
Review of Economic Design (2022) 26:581–604
https://doi.org/10.1007/s10058-022-00321-7

ORIG INAL PAPER

Outside options in neutral allocation of discrete resources

Marek Pycia1 ·M. Utku Ünver2,3

Received: 30 March 2021 / Accepted: 3 November 2022 / Published online: 28 November 2022
© The Author(s) 2022

Abstract
Serial dictatorships have emerged as the canonical simple mechanisms in the litera-
ture on the allocation of indivisible goods without transfers. They are the only neutral
and group-strategy-proof mechanisms in environments in which agents have no out-
side options and hence no individual rationality constraints (Svensson in Soc Choice
Welfare 16:557–567, 1999). Accounting for outside options and individual rationality
constraints, our main result constructs the class of group-strategy-proof, neutral, and
non-wasteful mechanisms. These mechanisms are also Pareto efficient and we call
them binary serial dictatorships. The abundance of the outside option—anybody who
wants can opt out to get it—is crucial for our result.
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582 M. Pycia, M. U. Ünver

1 Introduction

Serial dictatorships have often emerged as the canonical simple mechanisms in the
literature on the allocation of indivisible objects without transfers and with single-
unit demands (i.e., the Hylland and Zeckhauser 1979 model). A serial dictatorship
mechanism allocates objects by ordering agents, and then letting the first agent choose
her most preferred object, thereafter letting the second agent choose his most preferred
object among those still available, etc. Svensson (1999) explains the attractiveness of
serial dictatorships by showing that they are the only neutral and group strategy-proof
mechanisms. A mechanism is neutral if its outcome does not depend on the labelling
of objects.1 A mechanism is group strategy-proof if there is no group of agents that
can misstate their preferences and obtain a weakly better house, and such that at
least one agent in the group gets a strictly better house. Svensson restricts attention
to environments in which agents have no outside options and hence no individual
rationality constraints.

We allow for the outside options: each agent can remain unmatched if she chooses
to, i.e., participation is voluntary. Our main result establishes that the class of group
strategy-proof, neutral, non-wasteful and individually-rational mechanisms consists
of mechanisms we call binary serial dictatorships. Individual rationality ensures vol-
untary participation: no agent is assigned a house worse than her outside option.
Non-wastefulness is a weak efficiency property: a mechanism is non-wasteful if there
is no unassigned house that an agent prefers to be matched with rather than her assign-
ment. The class of binary serial dictatorships generalizes serial dictatorships to the
setting with outside options. A binary serial dictatorship first assigns a selected agent
her most preferred outcome among all houses and her outside option; we also refer to
being assigned the outside option as being unmatched. A second agent is then assigned
his most preferred outcome among all not-yet-assigned houses and his outside option.
In contrast to serial dictatorships, the identity of the second agent can depend on
whether the first agent is matched with a house or with an outside option. The mech-
anism then repeats the procedure, selecting a third agent whose identity depends on
whether the first and second agent were matched with houses or outside options, etc.2

Our characterization has two corollaries. First, because binary serial dictatorships
are Pareto efficient, we can conclude that binary serial dictatorships are also the class of
group strategy-proof, neutral, Pareto efficient and individually-rational mechanisms.
Second, in the subdomain of our preference domain in which the outside option is
always ranked last by all agents—the domain that most previous axiomatic studies on
house allocation used—our result implies that a mechanism is group strategy-proof,
neutral, and non-wasteful if and only if it is a serial dictatorship.

1 Neutrality is a simplicity criterion; it captures the idea that the mechanism can be described without
reference to specific objects (see Oprea (2020) and Pycia and Troyan (2022) for recent discussions of
descriptive simplicity). Neutrality allows the mechanism to depend on how the outside options are called;
this plays no role in Svensson’s setting but matters in the environments with outside options that we study.
2 Surprisingly, the simple and elegant proof of Svensson hinges on the lack of outside options and does
not extend to our environment; in effect, our argument is substantially more involved. See the discussion
in Sect. 7.
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Outside options in neutral allocation of discrete resources 583

Serial dictatorships were introduced by Satterthwaite and Sonnenschein (1981) in
private good economies and studied by Svensson (1994) in the house allocation con-
text as a strategy-proof mechanism in absence of outside options (also see Roth 1982).
In addition to Svensson (1999), Ergin (2000) characterized serial dictatorships by
maintaining the neutrality requirement and replacing group strategy-proofness with
monotonicity and consistency axioms. Abdulkadiroğlu and Sönmez (1998) showed
that, given a fixed preference profile, each Pareto efficient outcome can be obtained
by running a serial dictatorship.3 Sönmez and Ünver (2010) studied neutrality and
strategy-proofness, together with additional axioms, and allow agents to have prop-
erty rights over some of the goods (see also Abdulkadiroğlu and Sönmez 1999 for this
model). Pycia and Ünver (2021) showed that Arrovian efficient and strategy-proof
mechanisms resemble sequential dictatorships except that in the last step of the algo-
rithm, when there are only two goods left, two agents might be endowed with these
goods and allowed to trade them;Pycia (2016) showed that a similar class of sequential-
dictatorship-like mechanisms characterizes strong obvious strategy-proofness and
Pareto efficiency. These papers focus on environments without outside options.

The present paper contributes to the analysis of the voluntary participation in allo-
cation of indivisible goods without transfers in the presence of outside options. The
previous analyses of this issue focused on population monotonicity (Ehlers et al.
2002) and resource monotonicity (Ehlers and Klaus 2003); assumptions we do not
impose. Following the initial draft of our work, others have examined outside options
in related environments.Nanyang (2014) used neutrality and additional axioms to char-
acterize sequential dictatorships. Erdil (2014) showed in a domain without transfers
that non-wasteful and strategy-proof deterministic mechanisms are not dominated by
strategy-proof deterministicmechanisms. In school-choice domain,Kesten andKurino
(2019) showed that with outside options there is no mechanism that Pareto-dominates
the student-optimal stable school-choice mechanism. They also study maximal sub-
domains of preferences where such result no longer holds. In a more general setting
with or without transfers, Alva and Manjunath (2019) showed that if a pair of indi-
vidual rational and strategy-proof mechanisms are participation equivalent (i.e., if at
every problem every agent either receives her outside option under both mechanisms
or is assigned a non-outside-option outcome under both) then they should be welfare
equivalent.4 Calsamiglia et al. (2020) showed that the presence of outside options has
an even bigger impact on individually-rational but non-strategy-proof mechanisms as
it enables agents with better outside option to choose more risky equilibrium strate-
gies. Some of the conceptual modeling and market design for kidney exchange hinges

3 Abdulkadiroğlu and Sönmez also show that randomizing over serial dictatorships is equivalent to random-
izing over Gale’s top trading cycles (cf. Shapley and Scarf 1974, Ma 1994). For further studies of random
serial dictatorships, see Sönmez and Ünver (2005), Pathak and Sethuraman (2011), Che and Kojima (2010),
Liu and Pycia (2011), Carroll (2014), and Pycia and Troyan (2022). For a related result for serial dictator-
ships, see Pycia (2019). For studies of dictatorships, see e.g. Gibbard (1973), Satterthwaite (1975), Hylland
(1980), and Bahel and Sprumont (2020).
4 For other characterizations involving strategy-proofness in the house allocation domain see, for example,
Pápai (2000), Ehlers (2002), Bogomolnaia et al. (2005), Kesten (2009), Velez (2014), Pycia (2016), and
Pycia and Ünver (2017). See Sönmez and Ünver (2011) for a survey of the literature. In the setting with
multi-unit demand, Pápai (2001) and Hatfield (2009) characterized sequential dictatorships not allowing
for outside options.
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584 M. Pycia, M. U. Ünver

on the outside-option-like protections for patients and the incompatible donors they
bring to the exchange: the donor brought by a patient can only be matched with other
patients if the patient ismatchedwith a compatible donor (e.g., Roth et al. 2005, 2007).
The donor a patient brought to the exchange can thus be seen as the patient’s outside
option.5

