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Abstract
We address the optimal allocation of stochastically dependent resource bundles to a
set of simultaneous contests. For this purpose, we study a modification of the Colonel
Blotto Game called the Tennis Coach Problem. We devise a thoroughly probabilistic
method of payoff representation and fully characterize equilibria in this class of games.
We further formalize the idea of strategic team training in a comparative static setting.
The problem applies to several distinct economic interactions but seemsmost prevalent
in team sports with individual matches, for instance, in Tennis and Sumo.
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1 Introduction

This paper analyzes the optimal allocation of stochastically dependent resource bun-
dles to a collection of interconnected contests. Two players competitively allocate their
bundles across a finite number of contests. A single contest is won in expectation by
the player who submits a stochastically dominant random variable; the probabilistic
distance increases in the realized resource differential. Each player’s expected payoff
for the whole game is a combination of the probabilities of winning single contests.
The optimal allocation of the available resources involves strategic considerations.
Should a player try to narrowly win as many contests as possible, or should she “tank”
some of them? Intuition suggests that an optimal allocation strategy must take each
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670 D. Rehsmann

resource bundle’s strength into account and involve some randomness.We answer how
to optimally allocate random variables among the set of such interconnected contests.

Our main contribution is to characterize the set of Nash equilibria in all non-trivial
parameter settings of the defined class of games and to prove the existence of mixed-
strategy equilibria in tournaments involving three or more competitors. Although all
equilibria share common characteristics, they vary in terms of pure strategy support.
The characterization is closely linked to a combinatorial concept, namely to the notion
of “Latin squares.”1 Following Ferguson (2020), we define our game as a “Latin square
game” and provide necessary and sufficient conditions for equilibria in all finite two-
person zero-sum Latin square games. We then use generic properties of the equilibria
in our game to answer questions of optimal marginal alterations of a player’s bundles
in a comparative static analysis, postulating equilibrium play.

The studied interaction shares some aspects with the Colonel Blotto game, intro-
duced by Borel (1921), in which two players compete across several battlefields by
partitioning a fixed number of troops among them. While a Colonel Blotto game
allows for all (or all discrete) partitions of the total resources to be allocated, the inter-
action studied in this paper restricts the players to assign a priori fixed but random
partitions to component contests. We formalize a version of Snyder’s (1989) defini-
tion of a simultaneous multi-component contest, altering the allocational restrictions
accordingly.

In a more applied context, Hamilton and Romano (1998) and Arad (2012) study
similar problems referred to as the “Tennis Coach Problem.” We approach a similar
problem but assume stochastic resource bundles that render the payoff representation
entirely probabilistic. The modeled interaction seems applicable to several economic
settings where the allocation of stochastic resources to a set of contested situations is
the primary strategic element. Examples include organizational competitions and races
betweenfirms or electoral campaigning across several districts. The defined interaction
also seems prevalent in team sports with individual matches such as Tennis, Sumo,
Chess, and many others. In a broader context, our analysis can be applied to settings
similar to the Colonel Blotto problem but tends to reflect less continuous assignment
assumptions in situations where individuals are matched to distinct tasks.

In our narrative, the described strategic elements are embedded in the context of
a Sumo tournament, where team coaches assign their competitors to a set of dis-
tinct bilateral matches. A rank of a Sumo competitor reflects past performance in
tournaments (see, e.g., Duggan and Levitt 2002); the probability of winning a spe-
cific match, however, depends on various factors (see, e.g., Bleekley et al. 2010).
Addressing the complexity of Sumo tournaments, we thus assume that coaches are
uninformed about actual strength realizations of the competitors as the assignment is
chosen.Wemodel the situation as a one-shot zero-sum game; in particular, the coaches
of two teams—each of the latter endowed with idiosyncratic skill distributions—
simultaneously announce their team members’ assignments to independent matches.
The competitors feature commonly known ranks, and in expectation, a stronger com-
petitor wins a match. All winning probabilities of the independent matches are then

1 According to Colbourn and Dinitz (1996), “a latin square of side n is an n × n array in which each cell
contains a single element from an n-set S, such that each element occurs exactly once in each row and
exactly once in each column.”
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The Sumo coach problem 671

combined into an overall probability of winning the team competition, which the team
coaches maximize by choosing an optimal allocation strategy.

We structure the remainder of the paper as follows and start by relating our contri-
bution to the existing literature. We introduce the model in Sects. 2 and characterize
the equilibria in Sect. 3. We apply a comparative static analysis in Sect. 4 and discuss
possible extensions and limitations of our model in Sect. 5. All proofs can be found
in the “Appendix”.

1.1 Related literature

This paper mainly contributes to the literature on multi-battle contests. Such games
share the characteristic that contenders meet each other on multiple battlefields, with
discrete battles on each front. General overviews of multi-battle contests are provided
by, e.g., Vojnović (2016) and Fu andWu (2019). The classical literature on simultane-
ous multi-battle contests follows the original formulation of the Colonel Blotto game,
due to Borel (1921), which features prominently in the early literature. Early contri-
butions include, e.g., Gross and Wagner (1950), Blackett (1958) and Tukey (1949).
More recent work that contributes to “Blotto-type” games examines asymmetries in
resources or objectives (e.g., Roberson 2006; Kvasov 2007; Hart 2008; Avrahami and
Kareev 2009; Kovenock and Roberson 2020) or alternative definitions of success (e.g.,
Golman and Page 2009; Kovenock and Roberson 2010, 2020).

Since the present model differs in its strategic setting markedly from a Colonel
Blotto game, it can be embedded more accurately in the literature on multi-battle
contests between teams.Such contests are defined as “team contests with multiple
pairwise battles” by Fu et al. (2015). A sequential formalization of such multi-battle
contests dates back to Harris and Vickers (1987), who analyze the combination of
component contests in the context of a dynamic R&D race. A simultaneous multi-
battle contest was introduced by Snyder (1989), where two parties compete in parallel
elections by allocating campaign resources to a set of legislative districts. In contrast
to this formalization, our model restricts the allocation of resources to fixed partitions
and follows the intuition of Hamilton and Romano (1998). Their basic setting as a
two-player, zero-sum game, where team coaches assign their (ranked) competitors to
a set of discrete tournaments, is also maintained in our contribution. This paper differs
from their contribution by introducing a more general probabilistic method of payoff
formalization linked to the concept of Latin squares. Furthermore, we assume that
at the time of assignment, coaches are uninformed about the actual strength of each
competitor.Moreover, we provide amore comprehensive characterization of equilibria
in such games.

Arad (2012) explores a setting similar to Hamilton and Romano (1998) in a primar-
ily experimental study, in which coaches assign four heterogeneously skilled players
to four positions. The game-setting is formalized as an n-player constant sum game,
with non-probabilistic payoffs on the distinct playing slots. Equilibria and experi-
mental behavior are analyzed from the perspective of a boundedly rational, mainly
behavioral approach. A setting more closely linked to the Colonel Blotto literature is
analyzed by Rinott et al. (2012), studying a sequential setup. Players allocate a finite
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672 D. Rehsmann

amount of resources to individual team members, engaging in a sequence of one-on-
onefights. Theparticular teammembers’ participation in such a tournament is analyzed
by Fu et al. (2015). Their paper contrasts from our work since they assume that the
players’ assignments to battlefields are fixed, while we exclude the team members’
effort choices from our analysis while assigning players to battlefields strategically.

Adopting Ferguson (2020)’s definition of Latin square games as distinct versions
of constant-sum games, some results of this paper also contribute to that literature. A
necessary and sufficient condition for the existence of Nash equilibria in this model
can be generalized to all two-player Latin square games. To the best of our knowledge,
Ferguson (2020) is the only existing discussion of Latin square games in the literature.

Finally, our comparative static analysis contributes to research on improving team
performance. Strategic considerations in the trainingof teams remainmainly unformal-
ized in the management, organizational, and theoretical literature. Team performance
and leadership issues are studied in the context of contests byGershkov andSchweinzer
(2021). Both the psychology literature (e.g., Salas and Cannon-Bowers 2002) and
research in human resource management (e.g., Campbell and Kuncel 2002) frequently
contribute to the analysis of team performance. An example of a meta-study in the
management literature is Salas et al. (2008).

