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Abstract
In a model with correlated and interdependent values/costs, we identify for the buyer’s
bid double auction the asymptotic distributions of the price and of two order statis-
tics in the first order conditions for optimal bidding/asking, all of which are normal.
Substitution of the asymptotic distributions into the first order conditions can permit
the solution for approximately optimal bids/asks that provide insight into what is “
first order” in a trader’s strategic decision-making, which has been difficult to obtain
through analysis of equilibrium.

Keywords Double auction · Rational expectations equilibrium · Interdependent
value · Common value · Central limit theorem

JEL Classification C63 · D44 · D82

1 Introduction

In a double auction environment, this paper establishes a central limit theorem for the
market price and for the order statistics among bids/asks that are critical in a trader’s
decision problem. The informational environment in which the result is established
allows for both correlation among the informational signals of traders and interdepen-
dence of their values/costs. Interdependence of values/costs means that a trader draws
an inference from the price and the event that he trades in determining his optimal
bid/ask. This inference problem has impeded the study of double auction equilibrium
in all but very large markets, wherein inference and strategic behavior are simplified.
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We apply the asymptotic distributions established in our central limit theorem to sim-
plifying a trader’s decision problem and thereby gain insight into what is “first order”
in this problem.

The model. We consider a double auction in an informational environment from
Satterthwaite, Williams, and Zachariadis (2020) with a linear structure that facilitates
analysis. Fix m, n ∈ N. For market size η ∈ N, we consider ηm buyers, each of
whom wishes to buy one item, and ηn sellers, each of whom has one item to sell. A
state μ is drawn from the uniform improper prior on R. We discuss our use of this
improper distribution below. A preference term εi is independently drawn for each
trader i from a distributionGε onR to determine his value/costμ+εi . Utility for each
trader is quasilinear in his value/cost and money, with utility normalized to zero in
the case of no trade and no monetary transfer. A noise term δi is independently drawn
for each trader i from a distribution Gδ on R, with trader i observing the signal σi =
μ+εi +δi . Conditional on the observation of his signal, a trader’s probabilistic beliefs
about the signal of every other trader are well-defined. We thus study a correlated
interdependent values model, with correlation of values/costs occurring through the
state μ and interdependence referring to the fact that learning another trader’s signal
or value/cost may cause a trader to update his estimate of his own value/cost.

This informational environment is sufficiently restrictive to allow a deeper analy-
sis of strategic behavior than in more general environments, while still retaining the
correlation and interdependence of values/costs that are prominent features of actual
markets. The uniform improper prior can be thought of informally as “the uniform
distribution across the entire real line.” DeGroot (1970, p. 190) motivates it as model-
ing a situation in which forming a proper prior ex ante is costly or complicated and the
decision maker knows that he will receive valuable information at the interim stage
on which to define his posterior beliefs, which are then well-defined. Its real value for
our purposes is that it implies an invariance property for a trader’s decision problem:
a trader’s beliefs about the values/costs and signals of others in relation to his own
signal are the same for each possible value of his signal. A trader’s decision problem
is therefore simply translated linearly as his signal changes and he in this sense solves
the same problem at every value of his signal. This greatly simplifies the analysis of
his decision.

There are two cases in particular that we address in the paper: the case in which the
noise distributionGδ is degenerate and each trader directly observes his own value/cost
is the private values special case, and the case in which preference distribution Gε

is degenerate and each trader observes a noisy signal of the state μ is the common
value limiting case. Our distinction between the private values special case and the
common value limiting case is meaningful: while all results from the general model
define analogous results in the private values case, some results of the general model
do not hold near the common value case. This is a theme that we explore in this paper.

Following Satterthwaite andWilliams (1989, p. 480), the buyer’s bid double auction
(BBDA) is defined as follows.Knowing their signals, eachbuyer submits a bid and each
seller submits an ask. The bids/asks are ordered in a list s(1) ≤ s(2) ≤ · · · ≤ s(η(m+n)).
The BBDA’s price equals s(ηm+1) with buyers whose bids are at or above this price
buying from sellers whose asks are strictly below this price. The following argument
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shows that this price equates demand with supply when s(ηm+1) > s(ηm). Letting t
denote the number of bids from the ηm buyers that are at least s(ηm+1), the remaining
ηm − t bids must be below s(ηm+1), which means that t of the ηm bids/asks that are
below s(ηm+1) must be asks. When s(ηm+1) > s(ηm), the number of bids/asks below
s(ηm+1) is less than ηm and so the number of asks below s(ηm+1) is less than t . In this
case of excess demand, the available supply from the sellers whose asks are less than
s(ηm+1) is allocated among buyers whose bids are at least s(ηm+1) in decreasing order
starting at the highest bid, with any tie that remains resolved using a fair lottery.

The BBDA simplifies behavior on one side of the market in the following sense. A
seller trades only if his ask is below the price s(ηm+1); he cannot influence the price at
which he trades. He therefore acts as a price-taker and chooses his ask to place himself
on the correct side of the realized market price, taking into account both his signal
and the information that he learns from the market price in the event that he trades.
In the private values case in which he knows his cost, this reduces to submitting it as
his ask, i.e., S(c) = c is a seller’s dominant strategy. A buyer, however, sets the price
at which he trades in the event that his bid equals s(ηm+1). He takes this possibility
into account in choosing his bid, bidding below what his bid would otherwise be if he
instead acted as a price-taker.

Asymptotics of price and critical order statistics. Theorem 1 is the central limit
theorem for the distributions of the BBDA’s price and of the order statistics among
bids/asks that are crucial in a trader’s decision problem. The theorem identifies a bound
on strategies that is sufficient to enable a standard proof of a central limit theorem to
proceed. This bound is weaker than a bound that has been shown to hold by equilibria
in a variety of trading models (though not by equilibria in the general model of this
paper). Notably, however, the theorem does not use the constraint of equilibrium in
its proof, and it in this sense holds for a broader range of behavior.

Theorem 1 begins by characterizing the asymptotic distribution of the BBDA’s
price. The pioneering paper (Reny and Perry 2006) shows that a double auction’s
equilibrium price in a continuum market coincides with the rational expectations
equilibrium (REE) price. It is also proven that a noncooperative equilibrium exists in
a sufficiently large but finite market that approximately implements the REE price of
the continuum limit. Satterthwaite, Williams, and Zachariadis (2022, Thm. 7) proves
convergence of the BBDA’s price to the REE price as the market size η increases
within the private values special case of this paper and shows that its expected error
is �

(
1/

√
η
)
. Theorem 1 goes further and characterizes the asymptotic distribution

of the BBDA’s price as normal with mean equal to the limiting REE price and with
an explicit formula for its variance. Within the informational environment of this
paper, the BBDA’s price is therefore a consistent, asymptotically unbiased and normal
estimator of the REE price.

We next turn to a trader’s decision problem. In the ordered list s(1) ≤ s(2) ≤ · · · ≤
s(η(m+n)−1) of bids/asks from the other traders, a trader focuses on s(ηm), for a buyer
trades if and only if his bid is above this bid/ask while a seller sells if and only if his
ask is strictly below it. A buyer additionally focuses on s(ηm+1) because his bid sets
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the price when it lands between s(ηm) and s(ηm+1), in which case it is the (ηm + 1)st-
smallest bid/ask overall. Theorem 1 characterizes the asymptotic distributions of the
order statistics s(ηm) and s(ηm+1), both of which are also normal.

The asymptotic distributions of s(ηm) and s(ηm+1) are the foundation for our effort to
simplify a trader’s decision problem, which is accomplished by substituting them into
the first order conditions (FOCs) for optimal bidding/asking. The resulting equations
are the asymptotic first order conditions (AFOCs). We focus first on the private values
case and then on the general model in which Gε and Gδ are normal. The AFOCs can
be solved in both of these cases for a buyer’s bid and a seller’s ask, thereby providing
intuition into these complex decision problems.

We then explore the effectiveness of this bid and ask obtained using the asymptotic
distributions as approximations to computed examples of equilibria. Interestingly, the
approximations are quite accurate in the private value case, but diminish in accuracy
as the informational environment is changed so that interdependence plays a greater
role in a trader’s decision problem. This is explained using intuition concerning how
equilibria change as the common value limit is approached.

Organization. Section 2 completes the model and presents material that supports the
main results of the paper. Section3 then addresses the asymptotic distribution of the
BBDA’s price and the order statistics among bids/asks that are critical in a trader’s
decision-making. We then turn in Sect. 4 to analyzing a trader’s decision problem by
substitution into the FOCs for optimal bidding/asking. All proofs are in the Appendix.

2 Themodel and preliminary results

We begin by completing the model. We then address (i) the first order conditions for
an optimal bid and ask and (ii) the limit market and rational expectations equilibrium.

2.1 Themodel

We make the following assumption on the distributions:
A1: Gε and Gδ are C1 with finite first moments and positive densities gε and gδ on
R that are symmetric about 0.

The following notation is useful in our discussion of convergence as the market
size η increases. Let

q ≡ m

m + n
, (1)

the relative size of demand in the market. Define

ξε+δ
q ≡ G−1

ε+δ(q), (2)
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the q th quantile of the distribution Gε+δ of the sum of a trader’s preference term ε and
his noise term δ. This specializes to

ξε
q ≡ G−1

ε (q) (3)

in the private values case. Letting z denote the value/cost of a trader, define

V (σ ) ≡ E[z|μ = 0, σ ] (4)

as the expectation of z when the state μ equals 0 and σ ∈ R is his signal. We in some
instances add the following assumption on Gε and Gδ:

A2: V (σ ) is strictly increasing.
This is a strict version of first order stochastic dominance. It is satisfied in the case of
Gε, Gδ normal and in the private values case, wherein V (σ ) = σ .

2.2 First order condition for an optimal bid/ask

Drawing from Satterthwaite, Williams, and Zachariadis (2020, sec. 3 and app. B), a
buyer’s marginal expected utility when σB is his signal, he bids b, and all other traders
use increasing, differentiable functions to choose their bids/asks is

(
E[v|σB, xη = b] − b

) · f Bx |σ (b|σB) − Pr[xη < b < yη|σB]. (5)

We use xη and yη throughout the paper to denote the ηmth and (ηm + 1)st order
statistics of the other traders’ bids/asks from the perspective of the trader of interest,
with their distributions determined by the strategies of the other traders. The product
in (5) is the marginal expected gain to the buyer from raising his bid, which increases
his expected utility when he passes xη; the first term is his expected value for an item
given his signal σB and the event that his bid b equals xη minus the price xη = b that
he pays in this event, and the second term is the density of xη at b. The subtracted
term in (5) is the marginal expected cost from raising his bid. It equals the probability
that he sets the price in the sample of bids/asks, i.e., his bid b lies between xη and yη.

The marginal expected utility of a seller with signal σS who asks a is

− (a − E[c|σS, x
η = a]) · f Bx |σ (a|σS). (6)

This is the seller’s marginal expected loss from raising his ask and thereby passing xη

and losing a sale.
Equating (5) and (6) to zero and solving for a buyer’s bid b and a seller’s ask a

defines the FOCs for optimal bidding/asking:

b = E[v|σB, xη = b]︸ ︷︷ ︸
price-taking term

− Pr[xη < b < yη|σB]
f Bx |σ (b|σB)

︸ ︷︷ ︸
strategic term

. (7)
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a = E
[
c|σS, x

η = a
]

︸ ︷︷ ︸
price-taking term

. (8)

The labeling of the terms in (7) and (8) reflect their roles in the FOCs: the strategic
term of a buyer originates in the possibility of moving the price in his favor, while
the price-taking term would determine his optimal bid if he ignored this possibility; a
seller’s FOC has only a price-taking term because he has no ability to influence price
in his favor. Each price-taking term is simply the trader’s value/cost in the private
values case.