While we show that Svensson’s serial dictatorship insight can be modified so as
to make it valid when agents have outside options, there are many other standard
mechanismdesign problems inwhichwhether agents have the ability to take an outside
option crucially affects the standard results. For instance, in the setting with monetary
transfers and quasi-linear utilities, the impossibility of ex-post Pareto efficient and
Bayesian incentive compatible bilateral trade shown by Myerson and Satterthwaite
(1983) crucially depends on individual rationality. The Coasian dynamics of Gul et al.
(1986) hinges on the inability of buyers to take an outside option, as shown by Board
and Pycia (2014).

2 House allocation problemwith outside options

Let I be a finite set of agents. Let H be a finite set of indivisible goods that we refer
to as houses (following the terminology of Shapley and Scarf 1974). Each agent i has
a strict preference relation over H and her outside option denoted by x∅; we assume
x∅ /∈ H . The strict preference relation is denoted by �i . Let �i be the induced weak
preference relation from �i ,6 that is for any x, y ∈ H ∪ {x∅},

x �i y ⇐⇒ x = y or x �i y.

We denote the preference relation of agent i by the induced weak preference relation
�i . Let R be the set of preference relations. Let � = (�i )i∈I ∈ R|I | be a preference
profile. Each agent has not only right to hold on to her own house, but also have
rights on the vacant houses, which are social endowments. Triple 〈I , H ,�〉 is a house
allocation problem with outside options.

An outcome of a problem is a matching. Following Pycia and Ünver (2017), we
define the auxiliary concept of a submatching first. A submatching is an assignment
that assigns to some agents a house or the outside option (in either casewewrite that the
agents are matched), and no two agents are assigned the same house. Formally, for any
given J ⊆ I , a submatching is a functionσ : J −→ H∪{x∅} such that for every i, j ∈
J , σ(i) = σ( j) ⇒ i = j or σ(i) = x∅.Wewill occasionally use the set interpretation
of functions to denote the submatching σ as well, i.e., σ = {(i, σ (i))}i∈J . Let S be
the set of submatchings, which includes also the empty submatching ∅. We denote the
set of agents over which the submatching σ is defined as I σ = J ; moreover, let Hσ

be the houses matched in the submatching σ : Hσ = σ(I σ )\{x∅}. A matching is a
submatching σ such that I σ = I . LetM denote the set of matchings. LetM = S\M
denote the set of submatchings that are not matchings.

5 The patient and the incompatible donor can again participate in exchange at a later time, see Ünver (2010).
6 The weak preference relation is a linear order on H , i.e. a binary relation on H that is antisymmetric,
transitive, complete, and reflexive.
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Outside options in neutral allocation of discrete resources 585

Amechanism assigns a matching for each problem. Throughout the paper, we fix I
and H , and thus, a problem is given by the preference profile �. Therefore, formally
a mechanism is a function ϕ : R|I | −→ M.

2.1 Axioms

Amatching is individually rational, if no agent receives a house worse than the outside
option: μ ∈ M is individually rational if for every i ∈ I , μ(i) �i x∅. A mechanism
is individually rational, if it finds an individually-rational matching for each problem.

A matching is non-wasteful, if no agent receives an option that is worse than a
house that is unassigned: μ ∈ M is non-wasteful if for every i ∈ I , μ(i) �i h for
every h ∈ H\Hμ. Non-wastefulness would imply individual rationality if x∅ were
(equivalently) considered as a house with |I | copies. Thus, one can think of individual
rationality as a special instance of non-wastefulness. A mechanism is non-wasteful, if
it finds a non-wasteful matching for each problem.

Amatching is Pareto efficient, if there is no matching that makes everybody weakly
better off, and at least one agent strictly better off. That is, a matchingμ ∈ M isPareto
efficient if there exists no matching ν ∈ M such that for every i ∈ I , ν(i) �i μ(i),
and for some i ∈ I , ν(i) �i μ(i). A mechanism is Pareto efficient, if it finds a
Pareto–efficient matching for each problem.

Individual rationality, non-wastefulness and Pareto efficiency are related concepts.

Lemma 1 If a matching is Pareto efficient then it is individually rational and non-
wasteful.

Proof [Proof of Lemma 1] Let μ be an individually irrational or wasteful matching.
Then there exists some agent i ∈ I , with g �i μ(i) such that either g = x∅ or g ∈ H
is not assigned to any agent. Consider the following matching ν: for every j ∈ I\{i},
ν( j) = μ( j) and ν(i) = g. Clearly ν Pareto-dominates μ; hence, μ is not Pareto
efficient. �

A mechanism is non-bossy if whenever an agent misreports her preferences and
cannot change her house assigned by the mechanism, then she cannot change the
matching assigned by the mechanism, either (Satterthwaite and Sonnenschein 1981).
Formally, a mechanism ϕ is non-bossy if for every �∈ R|I |, i ∈ I , and �′

i∈ R,

ϕ
[�′

i ,�−i
]
(i) = ϕ [�] (i) ⇒ ϕ

[�′
i ,�−i

] = ϕ [�] .

A mechanism is strategy-proof if an agent cannot receive a better house by mis-
reporting her preferences. Formally, a mechanism ϕ is strategy-proof if for every
�∈ R|I |, i ∈ I , and �′

i∈ R,

ϕ [�] (i) �i ϕ
[�′

i ,�−i
]
(i).

Amechanism is group strategy-proof if there is no group of agents that can misstate
their preferences so that they all obtain a weakly better house and at least one agent in
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586 M. Pycia, M. U. Ünver

the group gets a strictly better house. Formally, a mechanism ϕ is group strategy-proof
if there are no �∈ R|I |, J ⊆ I , and �′

J∈ R|J | such that

ϕ
[�′

J ,�−J
]
(i) �i ϕ [�] (i) ∀i ∈ J , and

ϕ
[�′

J ,�−J
]
( j) � j ϕ [�] ( j) ∃ j ∈ J .

A mechanism is Maskin monotonic if whenever the preferences of agents change
in a way such that the lower contour set at the assigned option under the original
preferences is a subset of the lower contour set at the same option under the new
preferences, then the matching assigned by the mechanism does not change (Maskin
1999). Formally, a mechanism ϕ is monotonic if for every �,�′∈ R|I | and i ∈ I ,

{
x ∈ H ∪ {x∅} : ϕ [�] (i) �i x

} ⊆ {
x ∈ H ∪ {x∅} : ϕ [�] (i) �′

i x
}

⇒ ϕ
[�′] = ϕ [�] .

In this case, we say that �′ is a monotonic transformation of � under ϕ.
Axioms of strategy-proofness, non-bossiness, group strategy-proofness and mono-

tonicity are very related concepts, and the following lemmata show their relationships:

Lemma 2 (Pápai 2000)Amechanism is group strategy-proof if and only if it is strategy-
proof and non-bossy.