2 Themodel

We consider a tournament in which two teams J ∈ {A, B}, each composed of n ≥
2 competitors indexed i ∈ N = {1, 2, . . . , n}, compete in n single matches. The
tournament is treated as a one-shot zero-sum game, in which each team coach assigns
every teammember of her team (in a potentially stochastic way) to match indices. Two
competitors generate payoff expectations based on probability masses pJ

k ∈ [0, 1] to
win a distinct match k ∈ N . The probability that a teamwins a specific match between
two competitors is a function of the two individual competitors stochastic strengths
facing each other in a given match. The distinct matches are combined to a team’s
overall probability of winning the whole tournament, ρ J , as a function of probabilities
to win on individual matches. Team coaches maximize their team’s overall expected
probability of winning the matches. Each team’s combined skill is represented by
an independent and commonly known continuous probability distribution F J . Let
f J = F ′J represent the associated probability density function with finite support
[0, θ̄ ], θ̄ ∈ R+ and f J > 0 everywhere. We assume a certain extent of randomness
in an individual competitor’s realized strength. Although unsure about a competitor’s
strength realization in a specificmatch, the team coaches can order them stochastically.
We assume that the individual competitor’s strengths are independent draws from a
team’s skill probability distribution. A sorting in increasing order is represented by
the dependent random variables �J

(i), featuring the density of the i th lowest among n
order statistics:

f�J
(i)

(θ) = n

(
n − 1

i − 1

)
f J (θ)F J (θ)i−1(1 − F J (θ))n−i .
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The Sumo coach problem 673

This implies that team members can be ranked according to their stochastic strength,
with a higher index corresponding to higher random competitor strength.2 The result-
ing set of stochastic player strengths available to a coach J is {�J

(1),�
J
(2), . . . , �

J
(n)},

in which �J
(1) <s.t. �J

(2) <s.t. . . . <s.t. �J
(n) in the usual stochastic order <s.t., i.e.,3

P[�J
(k) ≤ θ ] > P[�J

(l) ≤ θ ], ∀θ ∈ [0, θ̄ ] and any 1 ≤ k < l ≤ n.

Hence, for k < l, �J
(k) is less likely than �J

(l) to take on higher strength values, where
“higher” means any value greater than θ .

A team coach chooses a distinct player slot k ∈ N for every member i of their
team J . Such a bijective assignment of n players to n slots is called seeding, and
all possible seedings define the strategy set of a team coach. Since both coaches
can choose every possible permutation of slots, the set of pure strategies contains n!
elements and is identical for both coaches. A pure strategy is denoted by a permutation
sl ∈ S J with l ∈ N ! = {1, . . . , n!} of the numbered competitors over n playing
slots. Let ax ∈ S A represent a pure strategy of team coach A and by ∈ SB a pure
strategy of team coach B, respectively. We order the permutations (for notational
convenience) lexicographically; thus s1 denotes the first permutation of player indices
in lexicographic order. The Cartesian product S A × SB defines the set of all possible
“lineups” L = {(a1, b1), (a1, b2), . . . , (an!, bn!)}with cardinality n!2. Let�(i)(ax (k))

denote the stochastic strength of the player i seeded at slot k by coach A in her strategy
ax . Likewise, �( j)(ax (k)) denotes the stochastic strength of the kth-seeded player j
by coach B in her strategy by . A specific lineup is denoted by (ax , by), defined to be
a n-dimensional nested tuple

(ax , by) = 〈[�(ax (1)),�(by(1))], . . . , [�(ax (k)),�(by(k))], . . . ,
[�(ax (n)),�(by(n))]〉, (1)

in which the pair [�(ax (k)),�(by(k))] represents the stochastic strengths of the two
players seeded kth by the strategy pair (ax , by) in their match for slot k.

The individual matches among the competitors are treated as contests based on
strength realizations of the competitors assigned to a distinct match.4 For that purpose,
denote by θ A, θ B the corresponding realizations of the kth seeded players. We define
team J ’s probability of winning a single match indexed k as a function

q J (θ A, θ B),

2 An extension to unequal team sizes is uninteresting since unequal team sizes only affect the strength
expectations of the distinct competitors. Within the formulation of our model and in the absence of any sec-
ondary participation effects, a rational coach with more competitors, however, always enters the tournament
with the strongest among them.
3 Note that the strict stochastic order <s.t. is induced by f J > 0 among the support.
4 Following Konrad (2009), contests are defined as competitive situations in which players compete by
exerting non-refundable efforts. For an overview of the contest literature, see, for instance, the comprehen-
sive surveys by Konrad (2009), Vojnović (2016), Chowdhury et al. (2019), and Fu and Wu (2019).
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674 D. Rehsmann

on which we impose the following assumptions, covering conventional functional
forms of contest success functions (CSF) (see, e.g., Fu and Wu 2019):

(Q1) exclusivity: the probability to win a distinct slot is verifiable with quality-
dependent probabilities summing to q A(θ A, θ B) + q B(θ A, θ B) = 1;

(Q2) symmetry: the probability q J (θ A, θ B) is equal to 1/2 for identical qualities θ A =
θ B ;

(Q3) responsiveness: the probability q A(θ A, θ B) is increasing in θ A and decreasing
in θ A with q J (θ A, θ B) < 1 for θ B > 0.

Since a coach is uninformed about the strength realizations of the competitors, a team
coach expects to win match k with probability

pJ (�(ax (k)),�(by(k))) = E[q J (�(ax (k)),�(by(k)))].

We assume separability among across battles and define the probability that a team
wins the whole tournament, given a distinct lineup l(ax , by) as the average of winning
on separate playing slots

1

n

n∑
k=1

q J (θ(ax (k)), θ(by(k))).

Hence, coaches value all matches equally and only care about the sum of all winning
probabilities of individual matches pA(·), normalized by the number of matches n.
By linearity of the expectation, a coach expects

ρ J (ax , by) = E

[
1

n

n∑
k=1

q J (�(ax (k)),�(by(k)))

]

= 1

n

n∑
k=1

pJ (�(ax (k)),�(by(k))). (2)

Observe that by (P1), we have q A(θ A, θ B) = 1 − q B(θ A, θ B), which (again
by the linearity of the expectation) implies pA(�(ax (k)),�(by(k))) = 1 −
pB(�(ax (k)),�(by(k))), and thus also ρ A(ax , by) = 1 − ρB(ax , by), defining a
constant-sum game.5 Accordingly, we drop the superscripts on the payoffs to simplify
notation.

Denote by � = (ρ(ax , by))x∈N !,y∈N ! the game’s strategic-form matrix as a result
of the available n! strategies to each coach. For the case of pure strategies, only one
lineup occurs with strictly positive probability, and the maximization problem for the
coach of team A can be defined as a best-response: given a pure strategy by ∈ SB ,
coach A chooses a pure strategy ax ∈ S A to achieve a most favorable lineup

arg max
ax ∈S A

ρ(ax , by).

5 A formal proof of the first implication is given in Lemma 1.
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The Sumo coach problem 675

We introduce mixed strategies as points in the unit simplex α ∈ �(S A), β ∈ �(SB).
The probability with which a team plays the seeding sl in a mixed strategy is denoted
by αx , βy , as the lth dimension of the associated unit simplex, providing the expected
mixed strategy payoff defined as

π(α, β) =
n!∑

x=1

n!∑
y=1

αxρ(ax , by)βy . (3)

Wemodify the overall probability that coach Awins thewhole tournament by allowing
for mixtures accordingly and define the two coaches’ optimization problems as

arg max
α∈�(S A)

π(α, β) for coach A, arg min
β∈�(SB )

π(α, β) for coach B.

Before finishing this section, we summarize the timing interaction, which unfolds as
follows:

t = 0 t = 1 t = 2
time

coaches observe
( f A, f B)

coaches choose
α, β

strength’s realize &
payoffs are generated

2.1 Example of a three competitor tournament

Example 1 We now introduce a specific example of a three-competitor tournament to
illustrate the mechanics of our model. (In later examples, we will continue to build on
this first example setting.) The expected strengths of the participating competitors are
independent draws from the continuous probability distributions F J , J ∈ {A, B}. In
the present example, team A’s skill, F A, is represented by the symmetric triangular
distribution with support x ∈ [0, 1], denoted by T [0, 1]. Team B’s skill, F B , is
represented by the uniform distribution with equivalent support, denoted by U[0, 1].
The expected player strengths take the (order-statistic-defined) values:

E[�A
(1)] = 0.325,E[�A

(2)] = 0.5,E[�A
(3)] = 0.675,

E[�B
(1)] = 0.250,E[�B

(2)] = 0.5,E[�B
(3)] = 0.750.

Team coaches assign team members to playing slots k ∈ {1, 2, 3}. Table 1 illustrates
the strategy space S J available to each coach; as indicated, there are six such pure
strategies per coach. A pair of two pure strategies constitute a lineup (ax , by). For
example, (a1, b2) constitutes the lineup

(a1, b2) = 〈[�(a1(1)),�(b2(1)))], [�(a1(2)),�(b2(2))], [�(a1(3)),�(b2(3))]〉
= 〈[�A

(1),�
B
(1)], [�A

(2),�
B
(3)], [�A

(3),�
B
(2)]〉.
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676 D. Rehsmann

Table 1 Pure strategy set S J for
a team of n = 3 players using
the notation �(player)

Playing slots

k = 1 k = 2 k = 3

Strategies

s1 �(1) �(2) �(3)

s2 �(1) �(3) �(2)

s3 �(2) �(1) �(3)

s4 �(2) �(3) �(1)

s5 �(3) �(1) �(2)

s6 �(3) �(2) �(1)

We embed the lottery CSF as the probability of winning distinct matches. Hence, on
slot 1, player A wins with probability

p(�(a1(1),�(b2(1)) = E

[
�A

(1)

�A
(1) + �B

(1)

]
≈ 0.598.