2.2.1 Symmetric constant offset equilibrium

The examples of Bayesian-Nash equilibria that we compute in this paper are symmetric
constant offset profiles of strategies that satisfy:

Symmetry: Each buyer uses the same function Bη : R → R to select his bid as a
function of his signal and each seller uses the same function Sη : R → R to select
his ask.
Constant Offset: Each strategy Bη and Sη is a constant offset strategy in the sense
that

Bη(σ ) = σ + λ
η
B, Sη(σ ) = σ + λ

η
S

for all values of the signal σ ∈ R, where the offsets λ
η
B and λ

η
S are constants.

These two properties restrict the form of equilibrium strategies and notwhat is required
for equilibrium. As noted in the Introduction, a trader’s decision problem is translated
linearly as his signal changes and he in this sense solves the same problem in selecting
his bid/ask at every value of his signal. An offset strategy specifies the same solution
to this problem at each value of the signal. It thus extends to strategic behavior the
invariance property mentioned in the Introduction.

2.3 The limit market and rational expectations equilibrium

The limit market in stateμ consists ofm times a unit mass of buyers and n times a unit
mass of sellers, with values/costs and signals generated using the distributions Gε and
Gδ . The REE function pREE : R → R determines a price pREE(μ) in the limit market
for state μ and is defined by two properties. First, it is invertible and thus reveals the
state. Let 	(·) denote the inverse function. Second, pREE (μ) clears the limit market
in the state μ when each trader learns his signal σ , observes pREE(μ), and calculates
his expected value/cost E

[
z|	 (pREE (μ)

)
, σ
]
. If he is a buyer, he buys an item if and

only if E
[
z|	 (pREE (μ)

)
, σ
] ≥ pREE (μ), and if he is a seller, he sells his item if and

only if E
[
z|	 (pREE (μ)

)
, σ
] ≤ pREE (μ) . Satterthwaite, Williams, and Zachariadis

(2020, Thm. 3) states that if Gε, Gδ satisfy A1 and A2, then the unique REE price in
state μ is

pREE (μ) ≡ μ + V
(
ξε+δ
q

)
. (9)
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The inverse mapping from the REE price to the state μ is therefore 	
(
pREE

) ≡
pREE − V

(
ξε+δ
q

)
. Additionally, when the BBDA operates in the limit market, each

trader in equilibrium adds the constant offset

λ∞ ≡ V
(
ξε+δ
q

)
− ξε+δ

q (10)

to his signal to determine his bid/ask, with the equilibrium price equaling μ +
V
(
ξε+δ
q

)
= pREE (μ). The BBDA thus implements the REE price in the limit market.

Example: theprivate values case. In the private values case inwhichGδ is degenerate,
we substitute into (4) to obtain

V (σ ) ≡ E[z|μ = 0, σ ] = σ,

i.e., the expectation of a trader’s value/cost in the stateμ = 0 given his signal σ equals
his signal, which is exactly his value/cost. Substituting into (9) produces

pREE (μ) ≡ μ + V
(
ξε+δ
q

)
= μ + ξε

q ,

where ξε
q is defined in (3). As to bids/asks in the BBDA, substitution into (10) produces

the constant offset

λ∞ ≡ V
(
ξε+δ
q

)
− ξε+δ

q = ξε
q − ξε

q = 0.

With the ability of a buyer to influence price in his favor eliminated through the
assumption of a continuum of traders, each trader submits his value/cost as his bid/ask
and the distribution of bids/asks in each state μ is the same as the distribution of
values/costs. The BBDA’s equilibrium price in the state μ is pREE (μ) = μ + ξε

q ,
which equates the mass m (1 − q) of buyers above ξε

q with the mass nq of sellers
below this quantile: applying q = m/(m + n) from (1),

m · (1 − q) = mn

m + n
= nq.

3 Asymptotic distributions

3.1 Statement of result

Let

(
Bη, Sη

)
η∈N ≡

((
Bη
i , Sη

j

)

1≤i≤ηm,1≤ j≤ηn

)

η∈N

denote a sequence of strategy profiles in the sequence ofmarkets.We use the following
assumption:
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A3: The sequence (Bη, Sη)η∈N has the following two properties:

1. each strategy Bη
i , Sη

j in the sequence is an increasing, C1 function;
2. there exists constants K (Gε,Gδ,m, n), ε > 0 such that

∣∣
∣
(
Bη
i (σ ) − σ

)
− λ∞

∣∣
∣,
∣∣
∣
(
Sη
j (σ ) − σ

)
− λ∞

∣∣
∣ <

K (Gε,Gδ,m, n)

η1/2+ε
(11)

for all η ∈ N, 1 ≤ i ≤ ηm, 1 ≤ j ≤ ηn, and σ ∈ R, where λ∞ is the equilibrium
offset of the limit market defined in (10).

The assumption in 1. that strategies are C1 ensures that densities for the critical
order statistics in a trader’s decision problem exist and are continuous, which is useful
in the first order approach. Turning to (11) in 2., a “standard” central limit theorem
characterizes the distribution of a statistic as a larger and larger sample is drawn from
a fixed distribution. The problem is different here because the distribution of bids/asks
from which the sample is drawn changes as the market size η increases and traders
change their behavior. A central limit theorem for the BBDA’s price and the critical
order statistics therefore requires some restriction on the strategies of traders. The
bound (11) is what we have found to be restrictive enough to allow the proof to go
through while remaining relatively simple to state. Notice that (11) holds uniformly
across the domain R of the signal σ , which is an important aspect of A3.

Though the bound (11) and its application in Theorem 1 below are not limited to
equilibrium, (11) is motivated by a large literature on the O(1/η) rate of convergence
of equilibria to their values in the limit market, which is more restrictive than the
O(1/η1/2+ε) rate in (11). This literature is summarized at the end of the subsection.
While (11) has not been proven to hold for equilibria in our general model due to
the complexity of addressing interdependence among values/costs, it has been proven
to hold for symmetric offset equilibria in the private values special case (Satterth-
waite, Williams, and Zachariadis 2022, Thm.4), and numerical evidence supports the
claim that it holds generally (Satterthwaite, Williams, and Zachariadis 2020, sec. 5.3).
We thus believe it is a plausible assumption for gaining insight into the problem of
interdependent values/costs.

Theorem 1 For fixed m and n, consider a sequence of markets indexed by the market
size η, and (Bη, Sη)η∈N be a sequence of strategy profiles that satisfies A3.

1. The market price. Let pη (μ) denote the random variable of the BBDA’s price in
the market of size η given the state μ, as determined by this sequence. For each
state μ ∈ R and for its corresponding REE price pREE (μ) = μ + V (ξε+δ

q ), we
have

pη (μ) ∼ AN
(

pREE (μ) ,
mn

η(m + n)3

1

g2ε+δ(ξ
ε+δ
q )

)

. (12)

2. The critical order statistics and their difference. From the perspective of either a
buyer or a seller faced with the strategies of others in the profile (Bη, Sη)η∈N, the
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random variables xη(μ) and yη(μ) of the ηmth and (ηm + 1)st order statistics of
other traders’ bids and asks given the state μ satisfy

xη(μ), yη(μ) ∼ AN
(

pREE (μ) ,
mn

(η(m + n) − 1) (m + n)2

1

g2ε+δ(ξ
ε+δ
q )

)

.

(13)

Additionally, the random variable of the difference wη(μ) ≡ yη(μ)− xη(μ) given
the state μ satisfies

wη(μ) ∼ A exp
(
(η(m + n) − 1) gε+δ

(
ξε+δ
q

))
, (14)

and its asymptotic expectation in the state μ therefore equals

1

(η(m + n) − 1) gε+δ

(
ξε+δ
q

) . (15)

3. The private values special case. Statements (12)–(15) holds in the private values
case by replacing gε+δ(ξ

ε+δ
q ) with gε(ξ

ε
q ) and V (ξε+δ

q ) with V (ξε
q ).

As a consequence of (12) and (13), pη (μ), xη(μ), yη(μ) are consistent, asymptot-
ically unbiased and normal estimators of the REE price in each stateμ. The difference
between the asymptotic distribution of the BBDA’s price pη (μ) in (12) and the asymp-
totic distribution of the order statistics xη(μ) and yη(μ) in (13) lies in the variance,
with the term η(m + n) in (12) replaced with η(m + n) − 1 in (13). This reflects the
fact that pη (μ) is determined by a sample of η(m + n) bids/asks while xη(μ) and
yη(μ) are determined by samples of η(m + n) − 1 bids/asks.

The proofs of (12) and (13) generalize standard results (Serfling (1980, sec. 2.3.3))
on the asymptotic distribution of a sample quantile to a case where the sample is not
identically distributed, which reflects the asymmetry here between buyer and seller
behavior along with the fact that A3 allows asymmetry among the strategies on each
side of the market. Notice that all results in the theorem are conditional on the state μ,
in which case the finite samples of values/costs, signals and consequently bids/asks are
independent. The correlation among signals and interdependence among values/costs
that complicate a trader’s decision problem are therefore inconsequential in general-
izing the standard results to our setting. Finally, using the asymptotic distributions of
xη(μ) and yη(μ), we then derive (14) by applying (Siddiqui 1960), who shows that a
suitable rescaling of their difference wη(μ) is asymptotically exponential.

It is straightfoward to show that the characterization (12) of the asymptotic distri-
bution of the BBDA’s price pη (μ) also holds for other formulas for selecting a price
from the interval [s(ηm), s(ηm+1)] of market-clearing prices for the market of size η,
and not just the BBDA’s rule of selecting s(ηm+1) as the price. In particular, it holds
for every k -double auction (which, for k ∈ [0, 1], sets ks(ηm+1) + (1 − k)s(ηm) as
the price), along with randomized rules for price selection in this interval. The key is
bound (11) of A3.We have chosen to state this theorem solely for the BBDA because it
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Table 1 For δ standard normal, ε ∼ N (0, υε), m = 2, n = 1, and market size η = 2, the equilibrium
constant offsets of buyers and of sellers are calculated as the variance υε of the preference term in the model
grows small and the common value case is approached

υε Buyer’s Offset λη
B Seller’s Offset λη

S λ
η
B − λ

η
S

1 −1.2189 0.1332 −1.3521

1/2 −1.3379 0.3485 −1.6864

1/4 −1.6323 0.7760 −2.4083

1/8 −2.1556 1.5226 −3.6782

1/16 −2.9979 2.6090 −5.6069

1/32 −4.1762 3.9268 −8.1030

1/64 −5.7898 5.6143 −11.4041

1/128 −8.0939 7.9694 −16.0633

1/256 −11.3794 11.2912 −22.6706

is in this special case that we have made progress in understanding a trader’s decision
problem, which is where we apply the theorem in the remaining sections.