Lemma 3 (Takemiya 2001) A mechanism is monotonic if and only if it is group
strategy-proof.

These lemmata were previously proven in a domain without outside options but
the proofs carry over to our setting. For a general treatment of these and similar
equivalences, see Pycia and Ünver (2021).

The last concept we use is neutrality. In order to introduce it, we first define two
auxiliary concepts. A relabeling is a one-to-one and onto function π : H ∪ {x∅} →
H ∪ {x∅} such that π(x∅) = x∅. That is, under a relabeling, the names of houses are
exchanged. Let � be the set of relabeling functions. For example, under relabeling
π ∈ �, for house h ∈ H , π(h) is house h’s new name. For any �∈ R|I |, and π ∈ �,
the relabeled preference profile �π∈ R|I | is such that for every i ∈ I ,

x �π
i y ⇐⇒ π−1(x) �i π−1(y) ∀ x, y ∈ H ∪ {x∅}.

That is, under the relabeled preference profile, the original names of the houses are
replaced by their new names.

A mechanism is neutral if renaming of houses results with everybody receiving the
house which is the renamed version of her old assignment. Formally a mechanism ϕ

is neutral if for any �∈ R|I | and π ∈ �,

ϕ
[�π

]
(i) = π (ϕ [�] (i)) ∀i ∈ I .
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Outside options in neutral allocation of discrete resources 587

3 Binary serial dictatorships

Wenow construct the class ofmechanisms that characterize the axioms group strategy-
proofness, neutrality, individual rationality, and non-wastefulness. We start with the
definition of a standard sequential dictatorship. A sequential order is a function f :
M → I such that f (σ ) ∈ I\I σ for every σ ∈ M. A sequential dictatorship is a
mechanism φ f , which is induced by a sequential order f , and its outcome is found
by the following iterative algorithm given a preference profile �:

Step 1: Agent i1 = f (∅) is assigned her favorite option in H ∪ {x∅}; let this
option be denoted as x1.

...

Step �: Let σ�−1 = {(i1, x1), (i2, x2), ..., (i�−1, x�−1)}. Agent i� = f (σ�−1) is
assigned her favorite option in (H\Hσ�−1) ∪ {x∅}; let this option be denoted as
x�.

Sequential dictatorships are strategy-proof, non-bossy, and Pareto efficient. But they
are not neutral in general. We need to restrict the set of sequential dictatorships con-
siderably to obtain a neutral mechanism.

A binary serial order is a sequential order f such that f (σ ) = f (σ ′) for σ, σ ′ ∈ M
that satisfy I σ = I σ ′

and σ−1(x∅) = σ ′ −1
(x∅). We refer to a sequential dictator-

ship induced by a binary serial order as a binary serial dictatorship. In binary serial
dictatorships, the agent with the priority to choose is determined by who among the
previous agents are assigned the outside option. We can hence simplify our notation
as follows. Let B = {β : J → {0, 1} : J � I }. An element β ∈ B is referred to as
a binary submatching. Moreover, let (i, 0) refer to “i is assigned the outside option”
and (i, 1) refer to “i is assigned a house.” Let I β = J be the set of agents matched
under β. Each binary serial order is determined by a function f : B → I such that
for every β ∈ B, f (β) ∈ I\I β . We say a submatching σ ∈ M is consistent with a
binary submatching β ∈ B if I σ = I β and β(i) = I{σ(i) ∈ H} for every i ∈ I β .7

Serial dictatorships are a subclass of binary serial dictatorships (and hence of
sequential dictatorships): a serial dictatorship is a sequential dictatorship φ f such
that f (σ ) = f (σ ′) for every σ, σ ′ ∈ M with I σ = I σ ′

. We refer to such a sequential
order f as a linear order.

4 The characterization

Our main result is as follows:

Theorem 1 A mechanism is group strategy-proof, neutral, individually rational, and
non-wasteful if and only if it is a binary serial dictatorship.

Proof of Theorem 1 ⇐� Let φ f be a binary serial dictatorship. Then, φ f is a hierar-
chical exchangemechanism; this class of mechanisms was introduced by Pápai (2000)

7 I{κ} = 1 if κ is a true statement, and I{κ} = 0 otherwise.
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588 M. Pycia, M. U. Ünver

for settings without outside options and extended to the setting with outside options by
Pycia and Ünver (2011). Pápai (2000) showed that in her setting hierarchical exchange
mechanisms are group strategy-proof and Pareto efficient, and this insight as well as
Pápai’s proof extend to our setting; see Pycia and Ünver (2011) for details. Thus, φ f is
group strategy-proof and Pareto efficient; Pareto efficiency implies non-wastefulness
and individual rationality. Because the definition of φ f does not depend on the names
of houses assigned, φ f is also neutral.

�⇒ Let ϕ be a group strategy-proof, neutral, non-wasteful, and individually
rational mechanism. By Lemma 2, ϕ is strategy-proof and non-bossy. By Lemma 3,
ϕ is monotonic.

We introduce some definitions for the proof.
An ordered submatching is defined as an ordered list (( j1, y1), . . . , ( j�, y�)) such

that {( j1, y1), . . . , ( j�, y�)} ∈ S; we say that the submatching and the ordered sub-
matching are associated. With a slight abuse of notation, we occasionally use σ to
refer to both an ordered submatching and its associated submatching.

Given a sequential order f , a relevant ordered submatching of f is an ordered sub-
matching (( j1, y1), . . . , ( j�, y�)) such that j1 = f (∅) and jk = f ({( j1, y1), ...,
( jk−1, yk−1)}) for all integers k such that 2 ≤ k < �. We say that σ =
{( j1, y1), . . . , ( j�, y�)} is a relevant submatching of f if there is an ordering of the
pairs in σ such that (( j1, y1), . . . , ( j�, y�)) is a relevant ordered submatching of f .
In particular, the relevant submatchings include the empty submatching ∅, the sin-
gleton submatchings {( f (∅), y1)} for any option y1, the two-agent submatchings
{( f (∅), y1) , ( f ({( f (∅), y1)}) , y2)}, etc. Note that if σ = {( j1, y1), . . . , ( j�, y�)}
is a relevant submatching of f then there is a unique relevant ordered submatching
associated with it; furthermore, for each k = 1, ..., |σ | − 1, there is a unique subset
of σ that is a relevant submatching for f and has length k. Let S f be the set of all
relevant submatchings of f .

We analogously define the setB f of relevant binary submatchings of a binary serial
order f . If β = {( j1, ε1), . . . , ( j�, ε�)}, where ε1, ..., ε� ∈ {0, 1}, is a relevant binary
submatching for f then, for any k = 1, ..., |β| − 1, there is a unique subset of β that
is a relevant submatching for f and has length k.

Given an ordered submatching σ = (( j1, y1), . . . , ( j�, y�)) and distinct options
x1, . . . , xm ∈ (H\Hσ )∪{x∅}, letRσ ;x1,...,xm be the domain of the preference profiles
�∈ R|I | such that:

• for every jk ∈ I σ , � jk ranks the houses {y1, y2, ..., yk−1} ∩ H in order of their
indices, then yk , and then houses {yk+1, yk+2, ..., y�}∩H in order of their indices,
and then {x1, x2, ..., xm}\{yk} in order of their indices, and finally other options in
arbitrary order.

• for every i ∈ I\I σ , �i ranks houses {y1, y2, ..., y�} ∩ H in order of indices, then
x1, . . . , xm , in this order and then other options in arbitrary order.