Given the lineup (a1, b2), player A wins the tournament with probability

ρ(a1, b2)

= 1

3

(
E

[
�A

(1)

�A
(1) + �B

(1)

]
+ E

[
�A

(2)

�A
(2) + �B

(3)

]
+ E

[
�A

(3)

�A
(3) + �B

(2)

])
≈ 0.531.

Given team B’s pure strategy, for instance b2, team A’s pure strategy best responses
yield:

ρ(a2, b2) ≈ 0.531>ρ(a1, b2) ≈ 0.530>ρ(a3, b2) ≈ 0.529>

ρ(a4, b2) ≈ 0.527>ρ(a5, b2) ≈ 0.524>ρ(a6, b2) ≈ 0.521.

Team A chooses the pure strategy ax which solves the maximization problem

a2 = arg max
ax ∈S A

ρ(ax , b2).

If team B plays, e.g., the mixed strategy β̄ = 〈1/2, 0, 0, 0, 0, 1/2〉, team A maximizes

π(α, β̄) = 1

2

n!∑
x=1

αx (ρ(ax , b1) + ρ(ax , b6)) ,

by choosing some mixed strategy α. Observe that pure strategy responses of team A
to mixed strategy β̄ yield payoffs

ρ(a2, β̄) ≈ 0.530 ≈ ρ(a4, β̄)>
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The Sumo coach problem 677

ρ(a1, β̄) ≈ 0.528 ≈ ρ(a6, β̄)>

ρ(a3, β̄) ≈ 0.524 ≈ ρ(a5, β̄).

It is easy to see that any convex combination of the form

arg max
α∈�(S A)

π(α, β) = 〈0, λ, 0, (1 − λ), 0, 0〉 with λ ∈ [0, 1],

solves team A’s maximization problem, i.e., by splitting the entire probability mass
between the strategies a2 = [�(1),�(3),�(2)] and a4 = [�(2),�(3),�(1)].

3 Equilibrium characterization

This section characterizes the set of equilibrium strategies in tournaments of arbitrary
size. We describe the reasons for the occurrence of multiple mixed-strategy equilibria
and trace typical properties of equilibrium strategies. The defined contest involves
some symmetry in the payoffs, which induces the game to share features of a partic-
ular type of zero-sum game. Following Hamilton and Romano (1998) and Ferguson
(2020), we characterize such tournaments as two-player Latin square games. Com-
bined with the combinatorial structure of the strategy spaces, such games feature
distinct properties, which we utilize to identify equilibrium strategies.

3.1 Preliminary results

Before moving on to specific properties of the payoff matrix, we begin this section by
formally transferring properties of the embedded CSF onto the expected probability
of winning a particular match. This ensures that the studied interaction is indeed
a constant sum game. Moreover, the described monotonicity of the expectation is
central for our comparative analysis.

Lemma 1 For any measurable function q(θ A, θ B) satisfying (Q1–Q3), E[q J (�B
(i),

�B
( j))] satisfies following properties

(Q1) exclusivity: the espexted probability to win a distinct slot is verifiable with
quality-dependent probabilities summing to E[q A(�A

(i),�
B
( j))] + E[q B(�A

(i),

�B
( j))] = 1;

(Q2) symmetry: the expected probabilityE[q A(�A
(i),�

B
( j))] is equal to 1/2 for identical

random variables �A
(i) = �B

( j);

(Q3) responsiveness: the expected probability E[q A(�A
(i),�

B
( j))] is increasing in i

and decreasing in j , for i, j ∈ {1, . . . , n}.
The characterization of equilibrium properties in the remainder of the paper refers
to a specific structure of the payoff matrix �. To avoid confusion in our definitions,
we stick to the definition introduced by Hamilton and Romano (1998), named “pure
strategy equivalence,” which is equivalent to the definition of a “Latins square game,”
introduced by Ferguson (2020):
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678 D. Rehsmann

Definition 1 (PSE) Each row and column of the payoff matrix � contains the same
expected payoffs.

Some equilibrium properties rely on a stronger concept, which refers to the full com-
binatorial definition of a Latin square. Following Colbourn and Dinitz (1996), a Latin
square is defined as an n × n array L , in which each cell contains a single element
from a set of cardinality n, such that each element occurs exactly once in each row and
exactly once in each column.6 We characterize games with an accordingly structured
payoff matrix as games satisfying “Latin square properties” (LSP):

Definition 2 (LSP) Each row and column of the payoff matrix � contains the same
expected payoffs. Furthermore, each expected payoff occurs exactly once in each row
and exactly once in each column.

In this subsection, we want to establish that tournaments of arbitrary team size, as
defined above, feature (PSE). In addition, we show that certain contest success func-
tions may imply that such tournaments also satisfy (LSP). We start with observing
a distinct characteristic of the studied game: two pairs of strategies (i.e., lineups),
(ax , by) and (ax ′ , by′), are payoff-equivalent if (ax , by) and (ax ′ , by′) only differ in
the slots at which the same players meet each other. This is the case if the matches
(i.e., the pairs (ax ′(k), by′(k))) in (ax ′ , by′) are a permutation of (ax , by) over the k
playing slots.

Lemma 2 Two lineups, (ax , by) and (ax ′ , by′), are equivalent in payoffs if (ax ′ , by′)
is a permutation of the matches in (ax , by) over the k playing slots. The pure-strategy
payoff function ρ(ax , by) is, therefore, a non-injective mapping.

Thus, a team’s payoff function is independent of the slot at which individual matches
are played. We collect such payoff-equivalent lineups in pairwise disjoint subsets. Let
L = {L1, . . . ,Ln!} be a partition of the set of lineups L , such that a subsetLi ⊂ L ,
i ∈ N ! is defined as

Li := {(ax , by)|(ax , by) is a permutation of (ax , bi ) over k}. (4)

Every subset Li consequently contains n! lineups (ax , by) that result in equivalent
payoffs, hence making the coaches payoff-indifferent among lineups (ax , by) and
(ax ′ , by′) that are elements of the same subset Li , as stated in Lemma 2

ρ((ax , by) ∈ Li ) = p((ax ′ , by′)∈Li )for x �= x ′ and y �= y′.

We demonstrate the payoff equivalence of lineups in a certain lineup class in the
following example.

Example 2 Table 2 shows the possible pairings in the n = 3 competitor tournament
arising from Example 1. There are 36 possible pairings, which are elements of 6

6 The theory of Latin squares is a research topic in combinatorics, occasionally applied to experimental
design. For an overview of the relevant literature see, e.g., Colbourn and Dinitz (1996) and Keedwell and
Dénes (2015).

123



The Sumo coach problem 679

Table 2 Lineups in a game with
n = 3 players

Team B

b1 b2 b3 b4 b5 b6

Team A

a1 L1 L2 L3 L4 L5 L6

a2 L2 L1 L4 L3 L6 L5

a3 L3 L5 L1 L6 L2 L4

a4 L5 L3 L6 L1 L4 L2

a5 L4 L6 L2 L5 L1 L3

a6 L6 L4 L5 L2 L3 L1

payoff distinct subsets {L1, . . . ,L6}. For instance, the lineup (a1, b2) ∈ L2 is payoff
equivalent to (a2, b1) ∈ L2:

ρ(a1, b2) = 1

3

(
p(�A

(1),�
B
(1)) + p(�A

(2),�
B
(3)) + p(�A

(3),�
B
(2))

)

= 1

3

(
p(�A

(1),�
B
(1)) + p(�A

(3),�
B
(2)) + p(�A

(2),�
B
(3))

)
= ρ(a2, b1),

but may yield a different payoffs than (a1, b1) ∈ L1:

ρ(a1, b2) = 1

3

(
p(�A

(1),�
B
(1)) + p(�A

(2),�
B
(3)) + p(�A

(3),�
B
(2))

)

�= 1

3

(
p(�A

(1),�
B
(1)) + p(�A

(2),�
B
(2)) + p(�A

(3),�
B
(3))

)
= ρ(a1, b1).

Hence, lineups are payoff equivalent if the same players merely meet at different slots.

Two lineups that are elements of different subsetsLi can confront the team coaches
with different expected payoffs. If we have payoff-equivalence of two arbitrary lineups
that are elements of distinct lineup classes, i.e., there exists some

ρ((ax , by) ∈ Li ) = ρ((ax ′ , by′)∈L j ), for i �= j,

the tournament satisfies (PSE), but violates (LSP). If, as a result of the embedded CSF,
the lineup classes result in unique payoffs, i.e., we have

ρ((ax , by) ∈ Li ) �=ρ((ax ′ , by′) ∈ L j ), ∀i �= j,

the resulting payoff matrix additionally satisfies (LSP). We provide a proof for this
statement in the following lemma.