The O(1/η) rate of convergence of equilibrium bids/asks. This rate has been
proven for a variety of double auction models in the private values case, including
Fudenberg, Mobius, and Szeidl (2007), Satterthwaite and Williams (1989), Williams
(1991), and Rustichini, Satterthwaite, and Williams (1994). The O(1/η) rate is also
established by Vives (2011) for bid shading by firms with private information about
their cost functions that compete in submitting supply schedules and by Kovalenkov
and Vives (2014) for strategic and competitive equilibria in a Kyle (1989) model.

3.2 Numerical results: the relevance of Theorem 1 in a small market

We first summarize two numerical examples from Williams and Zachariadis (2021,
secs. 3.2-3) that address the effectiveness of the asymptotic distribution (12) of the
BBDA’s price as an approximation. The first is a “central” case of our model, i.e.,
m = n = 1, Gε, Gδ standard normal, and market sizes η = 2, 4, 8, 16. Using a
computed sequence of symmetric offset equilibria, the example demonstrates the high
accuracy of the approximating distribution even in the case of market η = 2. With
this well-behaved case in hand, we then consider a standard approach to challenge
convergence to normality by choosing Gε, Gδ that determine a bimodal distribution
of a trader’s signal. Even with the bimodality of the sampled distribution, however, the
asymptotic normal accurately approximates the distribution of the equilibrium price
once the market size η reaches 16.

Amore interesting challenge to convergence is made by fixingm, n, and the market
size η and then approaching the common value case. This is investigated here with
m = 2, n = 1, η = 2, ε ∼ N (0, υε), and δ ∼ N (0, 1). Table 1 lists the equilibrium
constant offsets for a sequence of values of υε as it decreases to 0. Consistent with
standard intuition concerning the common value case, the buyer’s offset converges to
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−∞ and the seller’s offset to ∞ as υε decreases to zero, with the equilibrium thus
converging to a no-trade outcome at the common value case.1

The implication of this for the accuracy of the asymptotic distribution (12) of price
as an approximation is as follows. Assumption A3 posits a constant K (Gε,Gδ,m, n)

so that the bound (11) holds. If for fixed market size η the values

∣
∣∣
(
Bη
i (σ ) − σ

)
− λ∞

∣
∣∣ = ∣∣λη

B − λ∞∣∣ ,
∣
∣∣
(
Sη
j (σ ) − σ

)
− λ∞

∣
∣∣ = ∣∣λη

S − λ∞∣∣ (16)

are large, then a large constant K (Gε,Gδ,m, n) is required so that (11) holds, which
means that a large market size η is needed to make these expressions small and the
asymptotic distribution accurate as an approximation. Similarly, holding the market
size η constant and allowing υε to go to zero, the terms in (16) grow large and the
approximation becomes less and less meaningful.

Figures 1 and 2 illustrate this problem. Figure1 depicts the sample density of the
BBDA’s equilibrium normalized price together with its asymptotic limit in four of the
cases in Table 1. With m = 2, n = 1, and η = 1 fixed, the asymptotic distribution
grows worse and worse as an approximation as υε decreases. Figure2 illustrates that
the issue is that the market size must increase as υε becomes small in order for the
approximation to remain meaningful. It depicts in the case of υε = 1/16, m = 2,
n = 1, and η = 2, 4, 8, and 16 the sample density in comparison to its asymptotic
limit. In contrast to the standard normal casementioned at the beginning of this section,
we see that the approximation does not become accurate until η increases to 16. The
accuracy of the approximation ismeasured in each graph by the error of approximation
E A(Fη

eq) ≡ supt∈R
∣∣Fη

eq(t) − �(t)
∣∣, where Fη

eq(·) is the sample distribution of the
normalized equilibrium price in market size η and � is its limit, the cdf of N (0, 1).

4 An asymptotic analysis of a trader’s decision problem

The asymptotic first order conditions (AFOCs) are obtained by substituting the asymp-
totic distributions of xη(μ) and yη(μ) from Theorem 1 into the FOCs (7) and (8) for
optimal bidding/asking. In (i) the private values case and (ii) the general model in
which ε and δ are both normal, the AFOCs can be solved to determine the asymptotic
bid/ask. These asymptotic expressions provide insight into both strategic behavior and
the complicated inference from the market price that a trader addresses in the general
model. We explore below their accuracy as approximations to computed examples of
equilibria.

4.1 Asymptotic analysis in the private values case

We begin with a formal statement of our approximation result.

1 A related example is computed in Gresik (1991, ex. 2, p. 15), where the constrained efficient trading
mechanism of Myerson and Satterthwaite (1983) is evaluated for different sizes of markets as the common
value case is approached.
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Fig. 1 The figure depicts the sample density of the BBDA’s normalized equilibrium price(
pη
eq(μ) − pREE(μ)

)
/
√

υ̃p|μ calculated using Monte Carlo simulations in the case of δ standard nor-
mal, ε ∼ N (0, υε),m = 2, n = 1, market size η = 2, and variance of the preference term υε = 1/4, 1/16,
1/64, 1/256. It is graphed against its asymptotic limit (i.e., the pdf ofN (0, 1)) from Theorem 1. The error
of approximation E A(Fη

eq ) is reported below each graph, where Fη
eq is the cumulative distribution of the

equilibrium price for market size η. The error of approximation E A(Fη
eq ) is reported below each graph

Theorem 2 For fixed m and n, consider a sequence of markets indexed by the market
size η. Let (Bη, Sη)η∈N be a sequence of strategy profiles that satisfies A3. Faced with
the strategies in this sequence, suppose a buyer considers a sequence of strategies(
B̂(·; η)

)
η∈N in which his underbidding

∣∣B̂(v; η) − v
∣∣ is O (1/ηε) for some ε > 0

and all v ∈ R. Then the unique strategy that solves the buyer’s AFOC is given by the
offset

λ̃
η
B ≡ − 1

η(m + n) − 1

1

gε(ξ ε
q )

+ O

(
1

η2

)
(17)

that he adds to his value to determine his bid.
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Fig. 2 The figure depicts the sample density of the BBDA’s normalized equilibrium price(
pη
eq(μ) − pREE(μ)

)
/
√

υ̃p|μ calculated using Monte Carlo simulations in the case of δ standard nor-
mal, ε ∼ N (0, 1/16), m = 2, n = 1, and market sizes η = 2, 4, 8, 16. It is graphed against its asymptotic
limit (i.e., the pdf of N (0, 1)) from Theorem 1. The error of approximation E A(Fη

eq ) is reported below
each graph

The odd but rather weak assumption that the buyer considers strategies whose
underbidding is O (1/ηε) for some ε > 0 is used in the proof to start the derivation
of (17) by allowing a Taylor polynomial expansion of B̂(·; η).

Formula (17) defines the first order approximate offset of a buyer,

λ
η
B,approx = − 1

η(m + n) − 1

1

gε(ξ ε
q )

. (18)

This approximation is the negative of the asymptotic expectation of the difference
yη(μ) − xη(μ) of the (ηm + 1)st and ηmth order statistics among the bids/asks of
the other traders in each state μ, as reported in (15) of Theorem 1. The order statistic
yη(μ) is the upper endpoint of the interval in which the buyer’s bid sets the price; the
order statistic xη(μ) is the lower endpoint of this interval and the bid/ask at which he
passes from trading to not trading as he lowers his bid. The approximation λ

η
B,approx
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therefore suggests that the buyer underbids so as to push the price across this interval
to its lower limit.

The uniqueness of the solution λ̃
η
B together with the fact that its first-order approxi-

mation λ
η
B,approx is a constant are consistent with the support provided in Satterthwaite,

Williams, and Zachariadis (2020, sec. 4.1.2) for the conjecture that a symmetric equi-
librium in the BBDA is uniquely determined in the private values case and with the
property that the difference between each trader’s bid/ask and his value/cost is con-
stant. We also note that λ̃

η
B and its approximation λ

η
B,approx are O(1/η), which is

consistent with the rate of convergence of a trader’s bid/ask to its limit that has been
derived a variety of models in the private values case (as noted in Sect. 3.1).

Finally, we note that λ
η
B,approx identifies what is first order in a buyer’s decision

problem in this case, namely, (i) the total number η(m+n)−1 of traders that he faces
and (ii) the value of the density gε(ξ

ε
q ) at the single point

ξε
q = G−1

ε

(
m

m + n

)
,

which is the quantile of interest in the private values case. Part (i) reflects the fact that
buyers and sellers increasingly bid/ask in the same way as the market size η increases.
Part (ii) reflects the fact that the focus of the buyer’s decision problem in every state μ

is near its limiting equilibrium price, namely, pREE(μ) = μ + ξε
q , and the uncertainty

that he faces is thus summarized from a first order perspective with the single term
gε(ξ

ε
q ).

Numerical investigation of λ
η
B,approx. Williams and Zachariadis (2021, app. F) inves-

tigates the accuracy of λ
η
B, approx as an approximation to the computed value of the

buyer’s equilibrium constant offset. Four different choices of the distribution Gε of
a trader’s preference are considered in the case of m = n = 1. The accuracy of
the approximation depends upon the market size η and the distribution Gε, with a
bimodal case again presenting the greatest difficulty. Absolute error as a fraction of
the magnitude of the equilibrium offset is less than 6% in all four cases, however, once
η = 8.

4.2 Asymptotic analysis in the case of G", Gı normal

Let υ̃x |μ denote the asymptotic variance of xη conditional on μ as given in (13) and
let ẽw|μ denote the asymptotic expectation of wη(μ) ≡ yη(μ)− xη(μ) conditional on
μ as given in (15). Our approximation result in the normal case of the general model
is as follows.

Theorem 3 Assume that ε ∼ N (0, υε) and δ ∼ N (0, υδ). For fixed m and n, con-
sider a sequence of markets indexed by the market size η. Let (Bη, Sη)η∈N be a
sequence of strategy profiles that satisfies A3. Faced with the strategies of the others
in this sequence, suppose a buyer considers strategies B̂(·; η) in which the difference∣∣B̂(v; σ) − σ − λ∞∣∣ between his offset B̂(v; σ) − σ and the equilibrium offset λ∞
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of the limit market is O (1/ηε) for some ε > 0 and all σ ∈ R. The AFOCs imply the
following.

1. A buyer with signal σB bids

b = Ẽ[v|σB, x = b] −
(
ẽw|μ + O

(
1

η2

))
, (19)

where his asymptotic price-taking term is

Ẽ[v|σB, x = b] = σB
υ̃x |μ + υε

υ̃x |μ + υε + υδ

+
(
b − V

(
ξε+δ
q

)) υδ

υ̃x |μ + υε + υδ

,

(20)

and his asymptotic strategic term is

ẽw|μ + O

(
1

η2

)
= − 1

(η(m + n) − 1) gε+δ

(
ξε+δ
q

) + O

(
1

η2

)
. (21)

2. A seller with signal σS asks

a = Ẽ[c|σS, x = a] = σS
υ̃x |μ + υε

υ̃x |μ + υε + υδ

+
(
a − V

(
ξε+δ
q

)) υδ

υ̃x |μ + υε + υδ

,

(22)

which is the same as formula (20), with the ask a replacing the bid b and σS

replacing σB.