We are ready to continue with the proof. We iteratively construct a binary serial order
f : �
Step 1: Let β = ∅ be the initial binary submatching. Fix a house h∅ ∈ H . Fix
a profile �∅∈ R∅;h∅,x∅ ; then ϕ−1

[�∅] (h∅) ∈ I by non-wastefulness of ϕ. Let
f (∅) = ϕ−1

[�∅] (h∅) and σ∅ = (( f (∅) , h∅)).
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Outside options in neutral allocation of discrete resources 589

...

Step � + 1 for � ∈ {1, 2, . . . , |I | − 1}: For every β ∈ B with
∣∣I β

∣∣ = � we do the
following:

1. Ifβ is not relevantwith respect to the part of the binary ordering f constructed
till now, then pick f (β) ∈ I\I β arbitrarily.

2. Otherwise, let β ′ � β be the unique relevant binary submatching of β with
|I β ′ | = � − 1. Fix an ordered submatching σβ = (

σβ ′ , ( j�, y�)
)
where

j� = f (β ′) as constructed in Step � and let y� be such that its choice makes
σβ consistent with β, i.e., y� = hβ ′ if β( j�) = 1 and y� = x∅ if β( j�) = 0.
(a) If H\Hσβ = ∅, then pick f (β) ∈ I\I β arbitrarily.
(b) Otherwise, fix a house hβ ∈ H\Hσβ ensuring that hβ = hβ ′ in case

H\Hσβ = H\Hσβ′ . Fix a preference profile �β∈ Rσβ ;hβ ,x∅ . By non-
wastefulness of ϕ, ϕ−1

[�β
]
(hβ) ∈ I . Let f (β) = ϕ−1

[�β
]
(hβ).

Notice that in Step �+ 1.2(b) there is no conflict between assuming that hβ is a house
and requiring that hβ = hβ ′ in case H\Hσβ = H\Hσβ′ as we start with h∅ which is
a house in Step 1.

The following claim is the crucial step in our proof.
Claim.Binary serial order f iswell defined.Moreover, supposeβ ∈ B f , its ordered

submatching used in the above construction is given as σβ , and �∈ Rσβ is such that if
Hσβ � H , then for each i ∈ I\I β and each h ∈ H\ (

Hσβ ∪ {hβ}), x∅ �i h, where
hβ is defined in the above construction. Then, we have

ϕ [�] (i) = σβ(i) = φ f [�] (i) ∀ i ∈ I β. (1)

Proof of Claim. We prove the claim by induction on � = ∣∣I β
∣∣ ∈ {0, 1, ..., |I | − 1}

showing that Eq. (1) is satisfied, and thus, f (β) is well defined by establishing that
f (β) ∈ I\I β .8

Step 1:We have β = ∅ and the statement trivially holds. Agent f (∅) is well defined
by non-wastefulness of ϕ.

Step �+1 for � ∈ {1, 2, . . . , |I |−1}:As our inductive assumption, suppose the claim
holds for any β ∈ B f with

∣∣I β
∣∣ < � and f is well defined for all relevant binary sub-

matchingsβ ′ ⊆ β. Fixβ ∈ B f with
∣∣I β

∣∣ = �. If
∣∣∣β−1(1)

∣∣∣ =
∣∣∣
{
i ∈ I β : β(i) = 1

} ∣∣∣ ≥
|H |, then the claim follows from the previous steps and individual rationality; hence

we assume
∣∣∣β−1(1)

∣∣∣ < |H |.
Let β = (( j1, β( j1), . . . , j�, β( j�))) be such that its consistent ordered submatch-

ing σβ = (( j1, y1), . . . , ( j�, y�)) and preference profile �β are as defined in the
construction of f above. Let Hσβ = {h1, . . . , hq} for some q ≤ � such that houses
h1, . . . , hq are assigned to agents in β−1(1) according to their indices, respectively.
Thus, for each ym ∈ {y1, y2, . . . , y�} ∩ H = Hσβ there exists some hr ∈ Hσβ such
that ym = hr . Also note that ym ∈ {y1, y2, . . . , y�}\Hσβ implies ym = x∅.

8 When we denote a set X = {xt , xt+1, . . . , xu} indexed by t, t + 1, . . . , u and if it happens to be the case
that t > u, then we assume X = ∅.
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590 M. Pycia, M. U. Ünver

Let β̃ � β be the relevant ordered binary submatching of β such that σβ̃ =
(
( j1, y1), . . . , ( j�̃−1, y�̃−1)

)
where �̃ is defined as y

�̃
= hq if q > 1 (thus, we

have β( j
�̃
) = 1 and β( j

�̃+1) = . . . = β( j�) = 0) and σβ̃ = ∅ otherwise. Thus,
hβ̃ = y

�̃
= hq .

We show that for every J ⊆ I\I β and k ≤ �,

ϕ
[
�β

Iβ∪J
, �β̃

−Iβ∪J

]
( jk) = yk = φ f

[
�β

Iβ∪J
, �β̃

−Iβ∪J

]
( jk) (2)

where �β and �β̃ are defined in the construction of f above, which in turn proves
Eq. (1) holds for Step � + 1. The second equality follows by definition of φ f and the
inductive assumption that f is well defined until the end of Step �. We prove the first
equality by induction on t = |J |:

Step �+ 1.0: For J = ∅, monotonicity of ϕ and the outer inductive assumption for
Step � together imply Eq. (2).

Step � + 1.t for t ∈ {1, 2, . . . , |I | − �}: Fix J ⊆ I\I β such that |J | = t . Suppose
as the inner inductive assumption for every J ′ � I\I β with |J ′| < t , Eq. (2) holds.
Denote:

�̂ =
(
�β

Iβ∪J
, �β̃

−Iβ∪J

)
,

and fix

i ∈ J .

By inner inductive assumption for Step � + 1.t − 1 and individual rationality of ϕ for

i , we have ϕ
[
�β̃
i , �̂−i

]
(i) = x∅. By strategy-proofness of ϕ, ϕ

[�̂]
(i) ∈ {hβ, x∅},

as i makes only hβ acceptable as her last choice in changing �β̃
i to �β

i .

If ϕ
[�̂]

(i) = x∅, then by non-bossiness of ϕ for i , ϕ
[�̂] = ϕ

[
�β̃
i , �̂−i

]
. Eq. (2)

for J follows from the inner inductive assumption for Step � + 1.t − 1.
Suppose ϕ

[�̂]
(i) = hβ , which is the sole remaining possibility. To reach a con-

tradiction suppose Eq. (2) does not hold. We have two main cases, either there is no
jn ∈ I β such that yn = x∅ and ϕ

[�̂]
( jn) �= x∅ or there is some jn ∈ I β such that

yn = x∅ and ϕ
[�̂]

( jn) �= x∅.
Case 1. There is no jn ∈ I β such that yn = x∅ and ϕ

[�̂]
( jn) �= x∅. Let jk ∈ I β

be the agent with the highest index k ∈ {1, 2, . . . , �} such that yk ∈ H and it is not
assigned to jk under ϕ

[�̂]
. Let

yk = h p ∃ h p ∈ Hσβ = {y1, y2, . . . , y�} ∩ H = {h1, h2, . . . , hq}.

By non-wastefulness of ϕ, there exists some j ∈ I such that
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ϕ
[�̂]

( j) = yk = h p.