Lemma 3 If P = {ρ((ax , by) ∈ Li ) : i ∈ N !} is a weakly ordered set, the payoff
matrix � satisfies (PSE). If P is a strictly ordered set, the payoff matrix � satisfies
(LSP).
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We illustrate the concepts of (PSE) and (LSP) by embedding two different CSF, i.e.,
functional representations, to win single contests. As shown in the following example,
these concepts generally depend on the monotonicity properties of the embedded
CSF. We illustrate that (PSE) arises by embedding a weakly monotonic CSF, i.e.,
assuming that q(θ A, θ B) is weakly increasing in θ A and weakly decreasing in θ B ,
into our previous examples. In contrast, integrating a strictly monotonic CSF — in
general—results in a payoff-matrix satisfying (LSP).

Example 3 Consider again the tournament outlined in Example 1 Embedding the all-
pay auction CSF as the probability of winning a distinct match k, defined as:

q(θ A, θ B) =

⎧⎪⎨
⎪⎩
1 θ A > θ B

1/2 θ A = θ B

0 θ A < θ B

,

yields, e.g., for strategy pairs, (a1, b1) ∈ L1 and (a1, b6) ∈ L6, the expected payoff

ρ(a1, b1) ≈ 1/3(0.65 + 0.5 + 0.35) = 1

2
= 1/3(0.05 + 0.5 + 0.95) ≈ ρ(a1, b6).

The lineup (a1, b2) ∈ L2, however, results in a different expected payoff

ρ(a1, b2) ≈ 1/3(0.65 + 0.15 + 0.73) ≈ 0.512.

The lineup classes result in payoffs

{ρ(L1)= .500, ρ(L2)= .512, ρ(L3)= .488, ρ(L4)= .456, ρ(L5)= .543, ρ(L6)= .500}.
ρ((ax , by) ∈ L1) = .500, ρ((ax , by) ∈ L2) = .512, ρ((ax , by) ∈ L3) = .488,

ρ((ax , by) ∈ L4) = .456, ρ((ax , by) ∈ L5) = .543, ρ((ax , by) ∈ L6) = .500.

Entering these values into Table 2, demonstrates, that the payoff matrix � indeed
satisfies (PSE) since every row and column contains the same elements. Furthermore,
observe that the same payoffs may arise in distinct lineup classes (as for ρ((ax , by) ∈
L1) = ρ((ax , by) ∈ L6)), thus contradicting (LSP).

Embedding the lottery CSF as the probability to win a distinct match k, defined as

q(θ A, θ B) = θ A

θ A + θ B
,

results in payoffs

ρ((ax , by) ∈ L1) = .531, ρ((ax , by) ∈ L2) = .530, ρ((ax , by) ∈ L3) = .527,

ρ((ax , by) ∈ L4) = .521, ρ((ax , by) ∈ L5) = .529, ρ((ax , by) ∈ L6) = .524.

Since payoffs are different in every lineup classLi , the matrix � in addition satisfies
(LSP), since every payoff occurs exactly once in each row and once in each column.
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Although strict responsiveness of the embedded contest success function may guar-
antee (LSP) for “typical” parameter settings of such games, certain skill distributions
induce payoff equivalence of two strategies. In a n = 2 competitor tournament such
payoff-equivalence can occur, e.g., if ρ(a1, b1) = ρ(a1, b2). In that case, we have
pure strategy payoffs

1

2

(
p(�A

(1),�
B
(1)) + p(�A

(2),�
B
(2))

)
= 1

2

(
p(�A

(1),�
B
(2)) + p(�A

(2),�
B
(1))

)
.

The occurrence of such pairwise equalities in tournaments of arbitrary size depends
on the specific form of the embedded CSF. For instance, embedding the lottery CSF in
a two-competitor tournament, the above equality holds if and only if E[�A

(1)�
A
(2)] =

E[�B
(1)�

B
(2)].

3.2 Nash equilibria

As a consequence of (PSE), each pure strategy of a coach confronts the opponent with
the same set of feasible payoffs. Thus, if team B decides to play any pure strategy by ,
team A could always find a pure strategy to obtain its most preferred lineup. Due to
the zero-sum property of the game, the presence of such a pure strategy best response
leads to the conclusion that pure strategy equilibria are only possible in a very small
subclass of parameter settings. As Hamilton and Romano (1998) show, pure strategy
equilibria indeed only exist under very stringent conditions, more precisely, if the
payoffs are equal for every possible lineup, i.e.,

ρ(a1, b1) = ρ(a1, b2) = . . . = ρ(an!, bn!).

As this case seems uninteresting, we exclude such trivial parameter settings from con-
sideration in our further characterization of equilibrium strategies. The same reasoning
also implies that mixed strategies which result in unequal realization probabilities of
player assignments cannot be part of a Nash equilibrium. As a starting point, we use a
result established by Hamilton and Romano (1998) and Ferguson (2020), which con-
firms that equal probability mixing over the entire strategy space always constitutes
an equilibrium of a zero-sum game satisfying (PSE). Due to the zero-sum properties,
min-max solutions correspond to the Nash equilibria. Hence, we begin the character-
ization of equilibria by outlining the relatively simple structure of the value of such
games.

Lemma 4 In a two player zero-sum game satisfying (PSE) of dimension n! × n! and
pure strategy payoff ρ(ax , by), the value V of the game is

1

n!
n!∑

x=1

ρ(ax , by) = V = 1

n!
n!∑

y=1

ρ(ax , by).

Observing the structure of the payoff matrix in games satisfying (PSE) allows to refine
the indifference condition of equilibrium profiles in the following way:
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Proposition 1 A profile β∗ constitutes an optimal strategy of an arbitrary finite two-
person zero-sum game with (PSE) of size n! × n!, if and only if the opposing team A
is indifferent among all their pure strategies, i.e.,

π(ax , β
∗) =

n!∑
y=1

βyρ(ax , by) =
n!∑

y=1

βyρ(ax ′ , by) = π(ax ′ , β∗)∀ax �= ax ′ ∈ S A.(5)

The observation that a distinct equilibrium strategy profile in games with pure strategy
equivalence makes the opponent indifferent among all pure strategies provides the
necessary structure to identify other mixed strategy equilibria. In many other games
with pure strategy equivalence, bilateral uniform mixing over the entire pure strategy
space may constitute the only way to establish such a form of indifference. However,
the combinatorial structure of the pure strategy spaces invokes some redundancies in
the payoffs that allow for the presence of multiple equilibria. We demonstrate this
observation in the following example.

Example 4 Take again the payoffs calculated using a lottery CSF in Example 3. The
payoffs in the lineup classes are

L1 ≈ 0.531,L2 ≈ 0.530,L3 ≈ 0.527,L4 ≈ 0.521,L5 ≈ 0.529,L6 ≈ 0.524.

Amixed strategy profile of team B that makes the row player indifferent among all of
their pure strategies is, e.g., the profile

β2 = 〈1/3, 0, 0, 1/3, 1/3, 0〉.

Team A’s pure strategy responses all yield expected payoff of

π(ax , β2) ≈ 0.527.

A decomposition of the pure strategy reactions of team A illustrates the logic. Team
A’s response, e.g., a1 yields the decomposed payoff

π(a1, β2) = 1

3
ρ((a1, b1)∈L1) + 1

3
ρ((a1, b4) ∈ L4) + 1

3
ρ((a1, b5) ∈ L5).

Team A can achieve its most favorable lineup (a1, b5) ∈ L5 with a probability of 1/3.
The reaction a1 is punished because team A’s least favorable lineup (a1, b4) ∈ L4 is
also played with a probability of 1/3. The reaction a2 to β2 yields the same expected
payoff and can be decomposed into

π(a2, β2) = 1

3
ρ((a2, b1)∈L2) + 1

3
ρ((a2, b4) ∈ L3) + 1

3
ρ((a2, b5) ∈ L6).

Both teams achieve their second to most favorable lineups with a probability of 1/3,
while team B can only achieve its third to most favorable lineup (a2, b5) ∈ L6. All
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pure strategy responses ax to β2 yield the same expected payoff since all players of
team B are assigned in expectation with the same probability to every slot k. Observe
that this is also the case if player B plays every pure strategy with probability 1/n!.
Hence, team A is indifferent also among all its pure strategies when facing β2.

As illustrated in the previous example, we may see the occurrence of multiple
mixed strategy equilibria due to the combinatorial redundancies in the teams’ pure
strategy spaces. However, if we decompose the payoff generation into specific playing
slots, we can identify some shared properties of equilibrium strategies. Recall that the
probability of winning the tournament given two pure strategies is defined as the
average of winning probabilities on distinct playing slots. Thus, plugging in (2) into
(3) gives for a pure strategy ax the payoff

π(ax , β) =
n!∑

y=1

βy
1

n

n∑
k=1

p(�(ax (k)),�(by(k))).