As in the private values case, the assumption that a buyer considers strategies in
which

∣∣B̂(v; σ) − σ − λ∞∣∣ is O (1/ηε) for some ε > 0 is used in the proof to start the
derivation by allowing a Taylor polynomial expansion of B̂(·; η). After substituting
(20), (21) into (19) and dropping the second order terms, (19) and (22) become linear
equations in the bid b and the ask a that are easily solved for the first order approximate
offsets

λ
η
B,approx = −

(
υδ

υ̃x |μ + υε

)
V
(
ξε+δ
q

)
−
(

υ̃x |μ + υε + υδ

υ̃x |μ + υε

)
1

(η(m + n) − 1) gε+δ

(
ξε+δ
q

)

(23)

and

λ
η
S,approx = −

(
υδ

υ̃x |μ + υε

)
V
(
ξε+δ
q

)
. (24)

We begin with two observations concerning these approximate offsets and the
buyer’s asymptotic strategic term (21). First, we note continuity at the limit market
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of the approximate offsets λ
η
B, approx, λ

η
S,approx and their effectiveness as approxima-

tions to symmetric equilibrium constant offsets. Applying formula (10) for λ∞ and

V
(
ξε+δ
q

)
= υεξ

ε+δ
q /(υε +υδ) (which holds in the normal case considered here), it is

straightforward to show that
∣∣
∣λ∞ − λ

η
B,approx

∣∣
∣ and

∣∣
∣λ∞ − λ

η
S,approx

∣∣
∣ are both O(1/η).

Consequently, (λη
B,approx, λ

η
S,approx)η∈N is an O(1/η)-appproximation of any sequence

of symmetric equilibrium offsets (λ
η
B , λ

η
S)η∈N for which

∣∣λ∞ − λ
η
B

∣∣ and
∣∣λ∞ − λ

η
S

∣∣
are O(1/η), which Satterthwaite, Williams, and Zachariadis (2020, sec. 5.3) argues is
true of all such sequences.

Second, the buyer’s asymptotic strategic term (21) extends formula (17) from the

private values case, with gε+δ

(
ξε+δ
q

)
replacing gε

(
ξε
q

)
in the denominator. As in the

private values case, its first term is the negative of the asymptotic expectation of the
difference yη(μ)−xη(μ) givenμ, as stated in Theorem 1. It has the same intepretation
as before. In the approximate offset λη

B,approx, this term is weighted with the function

υ̃x |μ + υε + υδ

υ̃x |μ + υε

(25)

of the variances υε, υδ of preference and noise parameters along with the asymptotic
variance υ̃x |μ of the order statistic xη(μ). This reflects the fact that while a buyer’s
concerns are purely strategic in the private values case, a buyer in the general model
weighs his strategic incentive against his necessity of protecting himself from a win-
ner’s curse in the selection of his bid.While the weight (25) converges to one (its value
in the private values case) as υδ → 0, it does not converge to zero as υε → 0 and the
common value case is approached, for a buyer retains the ability to influence price in
his favor in this limit.

The asymptotic price-taking term.We now turn to a buyer’s asymptotic price-taking
term (20), with the seller’s term (22) interpreted similarly. It is a convex combination

of his signal σB and b − V
(
ξε+δ
q

)
, which, from the left side of (20), is calculated

given b = xη(μ). This estimates his value, which is the sum of the state μ and
a preference term ε. As the rest of the market can provide no information about
his preference term, the best that a buyer can do using market data to estimate his

value is to estimate μ. The term b − V
(
ξε+δ
q

)
in (20) serves exactly this purpose:

Theorem 1 implies that xη(μ) is an unbiased estimate of pREE (μ) = μ + V (ξε+δ
q ),

and so b − V
(
ξε+δ
q

)
= xη(μ) − V

(
ξε+δ
q

)
is an unbiased estimate of μ. A buyer’s

asymptotic price-taking term (20) is thus a weighted average of his own signal, which
contains information about both the state and his value, together with the information
he infers from the market, which is an unbiased estimate of the state μ.

Approaching the private values and common value cases. We next turn to the
dependence of the asymptotic price-taking term (20) and the approximate offsets
(23) and (24) on the variances υε and υδ of the preference and noise distributions.
In the normal case considered here, the values of the quantile ξε+δ

q and the density
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gε+δ

(
ξε+δ
q

)
are determined by the sum υε + υδ of these variances; consequently,

the value of υ̃x |μ in the above formulas remains fixed as the variances change so
long as their sum remains fixed. Keeping υε + υδ = K for some constant K > 0,
we thus explore how the weights in the asymptotic price-taking term change as υδ

varies across [0, K ], where υδ measures how much noise there is in a trader’s signal
concerning his value/cost. Recall that (i) as υδ → 0 and υε → K , the general model
converges to the private values case as noise is eliminated from the signals, and (ii) as
υδ → K and υε → 0, the general model approaches the common value case in which
all values/costs are the same and equal to the state μ.

Consider first approaching the private values case, in which the asymptotic price-
taking term and the approximate offsets converge continuously to their values in this
case. As υε → K , υδ → 0, and noise is eliminated from the signals, the weight on
a trader’s signal converges to one and the weight on the inference from the market
converges to zero; a trader’s asymptotic price-taking term thus converges to his signal,
which in the limit is his value/cost. The seller’s approximate offset (24) converges
to zero, which corresponds to his dominant strategy of asking his cost in the private
values case. The buyer’s approximate offset (23) converges to its value (18) in the
private values case, which, as discussed in Sect. 4.1, can be an accurate approximation
of his equilibrium offset.

Approaching the common value case is more interesting because while the asymp-
totic price-taking term and the approximate offsets converge, their limits do not
correspond to the no-trade outcome of equilibrium in this case. As υδ → K and
υε → 0, the weight on a trader’s signal in his asymptotic price-taking term coverges
to υ̃x |μ/

(
υ̃x |μ + K

) 
= 0; unlike convergence to the private values case in which the
weight placed upon the market inference goes to zero, the weight a trader places upon
his private signal remains positive as the common value case is approached because
his signal remains informative about the state even in the common value limit. The
seller’s approximate offset λ

η
S,approx converges to 0 while the buyer’s approximate

offset λη
B,approx converges to the finite value

−
(

υ̃x |μ + K

υ̃x |μ

)
1

((m + n)η − 1) gε+δ

(
ξε+δ
q

) .

This disagrees with the intuition that the offset of buyers should go to −∞ while the
offset of sellers goes to +∞ as the common value case is approached, consistent with
the equilibria reported in Table 1.

Why do the approximations λ
η
B,approx and λ

η
S,approx perform so poorly as the com-

mon value case is approached? The approximations rest upon the accuracy of the
asymptotic distribution (13) in Theorem 1 as an approximation of the equilibrium
distributions of the order statistics xη (μ) and yη (μ). As suggested by the results
presented in Fig. 1 for the BBDA’s equilibrium price pη

eq (μ), the accuracy of this
approximation diminishes as the common value case is approached with the market
size η held constant. The exercise we carry out here is for fixed market size η; because
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we fail to increase η as υε → 0 as needed to maintain the accuracy of the approxi-
mation, the asymptotic distribution (13 ) becomes worse as an approximation as the
common value case is approached, which explains why the approximations λ

η
B,approx

and λ
η
S,approx similarly become less meaningful.

Numerical investigation of λ
η
B,approx and λ

η
S,approx. Williams and Zachariadis (2021,

App. F) investigates the accuracy of the approximations λ
η
B,approx and λ

η
S,approx to equi-

librium offsets in numerical examples. Their effectiveness is explored first for Gε, Gδ

standard normal, then for fixed market size η as the common value case is approached,
and finally for an instance near the common value case in which the market size η is
increased. Starting with the case ofGε,Gδ standard normal, while the approximations
become more accurate as the market size increases, they are notably less accurate than
the approximations computed in the private values case with Gε standard normal.
We attribute this to the noise in a trader’s signal, which increases the error through a
trader’s computation of his price-taking term. For η fixed and as the common value
case is approached, the errors in the approximations grow larger and larger. This is
as expected, for the asymptotic distributions on which the approximations are based
become less and less meaningful as the common value case is approached. Finally,
near the commmon value case, the accuracy of the approximations is recovered as the
market size η is increased sufficiently. This is consistent with a theme of this paper,
namely, while convergence in the market size η to the asymptotic limit is at the same
rate for all instances of the general model, it takes a larger and larger η to make the
asymptotic limit accurate as an approximation as one nears the common value case.

5 Conclusion

We analyze the price and a trader’s decision problem in the buyer’s bid double
auction from an asymptotic perspective. The asymptotic distribution of the price is
characterized. It reveals that the price is a consistent, asymptotically unbiased and
normal estimator of the rational expectations price. The rational expectations price is
thus approximately implemented in a finite market by a market-clearing price, and
numerical examples suggests that this can be true even in small markets.

The asymptotic first order conditions are determined by identifying the asymptotic
values of probabilities in a trader’s first order condition for his optimal bid/ask. They
are solvable for an approximate bid and ask in the private values case and in the normal
case of the general model. The approximations provide insight into what is first order
in a buyer’s strategic effort to influence the price in his favor, namely, the total number
of traders (and not their roles as buyers and sellers), along with the value of the prior
density at a quantile of interest. In the normal case of the general model, we also
resolve a trader’s effort to protect himself from a winner’s curse in his price-taking
term into a weighted average of his own private information and an inference that
he draws from the market, with the weights dependent in an intuitive way upon the
relative variances of preference and noise terms in the model.

All of our approximations performwell in the generalmodel in a “sufficiently large”
market; numerical examples suggest, however, that all approximations become less
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and less accurate as the common value case is approached with the market size fixed.
Expressed in another way, a larger and larger market is needed as one approaches the
common value case for our approximations to be accurate. In particular, as one nears
the common value case for a fixed market size, the expected error of the market price
as an estimate of the rational expectations price goes to infinity.
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Appendix

A Proof of Theorem 1

Our proof follows Serfling (1980, secs. 2.3–2.5). The state μ is fixed throughout and
so we suppress it from most of the notation. We first prove in Lemmas 1 and 2 the
asymptotic normality of the q th quantile in the relevant sample and then apply these
results to the order statistics of Theorem 1.

In the market of size η ∈ N, write the vector of signals as (σ1, . . . , ση(m+n)) with
the first ηn signals belonging to sellers and the last ηm signals to buyers. This vector
determines the vector of bid/asks (a1, . . . , aηn, b1, . . . , bηm) through the strategies

Sη
j (σ j ) = a j , 1 ≤ j ≤ ηn, and Bη

i (σi+ηn) = bi , 1 ≤ i ≤ ηm.

Select a trader and let F̃η(m+n)−1 denote the sample distribution of bids/asks of the
η(m + n) − 1 other traders: in sampling η(m + n) − 1 bids/asks, F̃η(m+n)−1(t) states
the proportion of the sample that is smaller than t ∈ R. We define the q th quantile for
this distribution as

ξ̃q[η(m+n)−1] ≡ inf{t : F̃η(m+n)−1(t) ≥ q}.

In the case in which the selected trader is a buyer with signal ση(m+n), F̃η(m+n)−1(t)
is given by

F̃η(m+n)−1(t) ≡ 1

η(m + n) − 1

ηm−1∑

i=1

I{bi ≤ t} + 1

η(m + n) − 1

ηn∑

j=1

I{a j ≤ t},

(26)
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where I{·} denotes the indicator function. As the proof of Lemma 1 is essentially the
same regardless of whether the selected trader is a buyer or a seller, we use (26) in its

proof. Finally, recall from (9) that pREE(μ) = μ + V
(
ξε+δ
q

)
.