Observe that, for each i∗ ∈ J\{i}, �̂ =
(
�β

Iβ∪J
, �β̃

−Iβ∪J

)
can be obtained from

(
�β

Iβ∪(J\{i∗}) , �β

−Iβ∪(J\{i∗})
)
by i∗ flipping her preference from �β̃

i∗ to �β
i∗ then

with the same argument for i and the induction assumption for Step � + 1.t − 1 we
have that ϕ

[�̂]
(i∗) ∈ {hβ, x∅}. Since ϕ

[�̂]
(i) = hβ , ϕ

[�̂]
(i∗) = x∅. Thus, j /∈ J .

Also observe that as we are in Case 1, an important implication of choosing k as
large as possible with the property ϕ

[�̂]
( jk) �= yk ∈ H is that if j = jm ∈ I β for

some index m then m ∈ {1, . . . , k − 1} and ym �̂ jm yk = h p, implying m < k, and
Case 1 further implies ym ∈ H .

We will use these observations later, so we formalize last two paragraphs’ conclu-
sions as follows:

Observation 1. If j = jm ∈ I β for some m, then ym ∈ H and m < k. Moreover,
for each i∗ ∈ J\{i}, ϕ

[�̂]
(i∗) = x∅ and thus, j /∈ J .

Thus, so far, for each i∗ ∈ I ,9

�̂i∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1, . . . , ym , . . . , hp, . . . , hq , hβ
︸ ︷︷ ︸
ϕ[�̂](i∗)is not here

, x∅ if i∗ = jm ∈ { j1, . . . , jk}\{ j}
with ym ∈ H (by choice of k)

h1, . . . , hp, . . . , ym , . . . , hq , hβ, x∅ if i∗ = jm ∈ { jk+1, . . . , j�}
with ym ∈ H (by choice of k)

h1, . . . , hr(m), x∅ , hr(m)+1, . . . , hp, . . . , hq , hβ if i∗ = jm ∈ { j1, . . . , jk}
with ym = x∅ (by Case 1)

h1, . . . , hp, . . . , hr(m), x∅ , hr(m)+1, . . . , hq , hβ if i∗ = jm ∈ { jk+1, . . . , j�}
with ym = x∅ (by Case 1)

h1, . . . , hp, . . . , hq , hβ, x∅ if i∗ ∈ J\{i} (Obs. 1)

h1, . . . , hp, . . . , hq
︸ ︷︷ ︸

ϕ[�̂](i∗) is not here

, x∅, hβ if i∗ ∈ I\(J ∪ I β ∪ { j})
(by choice of k)

h1, . . . , hp , . . . , hq , x∅, hβ if i∗ = j and j /∈ I β

(by Obs. 1 j /∈ J )

h1, . . . , ym , . . . , hp , . . . , hq , hβ, x∅ if i∗ = j and j = jm ∈ I β

(by Obs. 1 ym ∈ H , m < k)

h1, . . . , hp, . . . , hq , hβ , x∅ if i∗ = i

.

(3)

where ϕ
[�̂]

( j) = h p is in boldface and ϕ
[�̂]

(i) = hβ is underlined; ϕ
[�̂]

(i∗) is
boxed for each agent i∗ if it can be determined, and otherwise, the options that this

9 We define for each agent jm ∈ Iβ such that ym = x∅, r(m) as a house index such that hr(m) is the house
ranked just above x∅—if such a house exists and x∅ is not her top choice—under �̂ jm . This house will
only be used explicitly in depictions of preferences in figures and displayed equations. Eq. (3) holds with
the possible slight abuse of notation that in the third line, x∅ can also be the top option, and thus, house
hr(m) is undefined.
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assignment cannot be are indicated with an underbrace notation. In addition to this,
ϕ

[�̂]
(i∗) cannot be any house ranked below x∅ by individual rationality of ϕ.10

We define a new preference profile �̃ that is obtained from �̂ by demoting h p

just below hq for agent j , while still keeping h p acceptable, and demoting h p to
be unacceptable for all other agents if it is not already unacceptable (i.e., for each
jm ∈ { j1, j2, . . . , jk−1} with ym = x∅ , house h p = yk is already unacceptable,
and for everybody else it is an acceptable house as denoted in Eq. (3)). Therefore,(�̂ j , �̃− j

)
is a monotonic transformation of �̂ under ϕ because ϕ

[�̂]
( j) = h p and

it is demoted in all agents’ preferences in �̃− j but only j’s. By monotonicity of ϕ, we
have

ϕ
[�̂ j , �̃− j

] = ϕ
[�̂]

. (4)

By strategy-proofness of ϕ for j , as ϕ
[�̂]

( j) = h p is demoted just below hq under
�̃ j , j can only receive the houses ranked in the interval h p, h p+1, . . . , hq under �̂ j
(and thus, ranked in the ranking interval h p+1, h p+2, . . . , hq , h p under �̃ j ), i.e,

ϕ
[�̃]

( j) ∈ {h p, h p+1, . . . , hq}.

In the proof of Case 1, we use a relabeling π defined as

• π(h p) = hβ ,
• π(hr ) = hr−1 for each r ∈ {p + 1, . . . , q},
• π(hβ) = hq , and
• π(h) = h for each h ∈ H\{h p, h p+1 . . . , hq , hβ}.

We have two further cases:
Case 1.1. ϕ

[�̃]
( j) = hs ∈ {h p+1, h p+2, . . . , hq} = {yk+1, yk+2, . . . , y�} ∩ H .11

Now, hs = yn for some n ∈ {k + 1, k + 2, . . . , �}. By choice of j and Observation 1,
jn �= j .
Modify �̃ j further so that h p is ranked below x∅ for j as well and otherwise the

rankings of options are unchanged. With slight abuse of notation, we continue calling
this preference relation �̃ j . Observe that this change does not change ϕ

[�̃]
by ϕ’s

strategy-proofness and non-bossiness.
By neutrality of ϕ, we have

ϕ
[�̃π ]

( j) = π(hs) = hs−1. (5)

Recall (i) the largest index house in Hσβ = {y1, . . . , y�} ∩ H = {h1, . . . , hq},
which is hq , is assigned under σβ to j

�̃
∈ I β = { j1, . . . , j�} (so that hq = y

�̃

10 To verify the accuracy of the options that ϕ
[�̂]

(i∗) cannot be, the first, second and sixth lines in
Eq. (3) are crucial and follow from the choice of agent jk . For example, the second line can be verified
as follows: For each agent i∗ = jm ∈ { jk+1, jk+2, . . . , j�} such that ym ∈ H , since h p = yk is the
largest indexed house which is not assigned to its match under σβ , we have ϕ

[�̂]
( jm ) = ym . Then, since

ym ∈ {h p+1, . . . , hq } and j is assigned h p while i is assigned hβ , no house in {h p, h p+1, . . . , hq , hβ } is
assigned to any agent i∗ ∈ I\{ jk , jk+1, . . . , j�, j, i} in ϕ

[�̂]
. Similar arguments hold for first and sixth

lines.
11 By our notation explained in Footnote 8, this case rules out p = q and Case 1.2 handles that case.
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and if �̃ < � then y
�̃+1 = y

�̃+2 = . . . = y� = x∅), (ii) the relevant binary

submatching β̃ � β was defined so that it has the consistent ordered submatching
σβ̃ = (