In the next proposition, we want to establish that if player B plays optimal according
to Proposition 1, player A is indifferent between the slots, some competitor �(i) is
assigned to. We denote team A’s payoff obtained on a distinct playing slot k, given
its strategy ax and team B’s mixed strategy β, by the kth vertical sum of π(ax , β),
denoting �(i) = �(ax (k))

π(ax , β, k) = 1

n

n!∑
y=1

βy p(�(ax (k)),�(by(k)))

= 1

n

n!∑
y=1

βy p(�(i),�(by(k))) = π(�(i), β, k).

Proposition 2 A sufficient condition for a strategy profile β to satisfy Proposition 1 is

π(�(i), β, k) = π(�(i), β, k′)∀i, k �= k′ ∈ N . (6)

In games satisfying (LSP) this condition is also necessary for Proposition 1.

A direct consequence of this observation is that an equilibrium profile thus has to
result in a somehow balanced assignment, i.e., seeding each competitor with the same
probability to every playing slot.

Proposition 3 A strategy profile satisfies Proposition 2 if every competitor �(i) is
assigned with equal probability to every playing slot k. If the game matrix satisfies
(LSP), this condition is also necessary.

As illustrated in Example 4, uniform randomization over specific pure strategies,
while others are played with probability 0, can also satisfy Proposition 1 and thus
constitute an equilibriumgame strategy.Wedefine amixed strategy profile that satisfies
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Table 3 Possible minimal support equilibrium strategies in games up to n = 11 competitors, based on
McKay and Wanless (2005)

n Minimal support equilibrium strategies

1 1

2 1

3 2

4 24

5 1, 344

6 1, 128, 960

7 12, 198, 297, 600

8 2, 697, 818, 265, 354, 240

9 15, 224, 734, 061, 278, 915, 461, 120

10 2, 750, 892, 211, 809, 148, 994, 633, 229, 926, 400

11 19, 464, 657, 391, 668, 924, 966, 616, 671, 344, 752, 852, 992, 000

Proposition 1with support of cardinality n as a “minimal support equilibrium” strategy.

Proposition 4 Let ŜB ⊂ SB denote a proper subset of n strategies b̂y , such that there
exists exactly one (∃̇) strategy that assigns competitor �B

(i) to playing slot k. Let β̂y

denote the mixed strategy dimension of β associated to a pure strategy b̂y . Uniform
randomization over a such subset ŜB , i.e. β̂y = 1/n, satisfies Proposition 2, and thus
constitutes a minimal support equilibrium strategy of the game.

The cardinality of possible subsets, which can constitute a minimal support equilib-
rium strategy, refers to an open topic in combinatorics. By definition, a set ŜB contains
precisely n strategies, such that every player is assigned precisely once to a particular
playing slot k. A subset ŜB thus defines a Latin square, where (due to the lexico-
graphic order of strategies) the first row occurs in a natural order. Colbourn and Dinitz
(1996) define such combinatorial structures as “half-normalized Latin squares”. In
tournaments of size n, there are thus as many minimal support equilibrium strate-
gies as possible half-normalized Latin squares. For tournaments with up to n = 11
competitors, we provide the set of possible minimal support equilibrium in Table 3.

The exact cardinality of possibleminimal support equilibrium strategies is unknown
for tournaments bigger thann = 11.However, a lower boundon this set canbeobtained
from Shao and Wei (1992), which establish the cardinality of the set of possible Latin
squares C to be at least C >

∏n
k (k!) n

k . The cardinality of the set of half-normalized
Latin squares equals (1/n!)C as shown in, e.g., Colbourn and Dinitz (1996). Hence,
the set of possible minimal support equilibrium strategies is at least

1

n!
n∏
k

(k!) n
k ,

123



The Sumo coach problem 685

which is strictly increasing in n. Observe that for tournaments of size n > 2, each team
already has two possible minimal support equilibrium strategies. As shown below, the
existence of two ormore such strategies guarantees a variety of possiblemixed strategy
equilibria in this game.

Proposition 5 A strategy profile β which is a convex combination over the set of
minimal support equilibrium strategies, defined in Proposition 4, is an optimal strategy
of the game.

Beforemoving on to the next section, we briefly summarize some of our results. Propo-
sition 4 and Proposition 5 rely entirely on the payoff matrix characteristics—namely
(PSE)—and the combinatorial structure of the strategy spaces. The results established
by these propositions thus apply also to different forms of payoff representation. As
illustrated in Proposition 5, tournaments of size n > 2 feature an infinite set of equilib-
rium strategies. This result is in sharp contrast to Hamilton and Romano (1998), who
argue that the occurrence ofmultiple equilibria is a rare case. The results obtained from
Propositions 2 and 3 pin down common properties of equilibrium strategies in games
satisfying (LSP). Restricting our attention to such games, we may use the observation
that in equilibrium, every competitor is assigned with the same probability to every
playing slot to address questions of optimal team training in the following section.

4 Optimal team training

In this section, we analyze the problem of optimally investing training capacities in
the framework of the introduced Sumo coach problems. We frame this analysis as a
problem of optimal allocation of scarce resources since we consider it costly to alter a
team’s skill. Based on the previous section, we use common properties of equilibrium
strategies (in particular Proposition 3) to facilitate the analysis of the most effective
alterations in the underlying team’s skill distributions, presupposing equilibrium play
of both teams. We assume that such modifications come at some symmetric cost and
render this analysis as a bounded maximization problem.

We restrict our analysis to games where the payoff matrix satisfies (LSP) to avoid
equilibrium behavior violating Proposition 3. Recall that in such games, all equilibria
share the common characteristic that every competitor is assigned in expectation with
the same probability to every playing slot. Assuming equilibrium play, thus, every
competitor is confronted in their match with the same likelihood to every opposing
competitor. Hence, a competitor wins (when competitors’ strengths are realized) with
probability

q̄(θ A) = 1

n

n∑
j=1

q(θ A, θ B
j ).
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Fixing equilibrium play of team B and given two team’s skill densities f A and f B ,
the expected probability that competitor i wins their match is

μi (�
A
(i), f B) = 1

n

n∑
j=1

p(�A
(i),�

B
( j)),

by linearity of the expectation. We will sometimes refer to (expected) marginal
increases in a competitor’s winning probability as a function of individual competitor
strength. In a slight abuse of notation, we define

q ′(θ A, θ B) = ∂q(θ A, θ B)

∂θ A
.

The expected increase in a competitors winning probability is thus

μ′
i (�

A
(i), f B) = 1

n

n∑
j=1

E[q ′(�(i),�( j)].

Assuming equilibrium play of team A, it follows furthermore from Proposition 3 that
the expected probability that team A wins the tournament can be written as

μ( f A, f B) = 1

n

n∑
i=1

1

n

n∑
j=1

p(�A
(i),�

B
( j)). (7)

We formalize the concept of “training” as a bounded modification of team A’s skill
density function f A, i.e., by transferring probability mass among the support interval.
We denote the “training capacity” available to a team by ε ∈ R+. Let f A

0 represent the
skill density function of the “untrained” team, and let f A

1 denote a team’s skill den-
sity function after applying training of amount ε.7 Fixing team B’s skill distribution,
team A’s coach maximizes her probability of winning the tournament by solving the
following maximization problem

max
f A
1 ∈
+

μ( f A
1 , f B)

s.t. d( f A
1 , f A

0 ) ≤ ε
(8)

in which 
+ denotes the set of all sigma-additive probability measures with finite
support [0, θ̄ ], and where d(·) represents an appropriate distance measure between
f A
0 and f A

1 . Observe that a solution to this maximization problem, f̆ A
1 , first-order

stochastically dominates f A
0 , i.e.,

F̆ A
1 (θ) ≤ F A

0 (θ),∀θ∈[0, θ̄ ] and ∃θ∈[0, θ̄ ]:F̆ A
1 (θ)<F A

0 (θ).

7 Heterogeneity in costs can be addressed by applying some function cJ (ε).
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This follows from the observation that it cannot be optimal for a coach to transfer
probability mass from “high” strength (and therefore relatively high winning prob-
ability) to “low” (with relatively low winning probability). However, what distance
measures may be perceived as adequate deserves some further explanation. Conven-
tional distancemeasures between functions, e.g., the euclidean distance, fail to address
our intuition that training somehow has to reflect gradual improvements in a team’s
skill distribution. We use the intuition that the cost of transfer of probability mass (i.e.,
training) between two points has to depend (i) on the amount of probability mass and
(ii) on the distance between those points. We thus assume that a gradual increase in
competitor strength comes at a lower cost than a radical increase. A measure that nat-
urally commits to these requirements is the Wasserstein distance. Commonly known
under the term “earth mover’s distance,” it refers to the minimum cost of transferring
probability mass among the support interval when distance and mass of the trans-
fer matter. In the case of one-dimensional probability measures, we follow Vallender
(1974) and define d(·) as

d( f A
1 , f A

0 ) =
∫ θ̄

0
|F A

1 (x) − F A
0 (x)|dx .