Lemma 1 establishes the asymptotic relationship between ξ̃q[η(m+n)−1] and pREE(μ)

conditional on μ.

Lemma 1 Let (Bη, Sη)η∈N be a sequence of strategy profiles that satisfies A3 and
select a trader. Then for all t ∈ R and 0 < q < 1,

lim
η→∞Pr

⎛

⎝

√
η(m + n) − 1

(
ξ̃q[η(m+n)−1] − pREE(μ)

)

√
q(1 − q)/gε+δ

(
ξε+δ
q

) ≤ t

⎞

⎠ = �(t),

where �(·) is the standard normal distribution function. Therefore,

ξ̃q[η(m+n)−1] ∼ AN
⎛

⎝pREE(μ),
q(1 − q)

[η(m + n) − 1] g2ε+δ

(
ξε+δ
q

)

⎞

⎠ .

This is proven below, after the proof of Theorem 1. Similarly, we can define F̃η(m+n)

for the sample distribution of the entire sample of η(m + n) bids/asks by replacing
η(m + n) − 1 with η(m + n) in (26). Let ξ̃q[η(m+n)] denote the corresponding q th

quantile. Lemma 2 establishes the asymptotic relationship between ξ̃q[η(m+n)] and
pREE(μ) conditional on μ. The proof is essentially the same as that of Lemma 1, with
ηm − 1 and η(m + n) − 1 replaced by ηm and η(m + n.It is therefore omitted.

Lemma 2 Let (Bη, Sη)η∈N be a sequence of strategy profiles that satisfies A3. For all
t ∈ R, and 0 < q < 1,

lim
η→∞Pr

⎛

⎝

√
η(m + n)

(
ξ̃q[η(m+n)] − pREE(μ)

)

√
q(1 − q)/gε+δ

(
ξε+δ
q

) ≤ t

⎞

⎠ = �(t)

and therefore

ξ̃q[η(m+n)] ∼ AN
⎛

⎝pREE(μ),
q(1 − q)

η(m + n) g2ε+δ

(
ξε+δ
q

)

⎞

⎠ .

Proof of Theorem 1. Recall that pη(μ) is the (ηm + 1)st order statistic in a sample of
ηm bids and ηn asks, and xη(μ) and y(η) are the ηmth and (ηm + 1)st order statistics
in a sample of bids/asks from the other traders. For small ε > 0, the ratio between the
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order of each statistic and the cardinality of its sample size satisfies the following as
η → ∞:

ηm + 1

η(m + n)
= m

m + n
+ 1

η(m + n)
= m

m + n
+ o

(
1

η1−ε

)
; (27)

ηm + 1

η(m + n) − 1
= m

m + n
+ 2m + n

(m + n)(η(m + n) − 1)
= m

m + n
+ o

(
1

η1−ε

)
;
(28)

ηm

η(m + n) − 1
= m

m + n
+ m

(m + n)(η(m + n) − 1)
= m

m + n
+ o

(
1

η1−ε

)
.

(29)

Lemmas 1 and 2 establish the asymptotic distribution of the q th quantile in particular
samples. Equations (27)–(29) link the order statistics pη(μ), xη(μ), and yη(μ) with
the q th quantile of the corresponding sample. An application of Serfling (1980, Thm.
and Cor. 2.5.2) then implies the asymptotic relationships between pη(μ), xη(μ), and
yη(μ) with pREE(μ) = μ + V (ξε+δ

q ) conditional on μ, as stated in the theorem.
Relying on the asymptotic distributions of xη(μ) and yη(μ) in the case of sampling

from two populations (i.e., bids and asks), it is straightforward to adapt the result in
Siddiqui (1960) on the asymptotic distribution of their difference wη(μ) = yη(μ) −
xη(μ). In particular, Siddiqui (1960) shows that a suitable rescaling of wη(μ) (i.e.,
by the number η(m + n) − 1 of the other traders and twice the density at the quantile

of interest gε+δ

(
ξε+δ
q

)
) is asymptotically exponential with rate 1/2 and independent

of xη(μ). This implies (14). Finally, the entire argument goes through in the private

values case in which Gδ is degenerate, with gε(ξ
ε
q ) and V (ξε

q ) replacing gε+δ

(
ξε+δ
q

)

and V
(
ξε+δ
q

)
, respectively, in the results. ��

Proof of Lemma 1. The following notation is used in this section. For 1 ≤ i ≤ ηm−1,
let Sη

i,B(·) be the inverse bid functiσn of buyer i , and for 1 ≤ j ≤ ηn, let S j,S(·) be
the inverse ask function for seller j . For t ∈ R, define

λ
η
i (t) ≡

{
t − Sη

i,S(t) 1 ≤ i ≤ ηn,

t − Sη
i−ηn,B(t) ηn + 1 ≤ i ≤ η(m + n) − 1.

(30)

Using this notation, rewrite (11) of A3 as

∣∣∣λη
i (t) − λ∞

∣∣∣ <
K (Gε,Gδ,m, n)

η1/2+ε
, (31)

which holds for all η ∈ N, 1 ≤ i ≤ η (m + n) − 1, t ∈ R, and some ε > 0.
As noted above, we prove Lemma 1 assuming the selected trader is a buyer with

signal ση(m+n). Starting from (26), we: (i) apply Sη
i,B(·) to both sides of the inequality

inside the first indicator function and Sη
j,S(·) to both sides of the inequality inside the

second indicator function; (ii) change the index of summation in the first indicator
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function to i ′ = i + ηn; (iii) combine the two summations under the same index; (iv)
apply definition (30) of λ

η
i (t). For t ∈ R, we then have

F̃η(m+n)−1(t) = 1

η(m + n) − 1

η(m+n)−1∑

i=1

I{σi ≤ t − λ
η
i (t)}.

In order to align our notation with Serfling (1980) and thereby clarify the rela-
tionship between our proofs and the proofs that inspire them, we now depart from
the notation used in the text of the paper and denote the distribution and density of
signals conditional on μ as Fμ and fμ, respectively. Conditional on μ, signals are
i.i.d. with Fμ(t) = Gε+δ(t − μ) and fμ(t) = gε+δ(t − μ) for all (t, μ) ∈ R

2, and let
Fμ ≡ 1 − Fμ. By definition, for all t ∈ R we have

Fμ(t) = lim
η→∞

1

η(m + n) − 1

η(m+n)−1∑

i=1

I{σi ≤ t}. (32)

The proof extends Serfling (1980, Thm. 2.3.3 A) to our model in which bids/asks
conditional on μ are independent but not identically distributed, for we allow here
each trader i to use his own non-constant function λ

η
i (t) in (30).

Let A > 0 be a normalizing constant to be specified later. Define

Gη(m+n)−1(t) ≡ Pr

⎛

⎝

√
η(m + n) − 1

(
ξ̃q[η(m+n)−1] − pREE(μ)

)

A
≤ t

⎞

⎠

= Pr
(
F̃η(m+n)−1

(
pREE(μ) + t A

√
η(m + n) − 1

−1) ≥ q
)

,

(33)

where the last line follows from Serfling (1980, Lem. 1.1.4 (iii)). Setting

η ≡ pREE(μ) + t
A√

η(m + n) − 1
, (34)

F̃η(m+n)−1(
η) is a random variable with mean and variance

E[F̃η(m+n)−1(
η)] = 1

η(m + n) − 1

η(m+n)−1∑

i=1

Fμ(η − λ
η
i (

η)), (35)

VAR[F̃η(m+n)−1(
η)] = 1

(η(m + n) − 1)2

η(m+n)−1∑

i=1

Fμ(η − λ
η
i (

η))

×Fμ(η − λ
η
i (

η)). (36)
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After some algebra (33) reduces to

Gη(m+n)−1(t) = Pr
(
F̃∗

η(m+n)−1(
η) ≥ c(η)

)
, (37)

where (37) corresponds to (�) in Serfling (1980, Thm. 2.3.3 A). Define

F̃∗
η(m+n)−1(

η) ≡ F̃η(m+n)−1(
η) − E[F̃η(m+n)−1(

η)]
√
VAR[F̃η(m+n)−1(η)]

and

c(η) ≡ q − E[F̃η(m+n)−1(
η)]

√
VAR[F̃η(m+n)−1(η)]

. (38)

For t = 0 the Lindeberg–Feller Central Limit Theorem ( Serfling (1980, Thm. 1.9.2
A)) leads to

lim
η→∞Pr

[√
η(m + n) − 1

(
ξ̃q[η(m+n)−1] − pREE(μ))

)
≥ 0
]

= �(0) = 1

2
.

Using the Berry–Esseen Theorem (Serfling (Serfling 1980, Thm. 1.9.5 and p. 33)), we
have

sup
t∈R

∣∣
∣Pr
(
F̃∗

η(m+n)−1(
η) ≤ t

)
− �(t)

∣∣
∣ ≤ K

β(η)
[
VAR[F̃η(m+n)−1(η)]]3/2

, (39)

where K is a constant and (39) corresponds to (��) in Serfling (1980, Thm. 2.3.3 A).
For τ ∈ R, define

β(τ) ≡ 1

(η(m + n) − 1)3

η(m+n)−1∑

i=1

E

[∣∣I{σi ≤ τ − λ
η
i (τ )} − Fμ

(
τ − λ

η
i (τ )

)∣∣3
]
.

(40)

Combining (37) and (39) we have:

∣∣
∣Pr
(
F̃∗

η(m+n)−1(
η) ≥ c(η)

)
− �(t)

∣∣
∣ ≤ K

β(η)
[
VAR[F̃η(m+n)−1(η)]]3/2

+ ∣∣�(t) − �
(−c(η)

)∣∣ . (41)

We need to show that

lim
η→∞

β(η)
[
VAR[F̃η(m+n)−1(η)]]3/2

= 0. (42)
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After some algebra for the terms inside the summation in (40), we arrive at

E

[∣∣I{σi ≤ τ − λ
η
i (τ )} − Fμ

(
τ − λ

η
i (τ )

)∣∣3
]

= Fμ

(
τ − λ

η
i (τ )

)
Fμ

(
τ − λ

η
i (τ )

) [
F2

μ

(
τ − λ

η
i (τ )

)+ F
2
μ

(
τ − λ

η
i (τ )

)]
.

Substituting the above in the definition (40) for β(τ), the fraction in the left hand side
of (42) becomes

β(η)
[
VAR[F̃η(m+n)−1(η)]]3/2

=
∑η(m+n)−1

i=1 Fμ

(
η − λ

η
i (

η)
)
Fμ

(
η − λ

η
i (

η)
) [

F2
μ

(
η − λ

η
i (

η)
)+ F

2
μ

(
η − λ

η
i (

η)
)]

[∑η(m+n)−1
i=1 Fμ

(
η − λ

η
i (

η)
)
Fμ

(
η − λ

η
i (

η)
)]3/2

= 1√
η(m + n) − 1

×
1

η(m+n)−1

∑η(m+n)−1
i=1 Fμ

(
η − λ

η
i (

η)
)
Fμ

(
η − λ

η
i (

η)
) [

F2
μ

(
η − λ

η
i (

η)
)+ F

2
μ

(
η − λ

η
i (

η)
)]

[
1

η(m+n)−1

∑η(m+n)−1
i=1 Fμ

(
η − λ

η
i (

η)
)
Fμ

(
η − λ

η
i (

η)
)]3/2 .