( j1, y1), . . . , ( j�̃−1, y�̃−1)
)
, and (iii) that f (β̃) = j

�̃
and hβ̃ = hq = y

�̃
(all

defined at the beginning of the outer inductive proof for Step � + 1).
The last preference profile in Fig. 1 shows �β̃ . Recall that β̃ was processed in

Step �̃ < � + 1 of the construction of f . The assignments of agents are determined
by the outer inductive assumption for Step �̃ and individual rationality of ϕ . The
other preference profiles used in Case 1.1 are also shown in Fig. 1. In particular, the
inductive assumption and what we have so far imply that

• if j = jm ∈ I β for some jm , then m < k < n ≤ �̃ and ym ∈ H (by Observation
1, yk = h p, yn = hs , and y

�̃
= hq , and the definition of these houses); there-

fore, �β̃
j and �̃π

j have identical rankings of houses from top to ym , and we have

ϕ
[
�β̃

]
( j) = ym ;

• if j /∈ I β then �̃π
j has a subset of acceptable houses of what �β̃

j has, and we have

ϕ
[
�β̃

]
( j) = x∅ by the inductive assumption for Step �̃;

• both �β̃ and �̃π have identical rankings for acceptable houses for all agents in
J (including i , as i ∈ J ), all agents jm ∈ I β\{ j} such that ym ∈ H (including
j
�̃
and jn), all agents jm ∈ { j1, . . . , jn−1} such that ym = x∅, and all agents in

{ j
�̃+1, . . . , j�};

• for each agent jm ∈ { jn+1, . . . , j�̃−1} such that ym = x∅, �̃π
jm has a subset of

acceptable houses of what �β̃
jm

has, and we have ϕ
[
�β̃

]
( jm) = ym = x∅ by the

inductive assumption for Step �̃; and
• for each agent i∗ ∈ I\ (

I β ∪ J ∪ { j}), �̃π
i∗ deems house hq unacceptable but

otherwise keeps the same rankings for acceptable houses as �β̃
i∗ , and we have

ϕ
[
�β̃

]
(i∗) = x∅ by the inductive assumption for Step �̃.

Therefore, �̃π is a monotonic transformation of �β̃ under ϕ (also see Fig. 1). Hence,

by monotonicity of ϕ, ϕ
[�̃π ] = ϕ

[
�β̃

]
.

By the outer inductive assumption for Step �̃, ϕ
[
�β̃

]
( j) �= hs−1 as house hs−1

is a house assigned to one of the agents jk, ...., j�̃, and either (i) j /∈ I β so that

ϕ
[
�β̃

]
( j) = x∅ or (ii) j = jm ∈ { j1, . . . , jk−1} and ϕ

[
�β̃

]
( j) = ym is a house

indexed smaller than hs−1 as mentioned in the first two points above. However, we

established that ϕ
[�̃π ]

( j) = hs−1 in Eq. (5). This contradicts ϕ
[�̃π ] = ϕ

[
�β̃

]
,

and thus, Case 1.1. cannot hold.
Case 1.2. ϕ

[�̃]
( j) = h p: By non-bossiness of ϕ involving agent j , ϕ

[�̃] =
ϕ

[�̂ j , �̃− j
]
. Thus, ϕ

[�̃] = ϕ
[�̂]

by Eq. (4). By neutrality of ϕ, we have

ϕ
[�̃π ]

( j) = π(h p) = hβ and ϕ
[�̃π ]

(i) = π(hβ) = hq . (6)
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Fig. 1 The preference profiles in Case 1.1 assuming that agent i∗ ∈ I\{i, j} and she denotes a generic
agent. Agent j’s assignment is in boldface and i’s assignment is underlined under each preference profile
under ϕ. Assignments of all agents under ϕ are boxed whenever they can be determined. Ranking �̃ j refers
to the version of this ranking introduced in Case 1.1; in particular, hβ is unacceptable under this ranking.

Recall that I β̃ = { j1, . . . , j�̃−1}, Iβ = I β̃ ∪ { j
�̃
, . . . , j�}, and y

�̃
= hq = h

β̃
∈ H , yn = hs ∈ H ,

yk = h p ∈ H with k < n ≤ �̃

We summarize the preference profiles used in Case 1.2 in Fig. 2. To see its accuracy
observe the following:

• For all i∗ ∈ I\{ j}, we shifted up all acceptable houses in order starting with h p+1
and ending with the last acceptable house (if h p+1 is acceptable), as h p is demoted
under �̂i∗ to be unacceptable and we obtained �̃i∗ . Then by using the relabeling
π , these houses were effectively shifted back down under �̃π

i∗ with the exception
that π(h p) = hβ remained unacceptable.

• For agent j , we shifted up all houses h p+1, h p+2, . . . , hq in order as h p is demoted
with respect to �̂ j but is kept acceptable just below hq and we obtained �̃ j (while
hβ may or may not be acceptable depending on j ∈ I β or j /∈ I β , respectively).
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Then by using the relabeling π , these houses were effectively shifted back down
under �̃π

j and π(h p) = hβ remained acceptable (while π(hβ) = hq may or may
not be acceptable depending on j ∈ I β or j /∈ I β , respectively, as just noted in
the previous statement).

Consider the following change in j’s preference �̃π
j such that hq is ranked as the

second to last acceptable option just above hβ (if it is not already so) so that we get

�β
j = h1, . . . , hq−1, hq , hβ, x∅, . . .

There is a slight abuse of notation here, as the preference �β
j used in construction

of f (β) and the above preference relation may differ how they rank options below
x∅. Since ϕ is individually rational, strategy-proof, and non-bossy, the outcome of
the mechanism does not depend on this part of preferences. Thus, we keep the same
name for the preference relation �β

j (we use the same slight abuse of notation for �β
i

below in Case 1.2.1). Then by strategy-proofness of ϕ for j and by Eq. (6), we have

ϕ
[
�β

j , �̃π
− j

]
( j) ∈ {hq , hβ}. There are two further subcases:

Case 1.2.1. ϕ
[
�β

j , �̃π
− j

]
( j) = hβ : Then by Eq. (6) and by non-bossiness of ϕ for

j we have ϕ
[
�β

j , �̃π
− j

]
= ϕ

[�̃π ]
and hence, ϕ

[
�β

j , �̃π
− j

]
(i) = hq (by Eq. (6)).

Consider the preference change for i from �̃π
i by ranking hβ just below hq as the last

acceptable option so that we obtain

�β
i = h1, . . . , hq−1, hq , hβ, x∅, . . .

Bystrategy-proofness ofϕ involving i ,wehaveϕ
[
�β

{i, j}, �̃π
−{i, j}

]
(i) = ϕ

[
�β

j , �̃π
− j

]

(i) = hq . Also observe that
(
�β

{i, j}, �̃π
−{i, j}

)
is a monotonic transformation of �̂ (see

Fig. 2). By monotonicity of ϕ, ϕ
[
�β

{i, j}, �̃π
−{i, j}

]
= ϕ

[�̂]
. However, the facts that

ϕ
[�̂]

(i) = hβ and ϕ
[
�β

{i, j}, �̃π
−{i, j}

]
(i) = hq contradict the previous statement.