We illustrate the difference between the conventional Euclidean distance and the
Wasserstein distance in the following example.

Example 5 Consider again team A’s skill density function f A
0 (θ) defined to be the

symmetric triangular distribution on the unit interval, denoted by T [0, 1]. Further-
more we define three trained skill distributions, denoted by f̃ A

1 (θ), f̄ A
1 (θ) and f̂ A

1 (θ).
Figure 1a illustrates a gradual increase of middle competitor strengths; in Fig. 1b,
the same mass is shifted from low to high regions of competitor strength, and in
Fig. 1c only a fraction of the mass is shifted from low to high regions of competitor
strength. By intuition, f̄ A

1 (θ) yields the highest gain in winning probabilities for team
A. Now denote by d1(·), the usual Euclidean distance, and by d2(·) the Wasserstein
distance, as defined above. Embedding the Euclidean distance gives training capacities
d1( f A

0 , f̃ A
1 ) = d1( f A

0 , f̄ A
1 ) > d1( f A

0 , f̂ A
1 ). The distance of the transfer of probability

mass is not reflected using the Euclidean, since training that only gradually increases
competitor strength requires the same amount of training capacity as training that dras-
tically increases the same mass. In contrast, embedding theWasserstein distance gives
capacities d1( f A

0 , f̄ A
1 ) > d1( f A

0 , f̃ A
1 ) = d1( f A

0 , f̂ A
1 ). To radically increase com-

petitor strength, such training has to compensate with the transfer of less probability
mass.

To obtain finite degrees of freedom, we reformulate the maximization problem by
representing f A

1 with some finitely discretized function f̃ A
1 . We do so by splitting the

probability density into T ∈ N kernel densities

f̃ A
1 = 1

T ∗ h

T∑
k=1

akφ

(
x − xk

h

)
with ak ≥ 0, and

T∑
k=1

ak = T + 1.
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(a) (b) (c)

Fig. 1 Optimal training of team skill, using the values of Example 1, with parameters T = 7, ε = 1/128,
r = 1

Wedefineφ(·) to be an appropriate kernel density function, h an appropriate smoothing
bandwidth parameter and xk = kθ̄/(T +1), k ∈ {1, . . . T }, defined to be the sampling
points, distributed equally among the support. The vector a = 〈a1, . . . , aT 〉, represents
linear weights attached to the k kernel densities. Modifying (8) accordingly we obtain

max
a

μ( f̃ A
1 , f B) = 1

n2
∑n

i=1
∑n

j=1 p(�̃A
(i),�

B
( j))

s.t. c1 : d( f̃ A
1 , f A

0 ) ≤ ε

c2 : ak ≥ 0, ∀k ∈ {1, . . . , T }
c3 : ∑T

k=1 ak = T + 1,

where �̃A
(i) is defined as the i th order statistic derived from the discretized density

f̃ A
1 . The constraint c1 bounds possible modifications of f A

0 by ε, embedding the
Wasserstein metric. The constraint c2 ensures positive density of f̃ A

1 , while c3 ensures∫ θ̄

0 f̃ A
1 (x)dx = 1.

Example 6 We illustrate the solution to this maximization problem, using the teams’
skill distributions of Example 1 and embed the lottery CSF with an discriminatory
extent of r = 1 as the probability to win a distinct match. Fixing team B’s skill to
U[0, 1], team A’s probability to win the tournament, given its original skill distribution
T [0, 1], is

μ(T (0, 1),U[0, 1]) = 1

n2

n∑
i=1

n∑
j=1

E

[
(�A

(i))
r

(�A
(i))

r + (�B
( j))

r

]
≈ 0.527.

We use T = 7 discretization points xk in the unit interval [0, 1], by setting xk =
k/8, k = 1, . . . , 7 and define triangular kernel densities, by setting

φ(y) =
{

(1 − |y|) |y| ≤ 1

0 otherwise
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and set the corresponding bandwidth to h = 1/(T +1).8 Observe that we can represent
f A
0 precisely with a discretized function f̃ A

0 , using the definitions above and setting
the weighting vector to

2a = 〈1, 2, 3, 4, 3, 2, 1〉 .

We approach this optimization problem numerically since the integral in the constraint
c3

d( f A
1 , f A

0 ) =
∫ θ̄

0
|F̃ A

1 (x) − F A
0 (x)|dx,

with

F̃ A
1 (x) = 1

T ∗ h

T∑
k=1

ak

∫ x

0
φ

(
x − xk

h

)
dx, F A

0 (x) =
{
4x 0 ≤ x ≤ 0.5

4(1 − x) 0.5 < x ≤ 1
,

has, to the best of our knowledge, no analytical solution. We integrate numerically
using Monte Carlo integration and search for a global maximum using the method
of “Differential Evolution,” a stochastic function minimizer.9 Solutions to the max-
imization problem heavily depend on the initial skill densities f A, f B , and the
exogenous value of r , which parametrizes the functional behavior of μ( f A, f B).
Setting ε = 1/128, maximization with respect to ai gives

2a = 〈0, 3, 3, 4, 3, 2, 1〉 ,

which shifts the expected competitor strengths from

〈E[�A
(1)],E[�A

(2)],E[�A
(3)]〉 = 〈0.325, 0.5, 0.675〉

to approximately

〈E[�̃A
(1)],E[�̃A

(2)],E[�̃A
(3)]〉 ≈ 〈0.346, 0.503, 0.675〉.

The probability, that team A now wins the tournament is

μA( f̃ A
1 ,U[0, 1]) ≈ 0.535.

The solution to the optimization problem is illustrated in Fig. 2.As illustrated in Fig. 2a,
optimal training transfers probability mass exclusively from the smallest sample point

8 We use T = 7 discretization points to illustrate the logic of the optimization problem. An increase of
discretization points is computationally expensive, but otherwise analytically uninteresting
9 We use this algorithm, due to its relative robustness in problems that have multiple local minima. We set
the parameters due to the rules of thumb introduced by Storn (1996). For more technical details. see, e.g.,
Price et al. (2005).
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(a)
(b)

Fig. 2 Optimal training of team skill, using the values of Example 1, with parameters T = 7, ε = 1/128,
r = 1

x1 to the second-lowest x2. Optimal training, hence, prioritizes areas of low competitor
strength. The reason behind this is illustrated in Fig. 2b. Since q ′(θ A, θ B) is strictly
decreasing in θ A, μ′

i (�
A
(i), f B) is decreasing monotonically in i

μ′
1(�

A
(1), f B) ≈ 0.772>μ′

2(�
A
(2), f B) ≈ 0.469>μ′

3(�
A
(3), f B) ≈ 0.329.

Training that favors �A
(i) yields a higher impact on the overall winning probability

μ( f A, f B), than training that favors, e.g., �A
(2). We conclude this example by high-

lighting that the solution to this maximization problem can be generalized to the
parameter space r ∈ (0, 1].

Example 6 demonstrates the linkage between the expected marginal increase of a
competitor’s winning probability and the optimal allocation of training capacities.
Training is optimally invested in the weakest regions of a team’s skill density if
q ′(θ A, θ A) is strictly decreasing. This follows simply by the observation that such
alterations of probability mass, by definition, have the highest impact on the strength
of the weakest player�A

(1). We formalize this observation in a concluding proposition.

Proposition 6 If the embedded CSF q(θ A, θ B) is strictly increasing in θ A and concave,
optimal training should prioritize the lowest areas of f̃ A, by decreasing the lowest
possible linear weight denoted by amin and increase the second to lowest weight
amin+1, iteratively under the constraint ak ≥ 0.

In the last example of this section, we illustrate that the concavity of the embedded
CSF is indeed necessary for Proposition 6.

Example 7 We use the same parameters as in Example 6, and alter the discriminatory
extent to r = 20.Doing so, the embeddedTullockCSF is not concave, a propertywhich
transfers to the expect change in probability to win the tournamentμ′A(�A

(i), f B). The
solution to the maximization problem is

2a = 〈1, 1, 4, 4, 3, 2, 1〉 ,
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(a)
(b)

Fig. 3 Optimal training of team skill, using the values of Example 1, with parameters T = 7, ε = 1/128,
r = 20

which shifts the expected competitor strengths from

〈E[�A
(1)],E[�A

(2)],E[�A
(3)]〉 = 〈0.325, 0.5, 0.675〉

to approximately

〈E[�̃A
(1)],E[�̃A

(2)],E[�̃A
(3)]〉 ≈ 〈0.341, 0.507, 0.676〉

The probability that team A now wins the tournament shifts from

μ( f A
1 , f B) ≈ 0.502 to μ( f A

1 , f B) ≈ 0.510

The solution to the optimization problem is illustrated in Fig. 3. As illustrated in
Fig. 3a, optimal training now transfers probability mass exclusively onto the central
discretization point x5. Optimal training now prioritizes areas of middle competitor
strength. The intuition for this is illustrated in Fig. 3b. Since μ′

2(�
A
(2), f B) = 1.003

is greater than μ′A
1 (�A

(1), f B) = 1.002 and μ′
3(�

A
(3), f B) = 0.980, respectively,

training that favors�A
(2) now yields a higher impact on the overall winning probability

μ( f A, f B).