(43)

In the second line, we substitute for β(η) from (40) and VAR[F̃η(m+n)−1(
η)] from

(36), and in the final two lines we multiply and divide by 1/(η(m + n) − 1)3/2. In
Lemma 3 below we establish that the limit as η → ∞ of the numerator of the fraction
immediately below (43) equals q(1−q)(q2 + (1−q)2), while the limit as η → ∞ of
the term in brackets in its denominator is q(1 − q). With the term in (43) remaining,
the limit (42) follows immediately.

To complete the proof, we need to find a constant A such that

lim
η→∞ c(η) = −t, (44)

where the dependence of η on A can be seen in (34) and c(η) is defined in (38).
We rewrite c(η) in (38) by (i) substituting q = Fμ(μ + ξε+δ

q ) and for
E[F̃η(m+n)−1(

η)], VAR[F̃η(m+n)−1(
η)] from (35) and (36), and (ii) multiplying

and dividing by
√

η(m + n) − 1
(
η − pREE(μ)

)
:

c(η) = −
√

η(m + n) − 1
(
η − pREE(μ)

)

√
1

η(m+n)−1

∑η(m+n)−1
i=1 Fμ(η − λ

η
i (

η))Fμ(η − λ
η
i (

η))

× 1

η(m + n) − 1

∑η(m+n)−1
i=1 Fμ(η − λ

η
i (

η)) − Fμ(μ + ξε+δ
q )

η − pREE(μ)

= −
√

η(m + n) − 1
(
η − pREE(μ)

)

√
1

η(m+n)−1

∑η(m+n)−1
i=1 Fμ(η − λ

η
i (

η))Fμ(η − λ
η
i (

η))

(45)

× 1

η(m + n) − 1

η(m+n)−1∑

i=1

{
η − λ

η
i (

η) − (μ + ξε+δ
q )

η − pREE(μ)
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×
Fμ

(
η − λ

η
i (

η) − (μ + ξε+δ
q ) + (μ + ξε+δ

q )
)

− Fμ(μ + ξε+δ
q )

η − λ
η
i (

η) − (μ + ξε+δ
q )

⎫
⎬

⎭
.

(46)

In the last two lines we (i) add and subtract μ + ξε+δ
q in the argument of Fμ(η −

λ
η
i (

η)) and (ii)multiply and divide each term in the sumbyη−λ
η
i (

η)−(μ+ξε+δ
q ).

We next reduce (45) and (46). For (45), we have from (34) that
√

η(m + n) − 1
(
η − pREE(μ)

) = √η(m + n) − 1 t A
√

η(m + n) − 1
−1 = t A,

(47)

and from Lemma 3,

lim
η→∞

√√
√
√
√ 1

η(m + n) − 1

η(m+n)−1∑

i=1

Fμ(η − λ
η
i (

η))Fμ(η − λ
η
i (

η)) = √q(1 − q).

(48)

For (46), we first note from (9)–(10) that μ + ξε+δ
q = pREE(μ) − λ∞. From (34) we

therefore have for each 1 ≤ i ≤ η (m + n) − 1 that

lim
η→∞

η − λ
η
i (

η) − (μ + ξε+δ
q )

η − pREE(μ)
= lim

η→∞
η − pREE(μ) − (λ

η
i (

η) − λ∞)

η − pREE(μ)

= lim
η→∞

t A
√

η(m + n) − 1−1 − (λ
η
i (

η) − λ∞)

t A
√

η(m + n) − 1−1 = lim
η→∞

t A − O (1/ηε)

t A
= 1,

(49)

where in the last equality we use (31). This is the point at which the “+ε” in (11) and
(31) is consequential. Applying (34) and (31) produces

lim
η→∞ η − λ

η
i (

η) − (μ + ξε+δ
q ) = lim

η→∞ η − pREE(μ) − (λ
η
i (

η) − λ∞) = 0.

(50)

Because Fμ(t) = Gε+δ(t − μ) for t, μ ∈ R and Gε+δ is differentiable with G ′
ε+δ =

gε+δ , we have

lim
η→∞

Fμ(η − λ
η
i (

η) − (μ + ξε+δ
q ) + (μ + ξε+δ

q )) − Fμ(μ + ξε+δ
q )

η − λ
η
i (

η) − (μ + ξε+δ
q )

= G ′
ε+δ(ξ

ε+δ
q ) = gε+δ(ξ

ε+δ
q ),

for each 1 ≤ i ≤ η (m + n)−1.Combining (49)–(50) and applyingLemma3produces
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lim
η→∞

1

η(m + n) − 1

η(m+n)−1∑

i=1

{
η − λ

η
i (

η) − (μ + ξε+δ
q )

η − pREE(μ)

×
Fμ

(
η − λ

η
i (

η) − (μ + ξε+δ
q ) + (μ + ξε+δ

q )
)

− Fμ(μ + ξε+δ
q )

η − λ
η
i (

η) − (μ + ξε+δ
q )

⎫
⎬

⎭

= gε+δ(ξ
ε+δ
q ). (51)

We now take the limit of c(η), given by the product of (45) and (46), as η → ∞.
Applying (47), (48), and (51) we obtain

lim
η→∞ c(η) = − t A√

q(1 − q)
gε+δ(ξ

ε+δ
q ).

To produce (44) we choose A = √
q(1 − q)/gε+δ(ξ

ε+δ
q ). Using (42) and (44), we

obtain from (41) that limη→∞
∣∣
∣Pr
(
F̃∗

η(m+n)−1(
η) ≥ c(η)

)
− �(t)

∣∣
∣ = 0, which

establishes the result. ��
Lemma 3 Let (Bη, Sη)η∈N be a sequence of strategy profiles that satisfies A3. The
limit as η → ∞ of the numerator of the fraction immediately below (43) equals
q(1−q)(q2+(1−q)2), the limit as η → ∞ of the term in brackets in the denominator
of this fraction is q(1 − q), and the limits (48) and (51) hold.

Proof. The essential issue in proving the four limits is incorporating the uniform
convergence across the traders’ offsets (indexed by i) in (31) to their limit as η → ∞.
We prove here the second limit in the lemma, i.e., as η → ∞, the term in brackets
in the denominator below (43) converges to q(1 − q). This argument clarifies how
to address the uniform convergence and makes the proof of the other three limits
straightforward.

The first step is to prove that there exists for each t ∈ R a constant
	(t, A,Gε,Gδ,m, n) such that

∣∣∣η − λ
η
i (

η) − (μ + ξε+δ
q )

∣∣∣ <
	(t, A,Gε,Gδ,m, n)√

η(m + n) − 1
(52)

for all η ∈ N and 1 ≤ i ≤ η(m + n) − 1. We have

∣∣∣η − λ
η
i (

η) − (μ + ξε+δ
q )

∣∣∣

=
∣
∣∣η − λ

η
i (

η) −
(
μ + V

(
ξε+δ
q

)
− V

(
ξε+δ
q

)
+ ξε+δ

q

)∣∣∣

=
∣∣∣η − λ

η
i (

η) − (pREE(μ) − λ∞)

∣∣∣ =
∣∣∣η − pREE(μ) − (λ

η
i (

η) − λ∞)

∣∣∣

≤
∣∣∣η − pREE(μ)

∣∣∣+
∣∣∣λη

i (
η) − λ∞

∣∣∣ <
∣∣∣η − pREE(μ)

∣∣∣+ K (Gε,Gδ,m, n)√
η
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=
∣∣∣t

A√
η(m + n) − 1

∣∣∣+ K (Gε,Gδ,m, n)√
η

<
	(t, A,Gε,Gδ,m, n)√

η(m + n) − 1
.

The second line applies formulas (9) and (10) for pREE(μ) and λ∞ and the third line
applies the bound (31). Definition (34) of η is substituted in line four, and the last
inequality results by choosing an appropriate constant	 independent of i . Recall that

Fμ(μ + ξε+δ
q ) = Gε+δ(μ + ξε+δ

q − μ) = Gε+δ(ξ
ε+δ
q ) = q).

Turning to the second limit in the statement of the lemma, we wish to show that

lim
η→∞

1

η(m + n) − 1

η(m+n)−1∑

i=1

Fμ

(
η − λ

η
i (

η)
)
Fμ

(
η − λ

η
i (

η)
) = q(1 − q).

(53)

Recall from definition (34) of η that it is a function of t ∈ R. For each t ,

∣
∣∣∣
∣∣

1

η(m + n) − 1
·
⎛

⎝
η(m+n)−1∑

i=1

Fμ

(
η − λ

η
i (η)

)
Fμ

(
η − λ

η
i (η)

)
⎞

⎠− q(1 − q)

∣
∣∣∣
∣∣

≤ 1

η(m + n) − 1

η(m+n)−1∑

i=1

∣∣Fμ

(
η − λ

η
i (η)

)
Fμ

(
η − λ

η
i (η)

)− q(1 − q)
∣∣

≤ 1

η(m + n) − 1
· (η(m + n) − 1) · sup

z∈Bη

∣
∣∣Fμ(z)Fμ (z) − Fμ(μ + ξε+δ

q )Fμ(μ + ξε+δ
q )

∣
∣∣

= sup
z∈Bη

∣
∣∣Fμ(z)Fμ (z) − Fμ(μ + ξε+δ

q )Fμ(μ + ξε+δ
q )

∣
∣∣ . (54)

Here, Bη is the closed ball of radius 	(t, A,Gε,Gδ,m, n)/
√

η(m + n) − 1, i.e., the
bound in (52), centered at μ + ξε+δ

q . Continuity of Fμ implies that the limit of (54) is
zero, which implies (53). ��

B Proof of Theorem 2

We prove Theorem 2 by deriving the solution to the AFOC for a buyer’s strategy
in the private values case, where we need only consider the strategic term in (7) as
the price-taking term reduces to σB = v. Comparing (21) in Theorem 3 to (17), the
asymptotic strategic term in the general model has the same form as in the private
values case, with gε+δ(ξ

ε+δ
q ) replacing gε(ξ

ε
q ). Therefore, in Lemma 4 below we state

the form of the asymptotic strategic term in the general model with Theorem 2 then
following as a corollary.

Lemma 4 For fixed m and n, consider a sequence of markets indexed by the market
size η. Let (Bη, Sη)η∈N be a sequence of strategy profiles that satisfies A3. Faced
with the strategies of the others in this sequence, suppose a buyer considers strategies
B̂(·; η) in which the difference

∣∣B̂(v; σ) − σ − λ∞∣∣ between his offset B̂(v; σ) − σ
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and the equilibrium offset λ∞ of the limit market is O (1/ηε) for some ε > 0 and all
σ ∈ R. Then the buyer’s asymptotic strategic term is

P̃r[xη < b < yη|σB]
f̃ Bx (b|σB)

≡ ẽw|μ + O

(
1

η2

)

= − 1

(η(m + n) − 1) gε+δ

(
ξε+δ
q

) + O

(
1

η2

)
(55)

for any (b, σB) ∈ R
2 such that b = B̂(σB; η).

Lemma 4 is proven after the proof of Theorem 2.

Proof of Theorem 2. The FOC for a buyer in the private values case is

(v − b) · f Bx |v(b|v) − Pr[xη < b < yη|v] = 0, (56)

wherewe have substituted b = σB+λ
η
B and σB = v in (5). Substituting the asymptotic

distributions of xη(μ), yη(μ), and wη(μ) from Theorem 1 into (56) results in

(v − b) · f̃ Bx (b|v) − P̃r[xη < b < yη|v] = 0 ⇔ v − b − P̃r[xη < b < yη|v]
f̃ Bx (b|v)

= 0.