Case 1.2.2. ϕ
[
�β

j , �̃π
− j

]
( j) = hq : Consider the relevant binary submatching β̃ �

β with
∣∣I β̃

∣∣ = �̃ − 1, hq = hβ̃ , and β̃ is the smallest relevant submatching of β with
this last property as defined at the beginning of the outer inductive proof for Step �+1.
Recall that �β

j ranks hβ as acceptable below hq = hβ̃ but otherwise the acceptable

options and their ranking are identical with �β̃
j . Thus, by strategy-proofness and non-

bossiness of ϕ for j we have ϕ
[
�β̃

j , �̃π
− j

]
= ϕ

[
�β

j , �̃π
− j

]
. Then from Fig. 2 observe

that,
(
�β̃

j , �̃π
− j

)
is amonotonic transformation of�β̃ , and hence bymonotonicity ofϕ,

we have ϕ
[
�β̃

j , �̃π
− j

]
= ϕ

[
�β̃

]
. In the outer inductive assumption of Step �̃ < �+1

for the outer induction we assumed that ϕ
[
�β̃

]
( jm) = ym for all m = 1, . . . , �̃ − 1,
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Fig. 2 The preference profiles in Case 1.2 (see Caption of Fig. 1 for further information)
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and ϕ
[
�β̃

]
( f (β̃)) = hq = hβ̃ (actually exactly f (β̃) = j

�̃
, that is how she is

defined). Now if j /∈ I β then j �= j
�̃
. If j = jm ∈ I β for somem then by Observation

1 as m < k and k ≤ � such that yk = h p is a house, then k ≤ �̃ as well, as j
�̃
is

the last agent in β who is matched; these imply m �= �̃ and thus j �= j
�̃
. Therefore,

ϕ
[
�β̃

]
( j

�̃
) = hβ̃ = hq contradicts ϕ

[
�β̃

j , �̃π
− j

]
( j) = hq as the two assignments

should be the same.
In either case, we found that such an agent j cannot exist proving the inductive

statement Eq. (2) for J . This completes Case 1.2 (and in turn Case 1).
Case 2. There is some agent jn ∈ I β such that yn = x∅ and ϕ

[�̂]
( jn) �= x∅.

Without loss of generality, we assume that n is the largest index of an agent in I β

with this property. Therefore, for each jm ∈ I β with m > n and ym = x∅ we have
ϕ

[�̂]
( jm) = ym = x∅. Then by individual rationality of ϕ, we have

ϕ
[�̂]

( jn) = yk = h p ∈ Hσβ = {y1, . . . , y�} ∩ H = {h1, . . . , hq}

for some k and p such that 1 ≤ k < n ≤ � and 1 ≤ p ≤ q.
We construct a new preference profile �̃ such that

• �̃ jn = h1, . . . , h p, . . . , hq , hβ, x∅, . . .,
• �̃i = �̂i ,
• �̃ jm = x∅, . . . for each m with � ≥ m > n and ϕ

[�̂]
( jm) = ym = x∅, and

• �̃i∗ = h1, . . . , hq , x∅, . . . for each agent i∗ who is not considered above.

Profile �̃ is a monotonic transformation of �̂ under ϕ: To see this observe that to
construct �̃ from �̂, we changed worse options than h p for jn , we made x∅ the first
choice of some of the agents who are assigned x∅ in ϕ

[�̂]
, and we made hβ , which is

the assignment of i under ϕ
[�̂]

, unacceptable for some agents. Since ϕ is monotonic,
ϕ

[�̃] = ϕ
[�̂]

.

We define a new relevant binary submatching β̂ of f of some size less than � by
iteratively constructing a series of relevant binary submatchings β0 ⊆ β1 ⊆ . . . ⊆ β̂

so that Hσ
β̂ = Hσβ = {h1, . . . , hq}.

Step 0. We start with β0 = (( j, β( j1)) , . . . , ( jn−1, β( jn−1)) , ( jn, 1)), and
hence, we assign jn 1 in β0, which is different from her 0 assignment in β.

...

Step m̂ for m̂ ∈ {1, 2, . . . , � − n}. Suppose the relevant binary submatching
βm̂−1 � β0 of size m̂ + n is defined in Step m̂ − 1. Since f is well defined
for binary submatchings of size m̂ + n < � by the outer inductive assumption,
f (βm̂−1) is also well defined. Let i

∗ = f (βm̂−1). We have two cases:

1. If i∗ ∈ I β\I βm̂−1 then let

βm̂ = (
βm̂−1,

(
i∗, β(i∗)

))

and
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2. If i∗ ∈ I\I β then let

βm̂ = (
βm̂−1, (i

∗, 1)
)
.

If
∣∣∣β−1

m̂ (1)
∣∣∣ = q, i.e., the number of agents who are matched under βm̂ is equal to

the number of houses in σβ , which is q (and in turn, this is the number of agents
matched under β), then we stop the construction and set β̂ = βm̂ . Otherwise we
continue with Step m̂ + 1.

This construction ends at some step by finiteness. By the outer inductive assumption,
the resulting β̂ is relevant for the part of the binary serial order f constructed till Step∣∣I β̂

∣∣ + 1 < � + 1. To see why
∣∣I β̂

∣∣ < � = |I β | holds, observe that (i) except jn , we
keep the 0 assignments of agents in β also in β̂, (ii) although jn has 0 assignment in β,
we assigned her 1 in β̂, (iii) we do not include any additional pair with a 0 assignment
to β̂ that is not included in β, and (iv) exactly q agents are assigned 1 in bothβ and β̂.

In the construction we have Hσ
β̂ = Hσβ = {h1, . . . , hq}, and hence

h
β̂

= hβ. (7)

Consider a preference profile�′∈ Rσ
β̂ defined for the relevant binary submatching

β̂ of f in Step
∣∣I β̂

∣∣ + 1 of the outer inductive step such that for each i∗ ∈ I\I β̂

�′
i∗ =

{
h1, . . . , hq , hβ̂

, x∅, . . . if i∗ = i
h1, . . . , hq , x∅, . . . otherwise

.

The preference profile �̃ is a monotonic transformation of �′ under ϕ because of the

outer inductive assumption for Step
∣∣I β̂

∣∣+1 < �+1 and because we have ϕ[�′](i) =
hβ = h

β̂
by non-wastefulness of ϕ (see Fig. 3). In particular, the same assumption

implies ϕ
[�′] ( jk) = yk(= h p). By monotonicity of ϕ, we have ϕ

[�̃] = ϕ
[�′]. We

reach a contradiction because ϕ
[�̃]

( jn) = yk . Thus, such an agent jn cannot exist,
and Case 2 cannot hold.

In all cases, we showed that the failure of Eq. (1) leads to a contradiction. We thus
showed that Eq. (1) holds for Step �+1. Moreover, agent f (β) ∈ I\I β is well defined
as when J = I\I β , f (β) = ϕ−1[�β ](hβ) ∈ I\I β by Eq. (2) and non-wastefulness
of ϕ, completing the proof of the Claim. ♦

To finish the proof of the theorem, take an arbitrary �∈ R|I |. Let μ = φ f [�]. Let
β ∈ B f be such that

∣∣I β
∣∣ = |I | − 1 and β is consistent with submatching

σ = (
( j1, μ( j1)) , . . . ,

(
j|I |−1, μ( j|I |−1)

))

and

(( j1, μ( j1)) , . . . , ( jk, μ( jk))) ∈ S f ∀ k ≤ |I | − 1.
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Fig. 3 The preference profiles in Case 2 assuming that agent i∗ ∈ I\{i, jn} and she denotes a generic agent.
Note that h