The observation that optimal training should be invested in areaswhere themarginal
increase in a competitor’s winning probability is maximal follows conventional eco-
nomic arguments based on marginal revenues. In this context, the analysis of the
Tullock CSF form also gives room for further interpretations. As illustrated in Exam-
ple 6, training in tournaments that involve a high degree of luck (i.e., low values of r )
should prioritize the weakest players. On the other hand, if the tournament is highly
decisive regarding the player strengths (i.e., high values of r ), the team should apply
the training in areas where a team’s expected strength realizations are closest to the
opposing team’s expected strength realizations. In summary, the analysis in this section
addresses the question of optimal team training superficially. Although the introduced
mechanics provide exciting insights into this problem, the established result applies
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to a narrow class of contests. We refrain from a more systematic analysis of optimal
team training as this seems to diverge from the primary interest of this paper.

5 Concluding remarks

The present paper analyzes, first, the optimal seeding of resource bundles in the setting
of a multi-battlefield contest and, second, the optimal transfer of additional resources
between such sets of bundles controlled by one player. An immediate result of our
equilibrium characterization is that Nash equilibria must result in a “totally” random-
ized allocation of resource bundles with respect to the distinct single-match contests.
Although this characteristic is not surprising in afinite zero-sumgame, our result shows
that such realizations can be achieved through multiple probability distributions over
the pure strategy space. The results of this paper diverge quite substantially from
empirical observations of real sports competitions where the overwhelming majority
of teams seem to be indexed decreasing in strength. As Hamilton and Romano (1998)
show and we confirm in a more general setting, however, such a seeding strategy can
only be optimal over trivial subsets of the parameter space. Possible extensions of
our model include unequal valuations of the distinct playing slots, either symmetric
for both players, or asymmetrically, rendering the zero-sum designation problematic.
Dynamic considerations could be addressed by formalizing a “Stackelberg” sequential
version of the game, in which one team moves first. This would yield different results
in the comparative static analysis with optimal training dependent on the first- or
second-mover position, leading to perhaps interesting industrial organization or polit-
ical economy applications. As our analysis abstracts from the players’ effort choices,
another possible extension could negatively link the players’ choice of efforts to the
strength differential in a single contest and thereby address motivational issues in team
sports.
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Appendix

Proof of Lemma 1 (P1): this property simply follows by linearity of the Expectation:

E[q A(�B
(i),�

B
( j))] + E[q B(�B

(i),�
B
( j))] = 1
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= E[q A(�B
(i),�

B
( j)) + q B(�B

(i),�
B
( j))] = 1

by (Q1) we have q A(θ A, θ B) + q B(θ A, θ B) = 1, and thus E[1] = 1.
(P2): Set �A

(i) = �B
( j), we have

E[q A(�A
(i),�

B
( j))] = E[q A(�A

(i),�
A
(i))]

by (Q2) we have q A(θ A, θ B) = 1/2 for identical qualities and thus E[1/2] = 1/2.
(P3): W.L.O.G. set 1 < k < l < n, which gives �A

(k) <s.t . �A
(l) (see,

e.g., Shaked and Shanthikumar (2007)). Now construct Y = q A(�A
(k),�

B
( j)) and

Z = q A(�A
(l),�

B
( j)). Since q A(·) is increasing in its first argument by (Q3), we have

Y <s.t . Z , giving in turn the inequality on the expectations E[Y ] < E[Z ].
Proof of Lemma 2 Recall that the probability that team A wins the tournament, given
a distinct lineup (ax , by), (2), is

ρ(ax , by) = 1

n

n∑
k=1

p(�(ax (k)),�(by(k))).

Let �(i) indicate the stochastic player strength of team A’s player i , assigned to slot
k̄ by strategy ax . Let �( j) indicate the stochastic player strength of team B’s player
j , assigned to slot k̄ by strategy by . Further, let �(i ′) indicate the stochastic player
strength of team A’s player i ′, assigned to slot k̄′ by strategy ax and let �( j ′) indicate
the expected player strength of team B’s player j ′, assigned to slot k̄′ by strategy by .
Following (1), the lineup (ax , by) is

(ax , by) = 〈[�(ax (1)),�(by(1))], . . . , [�(i),�( j)], , . . . , , [�(i ′),�( j ′)], . . . ,
[�(ax (n)),�(by(n))]〉.

The payoff of lineup (ax , by) is

ρ(ax , by)

= 1

n

⎛
⎝p(�(i),�( j)) + p(�(i ′),�( j ′)) +

∑
k∈N\{k̄,k̄′}

p(�(ax (k)),�(by(k)))

⎞
⎠ .

Now construct lineup (ax ′ , by′), such that the players assigned to slot k̄ in (ax , by) are
now assigned to slot k̄′ and vice versa.�(i) thus indicates the expected player strength
of team A’s player i , assigned to slot k̄′ by strategy ax ′ . �( j) indicates the expected
player strength of team B’s player j , assigned to slot k̄′ by strategy by′ . Further, �(i ′)
indicates the expected player strength of team A’s player i ′, assigned to slot k̄ by
strategy ax ′ , while �( j ′) indicates the expected player strength of team B’s player j ′,
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assigned to slot k̄ by strategy by′ . Lineup (ax ′ , by′) is then

(ax ′ , by′) = 〈[�(ax ′(1)),�(by′(1))], . . . , [�(i ′),�( j ′)], , . . . , , [�(i),�( j)], . . . ,
[�(ax ′(n)),�(by′(n))]〉.

The payoff of lineup (ax ′ , by′) is

ρ(ax ′ , by′)

= 1

n

⎛
⎝p(�(i ′),�( j ′)) + p(�(i),�( j)) +

∑
k∈N\{k̄,k̄′}

p(�(ax (k)),�(by(k)))

⎞
⎠ .

Consequently ρ(ax ′ , by′) obviously equals ρ(ax , by), and is therefore non-injective.

Proof of Lemma 3 As illustrated in Lemma 2, lineups that are only permutations over k
yield the same payoff tuples. The set of non-equivalent lineups with respect to payoffs
can be constructed, using (4) and arbitrarily fixing any pure strategy of team B

Li = {(ax , by)|(ax , by) is a permutation of (ax , bi ) over k}.

An equivalent partition,L , can be constructed by arbitrarily fixing any pure strategy
of team A

L j = {(ax , by)|(ax , by) is a permutation of (a j , by) over k}.

Consequently, each row and each column of� contains the same elements, and there-
fore satisfies the definition of (PSE). The second part of the statement follows simply
by the definition of (LSP), an the observation that payoffs in each row and column are
unique, according to the strict order relation.

Proof of Lemma 4 Following Ferguson (2020), the value of the game is exactly the
expected payoff when both players use their optimal mixed strategies, i.e.,

V =
n!∑

x=1

n!∑
y=1

αxρ(ax , by)βy .

Plugging in equal probability mixing (i.e., αx = 1/n! = βy) over the entire pure
strategy spaces, which always constitutes an equilibrium of games satisfying (PSE),
yields

V = 1

n!
n!∑

x=1

1

n!
n!∑

y=1

ρ(ax , by). (9)

By (PSE) we have

1

n!
n!∑

x=1

ρ(ax , by) = 1

n!
n!∑

y=1

ρ(ax , by), (10)
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for arbitrary choices of x or y. Plugging (10) into ((9)) results in

V = 1

n!
n!∑

x=1

1

n!
n!∑

x=1

ρ(ax , by) = 1

n!
n!∑

x=1

ρ(ax , by), (11)

which concludes the proof.

Proof of Proposition 1 We develop the proof in two steps. We establish sufficiency by
contraposition, assuming that (5) does not hold and show that such a strategy profile
cannot be optimal. W.L.O.G. assume that there exists distinct ax and ax ′ for which it
holds that

π(ax , β
∗) > π(ax ′ , β∗). (12)

To prove sufficiency, we need to establish that such a strategy β∗ violates equilibrium
properties for the distinct pair ax and ax ′ . By (PSE), we know that any pure strategy
of team A leads to every possible payoff pair. Hence, it is always possible to find such
a pure strategy pair ax and ax ′ , if (5) does not hold ∀ax �= ax ′ ∈ S A. Thus, player A
always has a response strategy ax to obtain its preferred payoffs, which coincidentally
results in lower payoffs for player B. Such a mixed strategy β can consequently not
be optimal for player B in the first hand.