(57)

Here, “∼” denotes the use of the asymptotic distributions to calculate the density and
probability, and the equivalence follows from f̃ Bx (b|v) > 0. We substitute for the
strategic term in (57) from (55) in Lemma 4, as applied to the private values case. The
unique solution is the asymptotic offset λ̃η

B = v − b given by (17). ��
Proof of Lemma 4. For a market of size η, we want to express the probability that
a buyer sets the price conditional on his signal σB in terms of the distributions of
wη(μ) = yη(μ) − xη(μ) and xη(μ) (henceforth simply w, y and x). Our notational
convention for density functions is illustrated by fxw|σ (x, w|σB), which denotes the
joint density of x and w conditional on σ = σB , where the market size η is implicit
in w and x . We have

Pr[x < b < y|σB]
= Pr[0 < b − x < w|σB] =

∫ b

x=−∞

∫ ∞

w=b−x
fxw|σ (x, w|σB) dwdx

=
∫ ∞

μ=−∞

∫ b

x=−∞

∫ ∞

w=b−x
fxw|μ,v (x, w|μ, σB) fμ|σ (μ|σB) dwdxdμ, (58)

where the first equality applies the definition of w and the third equality introduces
μ into the marginal by integrating over μ ∈ R. Signals are independent conditional

123



The asymptotics of price and strategy in… 179

on μ, and so the order statistics of bids/asks from the other traders are also indepen-
dent of the signal σB of the buyer. We can therefore write fxw|μ,σ (x, w|μ, σB) =
fxw|μ (x, w|μ) = fw|x,μ (w|x, μ; η) fx |μ (x |μ) in (58) so that

Pr[x < b < y|σB]
=
∫ ∞

μ=−∞

∫ b

x=−∞
Fw|x,μ (b − x |x, μ) fx |μ (x |μ) dx

︸ ︷︷ ︸
Pr[x<b<y|μ]

fμ|σ (μ|σB) dμ, (59)

where the equality follows using the right-hand distribution function of w,
Fw|x,μ(·|x, μ) ≡ 1 − Fw|x,μ (·|x, μ).

We now substitute into the inner integral of (59)—which as noted above is equal to
the probability that the buyer sets the price conditional on the state μ—the asymptotic
distributions of w and x as given by Theorem (1). In this sense we compute the
asymptotic probability of being pivotal for the buyer conditional on μ. We again let
“∼” denote an asymptotic distribution. From (14) we have

F̃w|x,μ (t |x, μ) = F̃w|μ (t |μ) = e−t /̃ew|μ, (60)

for t ∈ R
+, where

ẽw|μ = 1

(η(m + n) − 1) gε+δ

(
ξε+δ
q

) . (61)

The first equality in (60) follows because conditional on μ, w is asymptotically
independent from x . From (13) we have

f̃x |μ (t |μ) = 1
√
2πυ̃x |μ

e−(t−pREE(μ)
)2

/(2υ̃x |μ) (62)

for t ∈ R, where pREE(μ) = μ + V
(
ξε+δ
q

)
as in (9), and

υ̃x |μ = mn

(η(m + n) − 1) (m + n)2

1

g2ε+δ(ξ
ε+δ
q )

. (63)

Substituting (60) and (62) in the inner integral in (59), we write the asymptotic
probability that the buyer sets the price conditional on μ as

P̃r[x < b < y|μ] =
∫ b

−∞
F̃w|x,μ (b − x |x, μ) f̃x |μ (x |μ) dx

=
∫ b

−∞
e−(b−x)/̃ew|μ 1

√
2πυ̃x |μ

e−(x−pREE(μ)
)2

/(2υ̃x |μ)dx . (64)
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Although the integral (64) is available in closed form, we take a different route to get a
simpler expression through approximation. We first change the variable of integration
in (64) to z = b − x :

P̃r[x < b < y|μ] =
∫ +∞

0

1
√
2πυ̃x |μ

e−z/̃ew|μ−(b−z−pREE(μ)
)2

/(2υ̃x |μ)dz

= 1
√
2πυ̃x |μ

∫ +∞

0

(
e−z/(η̃ew|μ)−(b−z−pREE(μ)

)2
/(2ηυ̃x |μ)

︸ ︷︷ ︸
R(z)

)η

dz.

(65)

In the second line we multiply and divide the exponent by η. We now apply (Fibich
and Gavious 2010, Lem. 2) to approximate the integral in (65): for R(z) equal to the
indicated term in (65), we have

∫ ∞

0
Rη(z)dz = −1

η

Rη+1(0)

R′
(0)

[
1 + O

(
1

η

)]
.

After some algebra, (65) becomes

P̃r[x < b < y|μ] = ẽw|μ
1

1 − (b − pREE(μ)) ẽw|μ/υ̃x |μ

× 1
√
2πυ̃x |μ

e−(b−pREE(μ)
)2

/(2υ̃x |μ)

︸ ︷︷ ︸
f̃x |μ(b|μ)

[
1 + O

(
1

η

)]
, (66)

where we annotate a term as f̃x |μ (b|μ) that corresponds to the asymptotic density
of x conditional on μ (see (69)). Substituting the expression for P̃r[x < b < y|μ]
given by (66) in (59) produces the asymptotic probability that the buyer sets the price
conditional on σB :

P̃r[x < b < y|σB]

=
[
1 + O

(
1

η

)]
ẽw|μ

∫ ∞

−∞

1√
2πυ̃x |μ

e−(b−pREE(μ)
)2

/(2υ̃x |μ)

1 − (b − pREE(μ)) ẽw|μ/υ̃x |μ
fμ|σ (μ|σB)dμ.

=
[
1 + O

(
1

η

)]
ẽw|μ

∫ ∞

−∞

1√
2πυ̃x |μ

e−(b−pREE(μ)
)2

/(2υ̃x |μ)

1 − (b − pREE(μ)) ẽw|μ/υ̃x |μ
gε+δ(σB − μ)dμ.

=
[
1 + O

(
1

η

)]
ẽw|μ

∫ ∞

−∞

1√
2πυ̃x |μ

e−α2/(2υ̃x |μ)

1 − αẽw|μ/υ̃x |μ
gε+δ

(
λ̂ + ξε+δ

q + α
)
dα.

(67)
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The second line follows because fμ|σ (μ|σB) = gε+δ(σB − μ) due to the uniform
improper prior assumption on μ. The last line follows by: (i) changing the variable

of integration to α = b − pREE(μ) = b − μ − V
(
ξε+δ
q

)
using (9); (ii) defining

λ̂ ≡ λ∞ − (b − σB), with λ∞ ≡ V
(
ξε+δ
q

)
− ξε+δ

q (i.e., the limit market offset (10)).

Note that we do not assume that the difference b − σB is a constant offset. Moreover,
observe from (61) that ẽw|μ is O(1/η) and so [1 + O (1/η)] ẽw|μ = ẽw|μ +O

(
1/η2

)
.

Even for a particular choice of the density gε+δ , the integral in (67) is still not
computable in closed form due to the term

(
1 − αẽw|μ/υ̃x |μ

)−1. In order to proceed

we take a Taylor’s series expansion of
(
1 − αẽw|μ/υ̃x |μ

)−1 around zero,

1

1 − αẽw|μ/υ̃x |μ
= 1 +

∞∑

i=1

(
αẽw|μ/υ̃x |μ

)i
.

Substituting in the integral of (67), we have
∫ ∞

−∞
1

1 − αẽw|μ/υ̃x |μ
1

√
2πυ̃x |μ

e−α2/(2υ̃x |μ)gε+δ

(
λ̂ + ξε+δ

q + α
)
dα

=
∫ ∞

−∞
1

√
2πυ̃x |μ

e−α2/(2υ̃x |μ)gε+δ

(
λ̂ + ξε+δ

q + α
)
dα

+
∫ ∞

−∞

∞∑

i=1

(
αẽw|μ/υ̃x |μ

)i 1
√
2πυ̃x |μ

e−α2/(2υ̃x |μ)gε+δ

(
λ̂ + ξε+δ

q + α
)
dα.

(68)

Using the asymptotic density of x given μ, we write the asymptotic density of x given
the signal σ of the buyer as

f̃x |σ (t |σB) =
∫ ∞

−∞
f̃x |μ (t |μ) fμ|σ (μ|σB)dμ

=
∫ ∞

−∞
1

√
2πυ̃x |μ

e−(t−pREE(μ)
)2

/(2υ̃x |μ)gε+δ(σB − μ)dμ, (69)

where the second equality applies (60). This is the term in the integral in the second
line of (68) (which follows by changing the variable of integration toα = t− pREE(μ)).
Substituting (68) back to (67) using (69) produces the following expression for the
asymptotic probability that the buyer sets the price conditional on his signal:

P̃r[x < b < y|σB] =
[
ẽw|μ + O

(
1

η2

)]
f̃x |σ (b|σB)

+
[
ẽw|μ + O

(
1

η2

)]∫ ∞

−∞

∞∑

i=1

(
αẽw|μ/υ̃x |μ

)i e−α2/(2υ̃x |μ)
√
2πυ̃x |μ

gε+δ

(
λ̂ + ξε+δ

q + α
)
dα.

(70)
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Our goal now is to show that the integral in (70) is O(1/η) f̃x |σ (b|σB). This will
lead to a simple expression for the asymptotic probability that the buyer sets the price.
If

∫ ∞

−∞

∞∑

i=1

(
αẽw|μ/υ̃x |μ

)i 1
√
2πυ̃x |μ

e−α2/(2υ̃x |μ)gε+δ

(
λ̂ + ξε+δ

q + α
)
dα

= O

(
1

η

)
f̃x |σ (b|σB), (71)

then the asymptotic probability (70) that the buyer sets the price becomes

P̃r[x < b < y|σB] =
[
ẽw|μ + O

(
1

η2

)]
f̃x |σ (b|σB)

+
[
ẽw|μ + O

(
1

η2

)]
O

(
1

η

)
f̃x |σ (b|σB)

=
[
ẽw|μ + O

(
1

η2

)]
f̃x |σ (b|σB),

where in the second line we again use that ẽw|μ is O(1/η) (see (61)). Dividing both
sides above by the density f̃x |σ (b|σB), we get (55).

In the remainder, we first prove that (71) holds for gε+δ normal and then extend
it to the case of mixture of normals. The normal and mixtures of normals allow us
to compute the integral in (70) in closed form and thus makes it possible to establish
(71). In particular, consider the density gε+δ(t) = ∑K

k=1 wkφ (t;mk, υk), t ∈ R,
with wk > 0,

∑K
k=1 wk = 1. Let φk(t) ≡ φ (t;mk, υk) for t ∈ R, the density of a

N (mk, υk) random variable. Mixtures of normals approximate arbitrarily closely any
continuous density in a variety of different norms, including L1 (McLachlan and Peel
2000); as the integral in (71) is continuous in the density gε+δ in the L1 norm, the
expression that we derive in the mixtures of normals case thus holds generally for all
choices of the continuous density function gε+δ (whose continuity follows from A1).

