=1 μ j xajh

= yih (x) (25)

Hence πi
(
x̂i , x−i

)
> πi (x) for some ε > 0 since πi is continuous over yi ∈ R

m++. 	

Proof of Proposition 3 Suppose xi is a best response for agent i . By proposition 2, xi
must lie in the interior of the strategy set. Since agent i’s payoff is differentiable over
the interior of the strategy set we have

∂πi

∂xib
= ∂πi

∂xik
(26)

vb (1 − yib)

yciibxib
= vk (1 − yik)

yciik xik
(27)

By proposition 2 every best response must lie in the interior of the strategy set. By
proposition 1 agent i’s payoff πi is strictly quasiconcave over this region. Since the
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objective function is differentiable in xi over this region, the first order conditions on
xi are sufficient for maximization. 	

Proof of Proposition 4 If yib < yik then we have

∑

� �=i

y�b = (1 − yib) > (1 − yik) =
∑

� �=i

y�k (28)

Hence there exists j �= i such that y jk < y jb and

yib y jk < yik y jb (29)
(

μi xaib
Zb

) (
μ j xajk
Zk

)
<

(
μi xaik
Zk

) (
μ j xajb
Zb

)
where Zb =

n∑

�=1

μ�x
a
�b (30)

xibx jk < xik x jb (31)

By proposition 3 the first order conditions on xi can be written as

xib
xik

= vb (1 − yib) y
−ci
ib

vk (1 − yik) y
−ci
ik

(32)

If x is a Nash equilibrium then by Eq. (32) we have

yib < yik
y jk < yib


⇒ xib
xik

>
vb

vk
>

x jb
x jk


⇒ xibx jk > xik x jb (33)

But this contradicts Eq. (31). 	

Proof of Theorem 1 By proposition 4 if x is a Nash equilibrium strategy profile then
for every agent i there exists ȳi ∈ [0, 1] such that for every battlefield b agent i’s share
of prize b is yib = ȳi . Hence by proposition 3 the necessary and sufficient first order
conditions on xi for the maximization of πi are given by

vb (1 − ȳi )

xib ȳ
ci
i

= vk (1 − ȳi )

xik ȳ
ci
i

(34)

vb

vk
= xib

xik
(35)

Hence xibvk = xikvb and summing over k obtains xib = wivb. 	

Proof of Proposition 5 By proposition 4 if x is a Nash equilibrium strategy profile then
for every agent i there exists ȳi ∈ [0, 1] such that for every battlefield b agent i’s share
of prize b is given by yib = ȳi . Hence the payoff to agent i can be written as

πi =
(

m∑

b=1

vb ȳ
−ci
i

)− 1
ci

= ȳi

(
m∑

b=1

vb

)− 1
ci
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Now since
∑m

b=1 vb = 1 we have

πi = ȳi = μiw
a
i∑n

�=1 μ�w
a
�

(36)

	


Proof of Proposition 6 Let Y denote the set of all y ∈ R
n×m+ such that for all battlefields

b ∈ B the sum of all prize shares is given by
∑n

i=1 yib = 1. Hence Y includes all
feasible outcomes. Let gi denote a strictly increasing function of πi given by

gi = − 1

ciπ
ci
i

= − 1

ci

m∑

b=1

vb y
−ci
ib (37)

For θ ∈ �n−1 let Gθ denote a weighted sum of all gi given by

Gθ =
n∑

i=1

θi gi = −
n∑

i=1

1

ci

m∑

b=1

θivb y
−ci
ib (38)

Hence Gθ is increasing in πi for each agent i . Now differentiating Gθ with respect
to yib yields

∂Gθ

∂ yib
= θivb

y
ci+1
ib

> 0 and twice differentiating Gθ with respect to yib yields

∂2Gθ

∂ y2ib
= − (ci + 1) θivb

y
ci+2
ib

< 0. The cross partial derivatives are given by ∂G
∂ yib∂ y jb

= 0.

Hence Gθ is strictly concave over yNb = (y1b, . . . , ynb) ∈ R
m++. The first order

conditions on yNb for the maximization of Gθ are given by

θivb

yci+1
ib

= ∂G

∂ yib
= ∂G

∂ y jb
= θ jvb

y
c j+1
jb

(39)

θi

θ j
= yci+1

ib

y
c j+1
jb


⇒ yib = ȳi (40)

Thus if y maximizes Gθ over Y then the payoff to agent i satisfies πi = ȳi . Now if
y ∈ Y maximizes the total payoff

∑n
i=1 πib over Y then it is Pareto efficient over Y ,

so there exists some θ ∈ �n−1 such that y maximizes Gθ over Y and the total payoff
is given by

n∑

i=1

πi =
n∑

i=1

ȳi = 1
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Proof of Proposition 7 Let x j denote an allocation employed by agent j and suppose
that agent i employs the allocation

xib = wi x jb
w j

(41)

Then the share of prize b awarded to agent i is given by

yib = μi xaib
μi xaib + μ j xajb

= μiw
a
i

μiw
a
i + μ jw

a
j

= ȳi (42)

Hence the payoff to agent i is given by

πi =
(

m∑

b=1

vb ȳ
−ci
i

)− 1
ci

= ȳi

(
m∑

b=1

vb

)− 1
ci

= μiw
a
i

μiw
a
i + μ jw

a
j

(43)

Thus by proposition 5 agent i can always obtain at least their unique Nash equilibrium
payoff. Now if x jb �= w jvb then the strategy given by Eq. (41) does not satisfy the
first order conditions for the maximization of agent i’s payoff. Hence it is not a best
response by proposition 3, so there exists some alternative strategy that does better. 	
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