In a second step, we establish necessity, i.e., any strategy profile satisfying (5) is an
optimal strategy for player B. Following Ferguson (2020), a strategy profile is optimal
for Player B if and only if Player A’s average payoff is at most V , no matter what pure
strategy player A uses, i.e.,

n!∑
y=1

βyρ(ax , by) ≤ V = 1

n!
n!∑

x=1

ρ(ax , by)∀y = 1, . . . n!. (13)

Observe that by indifference we have

n!∑
y=1

βyρ(ax , by) =
n!∑

y=1

βyρ(ax ′ , by)∀ax �= ax ′ ∈ S A,

and thus also

n!∑
y=1

βyρ(ax , by) =
n!∑

y=1

βy
1

n!
n!∑

x=1

ρ(ax , by) =
n!∑

y=1

βy V = V ,

establishing the equality in (13). The proof for Player B follows by symmetry.

Proof of Proposition 2 In a first step we establish sufficiency. Let ax denote some strat-
egy that assigns a competitor with stochastic strength �A

(i) to slot k and the competitor

with stochastic strength �A
( j) to slot k′. Let ax ′ denote the strategy that assigns the
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competitor with stochastic strength �(i) to playing slot k′ and the competitor with
stochastic strength �( j) to playing slot k, while all other assignments are kept equal.
Following Proposition 2, we set:

π(ax , β, k) = 1

n

n!∑
y=1

βy p(�A
(i),�(by(k)))

= 1

n

n!∑
y=1

βy p(�A
(i),�(by(k

′))) = π(ax ′ , β, k′),

π(ax , β, k′) = 1

n

n!∑
y=1

βy p(�( j),�(by(k)))

= 1

n

n!∑
y=1

βy p(�( j),�(by(k
′))) = π(ax ′ , β, k).

Observe that summing (6) over all playing slots exactly yields the expected payoff
π(ax , β), hence we have

π(ax , β) = 1

n

n!∑
y=1

(
βy

n∑
k=1

p(�(ax (k)),�(by(k)))

)
= 1

n

n∑
k=1

π(ax , β, k)

= 1

n

n∑
k=1

π(ax ′ , β, k)

= 1

n

n!∑
y=1

(
βy

n∑
k=1

p(�(ax ′(k)),�(by(k)))

)
= π(ax ′ , β),

repeating for some other slot k′ or some other starting strategy ax establishes Propo-
sition 1.

Necessity is shown by contradiction. W.L.O.G. assume that for two playing slots i
and j it holds that

n!∑
y=1

βy p(�A
(i),�(by(i))) >

n!∑
y=1

βy p(�A
(i),�(by( j))).

Since �A
(i) achieves a higher payoff on slot i than on slot j , the difference in payoff

must be a consequence of the mixed strategy β. Recall that p(�A
(i),�(by( j))) =

E[q(�A
(i),�(by( j)))] is strictly decreasing in j by Lemma 1. Hence we have

n!∑
y=1

βy�(by(i))) <s.t.

n!∑
y=1

βy�(by( j))).
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In such a strategy profile β, some unambiguously stronger player (denoted by �B
(i))

must be seeded with a higher probability to slot j than to slot i . Likewise, some unam-
biguously weaker player (denoted by �B

( j)) must be seeded with a higher probability

to slot i than to slot j . Now arbitrary pick some strategy by such that�(by( j)) = �B
(i)

and �(by(i)) = �B
( j) and pick two pure strategies of player A, denoted by ai and

a j , that assign �(ai (i)) = �(a j ( j)) = �A
(i) and �(ai ( j)) = �(a j (i)) = �A

( j),
and keep every assignment on the other slots unchanged. By (LSP), we have either
ρ(ai , by) > ρ(a j , by) or ρ(ai , by) < ρ(a j , by) since (ai , by) and (a j , by) are ele-
ments of distinct lineup classes. Hence, for the mixed strategy β, we must thus also
have eitherπ(ai , β) > π(a j , β) orπ(ai , β) < π(a j , β). Such amixed strategy profile
by definition contradicts Proposition 1.

Proof of Proposition 3 In a first step, we establish sufficiency. Recall that a sufficient
condition for a mixed strategy profile β being optimal is

π(�A
(i), β, k) = 1

n

n∑
y=1

βy p(�A
(i),�(by(k)))

= 1

n

n∑
y=1

βy p(�A
(i),�(by(k

′))) = π(�A
(i), β, k′).

Let SB
j :k denote the set of (n − 1)! strategies, which assign some competitor �B

( j) to

playing slot k. The probability that competitor �B
( j) is assigned to slot k, given some

mixed strategy vector β, is

(n−1)!∑
y∈S j :k

βy = β j :k with
n∑

k=1

β j :k = 1 =
n∑

j=1

β j :k . (14)

Observe that the payoff on slots k and k′ is

π(�A
(i), β, k) = 1

n

n∑
y=1

βy p(�A
(i),�(by(k))) =

n∑
j=1

β j :k p(�A
(i),�

B
( j)) and

π(�A
(i), β, k′) = 1

n

n∑
y=1

βy p(�A
(i),�(by(k

′))) =
n∑

j=1

β j :k′ p(�A
(i),�

B
( j)).

Setting β j :k = β j :k′∀ j ∈ N establishes the equality in (14). Necessity follows from
the same argument as in the proof of Proposition 2.

Proof of Proposition 4 Suppose a mixed strategy β which consists out of two parts.
Let b̂y denote a pure strategy of team B of some proper subset ŜB , as defined in
Proposition 4. Let b̃y ∈ SB \ ŜB , and let β̃y denote a mixed strategy dimension of β

associated with a pure strategy b̃y . Team A’s payoff obtained on a distinct playing slot
k, given its strategy ax and such a mixed strategy β, can be written as
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π(ax , β, k)

= 1

n

⎛
⎝∑

y∈Ŝ

β̂y p(�(ax (k)),�(b̂y(k))) +
∑

y∈S\Ŝ

β̃y p(�(ax (k)),�(b̃y(k)))

⎞
⎠ .

(15)

Setting β̂y = 1/n and β̃y = 0 according to Proposition 4, simplifies (15) to

π(ax , β̂, k) = 1

n2

∑
y∈Ŝ

(�(ax (k)),�(b̂y(k))).

Observe that

π(�(i), β̂, k) = 1

n2

∑
y∈Ŝ

p(�(i),�(b̂y(k))) = 1

n2

∑
y∈Ŝ

p(�(i),�(b̂y(k
′)))

= π(�(i), β̂, k′)

holds, since by definition of Proposition 4, the functions

{�(b̂1(k)), . . . ,�(b̂n(k))} and {�(b̂1(k
′)), . . . ,�(b̂n(k′))}

evaluate both in permutations of the same n-set {�B
(1), . . . , �

B
(n)} of competitors. ��

Proof of Proposition 5 We prove Proposition 5 by showing that a convex combination
of two minimal support equilibrium strategies satisfies Proposition 2, convex combi-
nations of 3 or more minimal support equilibrium strategies follow analogously, but
otherwise just complicate the notation. Let b̂y ∈ ŜB , and b̃y ∈ S̃B denote pure strate-
gies of team B of two (not necessarily disjoint) proper subsets Ŝ J and S̃ J that satisfy
Proposition 4. Let β̂y and β̃y denote the mixed strategy dimensions of β associated to
pure strategy b̂y and b̃y . According to Proposition 4 we set β̂y = 1/n = β̃y . Team A’s
payoff obtained on a distinct playing slot k, given its strategy ax and team B’s strategy
β is then:

π(�(i), β, k)

= 1

n

⎛
⎝λ

1

n

∑
y∈Ŝ

β̂y p(�(ax (k)),�(b̂y(k)))

+(1 − λ)
1

n

∑
y∈S̃

p(�(ax (k)),�(b̃y(k)))

⎞
⎠ λ∈[0, 1].

Proposition 2 demands

π(�(i), β, k) = π(�(i), β, k′)
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which is indeed satisfied by convexity and since by definition of ŜB and S̃B ,

{�(b̂1(k)), . . . ,�(b̂n(k))}, {�(b̃1(k)), . . . ,�(b̃n(k))}, and

{�(b̂1(k
′)), . . . , �(b̂n(k′))}, {�(b̃1(k

′)), . . . ,�(b̃n(k′))}

evaluate all in permutations of the n-set {�B
(1), . . . , �

B
(n)}. ��

Proof of Proposition 6 Let δ(ε) represent an infinitesimal possible shift of probability
mass from ak to ak+1 under the constraint of c3. Let amin represent amin{k∈{1,...,T }:ak>0}.
Since the randomstrength of theweakest player�A

(i) is the distributionof theminimum,
a possible shift of probability mass, represented by amin − δ(ε) to amin+1 + δ(ε), by
construction affects mostly the first order statistic (see, e.g., Shaked and Shanthikumar
2007). It is thus, enough to show that μ′

i (�
A
(i), f B) is decreasing monotonically in i .

Since μ′A(�A
(i), f B) is defined to be the sum

1

n

n∑
j=1

E[q ′(�(i),�( j)].

Since q ′(θ A, θ B) is strictly decreasing in θ A, by concavity, so doesE[q ′(�A
(i),�

B
( j))],

by the same argument as in Lemma 1. ��
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