β̂
= hβ (by Eq. (7)). Agent jn ’s assignment is in boldface and i’s assignment is underlined, if

it can be determined, under each preference profile under ϕ. Assignments of all agents under ϕ are boxed
whenever they can be determined. If j� = jn then we have the minor abuse of notation that hr(n)+1 = hβ

Let j|I | = f (β), be the last remaining person in I . If μ( j|I |) ∈ H , then let
�′∈ Rσ ;μ( j|I |),x∅ and otherwise, let�′∈ Rσ ;x∅ . Suppose h1, . . . , hq is the ordering of
acceptable houses in the relevant ordered consistent submatching σβ used in construc-
tion of f (β) in Step |I |. We define a relabeling π which relabels houses h1, . . . , hq in
this order with the names of the houses among the assignments μ( j1), . . . , μ( j|I |−1)

in the same order. Let �̂ ∈ Rσβ ;μ( j|I |),x∅ if μ( j|I |) ∈ H , and �̂ ∈ Rσβ ;x∅ , otherwise.
We obtain

ϕ
[�′] = ϕ

[�̂π ] = φ f [�̂π ] = φ f [�′]

where the first and last equalities follow from neutrality of ϕ and φ f (and the fact that
the ranking of unacceptable options do not affect the outcome under monotonic and
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individually rational mechanisms, which both ϕ and φ f are), and the middle equality
follows (i) from the Claim for all agents in I β and (ii) from non-wastefulness of ϕ if
μ( j|I |) ∈ H and individual rationality of ϕ ifμ( j|I |) = x∅ for agent j|I |. Moreover,�
is a monotonic transformation of �′ under both ϕ and φ f , which are both monotonic,
and this implies the first and last equalities below (where the middle equality was
established in the displayed equality above):

ϕ [�] = ϕ
[�′] = φ f [�′] = φ f [�] .

This completes the proof. �

5 Independence of the axioms

By relaxing each axiom one at a time, we now show that there exists a mechanism
which is not a binary serial dictatorship and yet satisfies the remaining axioms.We also
show that the axioms remain independent if we substitute strategy-proofness and non-
bossiness for group strategy-proofness (see Lemma1 for this two-axiom reformulation
of grup strategy-proofness).

Example 1 Amechanism that is non-strategy-proof, non-bossy, neutral, non-wasteful,
and individually rational: Take a binary serial order. Run the associated binary serial
dictatorship with the following modification: Reverse the preference order of each
agent for all houses that she ranked higher than the outside option and keep the relative
order of other options the same.

Example 2 Amechanism that is strategy-proof, bossy, neutral, non-wasteful, and indi-
vidually rational: Let f , f ′ be two binary serial orders such that f (∅) = f ′(∅), but
otherwise the orders do not match in general, i.e., f �= f ′. Let ϕ be a mechanism such
that for i = f (∅) = f ′(∅)

ϕ [�] =
{

φ f [�] if h �i x∅ ∀h ∈ H
φ f ′

[�] otherwise
,

i.e., the binary serial order that will be used in the binary serial dictatorship is deter-
mined by the preferences of the initial dictator (but not necessarily by her assigned
option), depending on whether she prefers all houses to the outside option or not.

Example 3 Amechanism that is strategy-proof, non-bossy, non-neutral, non-wasteful,
and individually rational: A top-trading-cycles mechanism (a la Pápai 2000) that gives
the ownership rights of objects to at least two different agents at the beginning.

Example 4 Amechanism that is strategy-proof, non-bossy, neutral, wasteful, and indi-
vidually rational: A mechanism that leaves every agent always unmatched.

Example 5 Amechanism that is strategy-proof, non-bossy, neutral, non-wasteful, and
individually irrational: Take a binary serial order. Run the associated binary serial
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dictatorship with the following modification: During her turn each agent is assigned
the best available house according to her preferences if there are still available houses
(even if the outside option is preferred to that house) and the outside option otherwise.

6 Serial dictatorships with outside options

Svensson’s serial dictatorship characterization also obtains in the subdomain of our
preference domain in which the outside option is always ranked at the bottom of pref-
erences. This is the preference domain analyzed in Pápai (2000) and in the following
literature. Let this restricted set of preferences be denoted by R̂.

Theorem 2 A mechanism defined over R̂|I | is group strategy-proof, neutral, and non-
wasteful if and only if it is a serial dictatorship.

This result is a corollary of Pycia and Ünver (2017): they characterize group
strategy-proof and Pareto efficient mechanisms as Trading Cycle mechanisms intro-
duced in their paper. As the conjunction of group strategy-proof and Pareto efficient is
equivalent to the conjunction of group strategy-proof and non-wasteful, to prove the
above theorem it is sufficient to check that TC mechanisms different from serial dicta-
torships are not neutral, which is straightforward.12 Note that—unlike in Svensson’s
original characterization—non-wastefulness is not a redundant axiom: a mechanism
that leaves all agents unmatched satisfies all axioms but non-wastefulness.

7 Conclusion: scarcity vs abundance

Anatural readingof our result is that in the presence of incentive and efficiency assump-
tions, neutral mechanisms belong to the class of sequential dictatorships. How general
is this insight? How different is our version of it from Svensson’s (1999) characteri-
zation of serial dictatorships without outside options? To get a sense of the difference
between our result and Svensson’s, consider a setting with houses and cars, with no
outside options. We can embed Svensson’s setting in this environment by assuming
that there are no cars and we can embed our setting in this environment by assuming
that cars are abundant. In this general environment, let us considermechanisms that are
neutral with respect to houses. This concept reduces to neutrality in both Svensson’s
and our setting. In this environment, the following mechanisms are neutral: any top-
trading-cycles mechanisms (TTC, hierarchical exchange) of Pápai (2000) in which
in each round one agent controls houses and a different agent controls cars. Each of
these two agents would get her top available choice if it is controlled by her, and they
would trade with each other if they like each other’s objects the most. However, when-
ever there is a conflict in their top choices, the agent holding the property right for the
object they bothwantwould receive the object.With three ormore types of objects (e.g.
houses, cars, and boats), we can even have trading-cycles mechanisms (TC) of Pycia

12 Theorem 1 does not follow from Pycia and Ünver (2017) because its preference domain is different than
the domains they study.
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and Ünver (2017) that are neutral among houses. Similar mechanism classes arise in
settings when some objects have copies as long as the number of copies is strictly less
than |I |. Neutrality among houses leads to sequential dictatorships when the goods
are very scarce or when they are abundant, but in general, subclasses of sequen-
tial dictatorships cannot characterize neutral, group-strategy-proof, non-wasteful, and
individually-rational mechanisms. Instead, the environment we study and the one
studied by Svensson are two extreme cases of the general environment in which the
connection between sequential dictatorships and neutrality is true.13

On the other hand, analogues of our results can be derived for domainswithmultiple
abundant goods. Suppose for instance that we have multiple types of outside options
that can each be attained by any agent, and agents value such outside options differ-
ently. In this case, a variant of our characterization would continue to hold: In this
case, instead of a binary serial dictatorship, we will obtain a (� + 1)—sequential
dictatorship where � is the number of different outside options, and recursively
define its sequential order f as follows: for each relevant ordered submatching
σ = ((i1, x1), (i2, x2), . . . , (in−1, xn−1)), once agent f (σ ) is defined as the next agent
who owns all available houses, for any ordered submatching σ ′ = (σ, ( f (σ ), xn))
agent f (σ ′) can be � + 1 different agents depending on xn being one the � outside
options or a real house. Our proof can be extended to this case.
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