Finally, recall that we assume that the buyer considers a sequence of strategies(
B̂(·; η)

)
η∈N such that

∣∣(B̂(σ ; η) − σ
)− λ∞∣∣ is O (1/ηε) for some ε > 0 and all

σ ∈ R. Let λ̂ (σ ; η) ≡ (
B̂(σ ; η) − σ

) − λ∞. In what follows, we suppress the
dependence of λ̂ (σ ; η) on σ and η and write it simply as λ̂.

Normal distribution case (K = 1). We assume here that gε+δ = φk . Substituting in
the integral in (70) yields

∫ ∞

−∞

∞∑

i=1

(
αẽw|μ/υ̃x |μ

)i 1
√
2πυ̃x |μ

e−α2/(2υ̃x |μ)

1√
2πυk

exp

(

− (̂λ + ξε+δ
q + α − mk)

2

2υk

)

dα. (72)
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Focusing on the first three terms of the infinite sum, we have

∫ ∞

−∞
αẽw|μ/υ̃x |μ

1
√
2πυ̃x |μ

e−α2/(2υ̃x |μ)

1√
2πυk

exp

(

− (̂λ + ξε+δ
q + α − mk)

2

2υk

)

dα (73)

+
∫ ∞

−∞
[
αẽw|μ/υ̃x |μ

]2 1
√
2πυ̃x |μ

e−α2/(2υ̃x |μ)

1√
2πυk

exp

(

− (̂λ + ξε+δ
q + α − mk)

2

2υk

)

dα (74)

+
∫ ∞

−∞
[
αẽw|μ/υ̃x |μ

]3 1
√
2πυ̃x |μ

e−α2/(2υ̃x |μ)

1√
2πυk

exp

(

− (̂λ + ξε+δ
q + α − mk)

2

2υk

)

dα. (75)

Observe that when gε+δ = φk equation (69) implies

f̃x |σ (b|σB) =
∫ ∞

−∞
1

√
2πυ̃x |μ

exp

(

−
(
b − pREE(μ)

)2

2υ̃x |μ

)

1√
2πυk

exp

(
− (μ − σB − mk)

2

2υk

)
dμ

= 1
√
2π
(
υk + υ̃x |μ

) exp

(

− (̂λ + ξε+δ
q − mk)

2

2
(
υk + υ̃x |μ

)

)

, (76)

that is, the asymptotic density of x given the signal σ = σB is also normal with mean

mk − σB − V
(
ξε+δ
q

)
and variance υk + υ̃x |μ. In the last equality above we substitute

for λ̂ = λ∞ − (b − σB) = V
(
ξε+δ
q

)
− ξε+δ

q − (b − σB).

Let I1, I2, I3 denote the integrals in (73), (74), (75), respectively. These integrals
are easily computed in closed form. Using formula (76) for f̃x |σ (b|σB) in the normal
case we have

I1 = − f̃x |σ (b|σB)
(
ẽw|μ/υ̃x |μ

) υ̃x |μ
υk + υ̃x |μ

(̂λ + ξε+δ
q − mk), (77)

I2 = f̃x |σ (b|σB)
(
ẽw|μ/υ̃x |μ

)2 υ̃x |μ
(
υk + υ̃x |μ

)2

(
1 + υ̃x |μ

(
1 + (̂λ + ξε+δ

q − mk)
2
))

,

(78)

I3 = − f̃x |σ (b|σB)
(
ẽw|μ/υ̃x |μ

)3
(
υ̃x |μ

)2
(
υk + υ̃x |μ

)3 ·
(
3 + υ̃x |μ

(
3 + (̂λ + ξε+δ

q − mk)
2
))
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(̂λ + ξε+δ
q − mk). (79)

Notice that f̃x |σ (b|σB) is a common factor in I1, I2, and I3. These terms differ in
their exponents on the factors ẽw|μ/υ̃x |μ, υ̃x |μ and λ̂ + ξε+δ

q −mk . To derive a simple
formula for the buyer’s strategy, we focus on the dependence of these terms on η.
Using (61) and (63) we have

ẽw|μ/υ̃x |μ = gε+δ(ξ
ε+δ
q )(m + n)2

mn
,

which is a constant that does not depend on η. Further, again from (63) we see that υ̃x |μ
is O(1/η). We also have that υ̃x |μ/

(
1 + υ̃x |μ

)2 is O(1/η) and
(
υ̃x |μ

)2
/
(
1 + υ̃x |μ

)3

is O(1/η2).
We assumed that the buyer restricts attention to λ̂ that is O(1/ηε) for some ε > 0.

It is then easy to see from (77)–(79) for I1, I2, I3, that

I1 = − f̃x |σ (b|σB)O

(
1

η

)
, I2 = f̃x |σ (b|σB)O

(
1

η

)
, I3 = − f̃x |σ (b|σB)O

(
1

η2

)
.

Similarly, if we compute the integrals corresponding to the higher terms (i.e., In for
n > 3) in the series expansion of

(
1 − αẽw|μ/υ̃x |μ

)−1 we obtain expressions of the
form f̃x |σ (b|σB)O (1/ηκ) for κ ≥ 2. Summing the In’s, the integral in (72) is therefore
I1+ I2+ I3+· · · = O (1/η) f̃x |σ (b|σB).Thismeans that (71) is satisfied in the normal
distribution case.

Mixture of normals (K > 1). Consider a nondegenerate mixture of normals gε+δ =
∑K

k=1 wkφk . We substitute in the integral in (70) to obtain gε+δ

(
λ̂ + ξε+δ

q + α
)

=
∑K

k=1 wkφk (̂λ + ξε+δ
q + α).

We proved above that (71) holds for each φk , i.e.,

∫ ∞

−∞

∞∑

i=1

(
αẽw|μ/υ̃x |μ

)i 1
√
2πυ̃x |μ

e−α2/(2υ̃x |μ)

1√
2πυk

exp

(

− (̂λ + ξε+δ
q + α − mk)

2

2υk

)

dα

= O

(
1

η

)
1

√
2π
(
υk + υ̃x |μ

) exp

(

− (̂λ + ξε+δ
q − mk)

2

2
(
υk + υ̃x |μ

)

)

. (80)

Furthermore, for the mixture of normals case from (69 ),

f̃x |σ (b|σB) =
∫ ∞

−∞
1

√
2πυ̃x |μ

exp

(

−
(
b − pREE(μ)

)2

2υ̃x |μ

)
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K∑

k=1

wk
1√
2πυk

exp

(
− (μ − σB − mk)

2

2υk

)
dμ

=
K∑

k=1

wk

∫ ∞

−∞
1

√
2πυ̃x |μ

exp

(

−
(
b − pREE(μ)

)2

2υ̃x |μ

)

1√
2πυk

exp

(
− (μ − σB − mk)

2

2υk

)
dμ

=
K∑

k=1

wk
1

√
2π
(
υk + υ̃x |μ

) exp

(

− (̂λ + ξε+δ
q − mk)

2

2
(
υk + υ̃x |μ

)

)

. (81)

Multiplying both sides of (80) by wk and summing across k = {1, . . . , K } using (81)
shows that (71) is satisfied also for a mixture of normals. ��

C Proof of Theorem 3

We begin with the asymptotic problem of a buyer and then proceed to that of a seller.
Buyer. From 5), the FOC for a buyer is

(E[v|σB, x = b] − b) · f Bx |σ (b|σB) − Pr[x < b < y|σB] = 0, (82)

where we substitute b for σB +λ
η
B and omit the dependence of x and y on η. As shown

in (Satterthwaite, Williams, and Zachariadis 2020, sec. B.1), the price-taking term of
a buyer can be expressed as

E[v|σB, x = b] =
∫
E[v|μ, σB] f Bx |μ(b|μ)gε+δ(σB − μ)dμ

f Bx |σ (b|σB)

=
∫
E[v|μ, σB] f Bx |μ(b|μ)gε+δ(σB − μ)dμ
∫

f Bx |μ(b|μ)gε+δ(σB − μ)dμ
, (83)

where the second equality follows because σ and x are independent conditional on μ.
Substituting in (83) for the density of x conditional onμwith its asymptotic counterpart
given by Theorem 1 produces the asymptotic price-taking term, denoted by a “∼”:

Ẽ[v|σB, x = b] =
∫
E[v|μ, σB] f̃x |μ(b|μ)gε+δ(σB − μ)dμ

f̃x (b|σB)
. (84)

Here, f̃x (b|σB) = ∫
f̃x |μ(b|μ)gε+δ(σB − μ)dμ is the asymptotic density of x con-

ditional on σ , which is the same function for a buyer as for a seller (since f̃x |μ is the
same). We thus drop the superscript B.
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To proceed with the calculation of (84), we consider ε ∼ N (0, υε) and δ ∼
N (0, υδ) so that ε + δ ∼ N (0, υε + υδ), that is

gε+δ(t) = 1√
2π (υε + υδ)

exp

( −t2

2 (υε + υδ)

)
(85)

for all t ∈ R. From standard results with normal random variables we have

E[v|μ, σ ] = E[c|μ, σ ] = υεσ + υδμ

υε + υδ

(86)

for all μ, σ ∈ R. Moreover, from Theorem 1 we have

f̃x |μ(t |μ) = 1
√
2πυ̃x |μ

exp

(
− (t − pREE(μ)

)2

2υ̃x |μ

)

(87)

for all t, μ ∈ R, where pREE(μ) = μ + V
(
ξε+δ
q

)
as in (9) and in this normal-normal

case V (t) = tυε/(υε + υδ) for all t ∈ R.
Substituting the expressions for E[v|μ, σB], f̃x |μ(b|μ) and gε+δ(σB − μ) from

(86), (87) and (85), we calculate the numerator of (84) in closed form,

∫
E[v|μ, σB] f̃x |μ(b|μ)gε+δ(σB − μ)dμ

=
σB(υ̃x |μ + υε) +

(
b − V

(
ξε+δ
q

))
υδ

υ̃x |μ + υε + υδ

f̃ Bx (b|σB) ,

where we used the fact that in this case, by direct calculation using the expressions for
f̃x |μ(b|μ) and gε+δ(σB − μ) from (87) and (85),

f̃ Bx |σ (b|σB) = 1
√
2π
(
υ̃x |μ + υε + υδ

) exp

⎛

⎜
⎝−

(
b − σB − V

(
ξε+δ
q

))2

2
(
υ̃x |μ + υε + υδ

)

⎞

⎟
⎠ .

Using (88), we get from (84) that the asumptotic price-taking term is given by (20).
Moreover, the asymptotic strategic term is reported in (55) of Lemma 4 in Section B
of the Appendix and appears as (21) in the main text.

Hence, by using the asymptotic price-taking and strategic terms, the AFOC
corresponding to (82) is

(
Ẽ[v|σB, x = b] − b

) · f̃ Bx (b|σB) − P̃r[x < b < y|σB] = 0 ⇔ b

= Ẽ[v|σB, x = b] − P̃r[x < b < y|σB]
f̃ Bx (b|σB)

,
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which, by substituting for (55), yields (19).

Seller. From (6), the FOC for a seller is − (E[c|σS, x = a] − a) · f Sx |σ (a|σS) = 0.

We substitute a for σS + λ
η
S in (6) and drop the dependence on x of η for brevity. By

Theorem 1, the asymptotic distribution of x is the same for a buyer and seller. The
price-taking term of a seller is therefore the same as that of a buyer with the only
changes of σB to σS and b to a. This is reported in (22). ��
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