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Abstract
The Lorenz order is commonly used to compare rules for claims problems. In this
paper, we incorporate the average of awards rule, the mean value of the set of awards
vectors for a claims problem, to the ranking of the standard rules by proving some
properties that are satisfied by this rule. We define a pair of coefficients, inspired by
the Gini index, aimed at measuring, for any given claims problem, the discrepancy
between the awards assigned by a rule and the proportional division.We generalize the
proportionality deviation indices by introducing coefficients thatmeasure the deviation
between the awards selected by any two division rules. We show how these deviation
indices are related to the Lorenz order.

Keywords Claims problems · Division rules · Average of awards rule ·
Lorenz-domination · Proportionality deviation indices · Generalized deviation
indices

1 Introduction

A firm going bankrupt, the division of property among heirs, a government taxing
incomes to implement a public project, a rationing problem, the distribution of insuf-
ficient supplies such as food or vaccines, or the global carbon budget are just some
examples of conflicting claims problems. In all of them, a scarce resource has to be
divided or distributed among a group of claimants. The mathematical model used to
formally study these problems may look, at first, quite simple: a non-negative real
number that represents the endowment, and a finite vector of claims whose coordi-
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nates add up to more than the total amount available. But, in fact, the model is very
rich. The book by Thomson (2019) presents a comprehensive review of the fascinating
literature on claims problems.

Aristotle is credited to propose sharing the endowment proportional to claims.
O’Neill (1982) describes historical instances of different division procedures found
in the Talmud and in several medieval texts. In general, a division rule is a way of
associating with each claims problem a division among the claimants of the amount
available. Therefore, for each claims problem a rulemust select an allocation satisfying
three basic requirements: no claimant should be asked to pay, no claimant should be
awarded more than his claim, and the sum of the awards should be equal to the
endowment. The set of all the allocations that meet these basic properties is the set of
awards vectors for the claims problem. The inventory of division rules is now large.
We consider in this paper nine of the central rules: the proportional, the constrained
equal awards, the constrained equal losses, the constrained egalitarian, the Talmud,
Piniles’, the minimal overlap, the adjusted proportional, and the random arrival rules.
In addition, we study the average of awards rule, introduced by Mirás Calvo et al.
(2020), that selects for each claims problem the expected value of the (continuous)
uniform distribution over its set of awards vectors.

The axiomatic approach has dominated the study of rules. Properties of rules are
formulated that onemaywant to impose because they have some appeal for a particular
situation, or because they cover a theoretical or even an ethical aspect. Then, rules are
examined, classified, and characterized according to the properties that they satisfy
(or violate). Another important issue when evaluating a rule is how differently it
treats larger claimants as compared with smaller claimants. The economist Max Otto
Lorenz proposed in 1905 a simplemethod, now called the Lorenz curve, for visualizing
distributions of income or wealth (Lorenz 1905). In the context of claims adjudication
the closely related Lorenz order is used as a general criterion to rank rules. Basically,
an awards vector Lorenz-dominates another if the cumulative sums of ordered awards
are bigger for the first vector. The Lorenz order is a partial order. Using different
methods, several authors, among others Schummer and Thomson (1997), Chun et al.
(2001), Bosmans and Lauwers (2011), and Thomson (2012), study whether or not the
division rules are Lorenz-comparable. As a corollary, we have a complete picture of
the ranking of the nine central rules.

Our first goal is to rank the average of awards rule. We rely on the characterizations
of Piniles’ rule and the minimal overlap rule given by Schummer and Thomson (1997)
and Bosmans and Lauwers (2011) respectively. We need to show that the average of
awards rule satisfies, besides the basic properties already proven by Mirás Calvo et al.
(2020), null claims consistency, order preservation under endowment variations, and
order preservation under claims variations. We conclude that the average of awards
rule Lorenz-dominates the minimal overlap rule and is Lorenz-dominated by Piniles’
rule. Naturally, since the average of awards rule is self-dual it is not Lorenz-comparable
with the other self-dual rules: the proportional, the adjusted proportional, the Talmud,
and the random arrival rules.

Whether or not the recommendations made by two rules for a claims problem are
Lorenz-comparable, the corresponding awards vectors can be similar or they can differ
greatly. So, our second objective is to define some coefficients aimed at measuring the
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discrepancy between the awards vectors selected by two rules. Our basic reference is
the Gini index, introduced in 1912 by the statistician and sociologist Corrado Gini as
a coefficient intended to measure the degree of income inequality within a population.
Ceriani and Verme (2012) provide a historical account of Gini’s original formulation.
Mathematically, the Gini coefficient is based on the Lorenz curve that represents in the
horizontal axis the proportion of the population, from lowest to highest income, and
in the vertical axis the cumulative percentage of income or wealth owned. A perfectly
equal distribution of wealth would have a Lorenz curve equal to the line y = x . The
Gini coefficient measures how far the actual Lorenz curve for a population’s income
is from the line of equality.

Given a claims problem, if one plots the cumulative percentage of awards with
respect to the proportion of claimants, from lowest to highest claims, the line of
equality represents the egalitarian division of the endowment. But, in general, the
egalitarian division does not select an awards vector for the problem, so it is not a
rule. Therefore, instead of the proportion of population, we represent in the horizontal
axis the cumulative percentage of claims, ordered from small to large. Then, since
the proportional rule shares the endowment in the same proportion as claims, the line
y = x is now the line of proportionality. So, we plot the cumulative percentage of
the endowment that is assigned by a rule to the cumulative percentage of claims. The
monotonically increasing continuous piecewise linear function thus obtained, whose
graph lies in the unit square, is called the cumulative claims-awards curve. Naturally,
the line of proportionality corresponds to the cumulative claims-awards curve of the
proportional rule. We show that the claims-awards curve fully captures the Lorenz
ranking of rules. Then, adapting the definition of the Gini index, we introduce a pair
of coefficients, the proportionality deviation index, and the signed proportionality
deviation index, that measure the deviation of the claims-awards curve from the line
of proportionality as the ratio of the area, and the net signed area respectively, that lies
between that line and the curve over the total area under the line of proportionality. In
this framework, the proportional rule is the rule of reference: given the initial inequality
of the vector of claims, the proportionality deviation indices measure the deviation of
the distribution of the endowment with respect to this initial inequality.

Certainly, the proportional rule stands out as the best-known rule, and questionnaire
studies on claims problems, such as Bosmans and Schokkaert (2009), show that it per-
forms very well in describing the choices of the respondents. Even Thomson (2019)
states that “proportionality is often taken as the definition of fairness for claims prob-
lems”, only to successfully challenge this view. Lately, several authors have analyzed
the preservation in gains and losses (the differences between claims and awards) of the
inequality in claims. Order preservation is a basic property, met by our ten rules, that
requires that a rule should respect the ordering of claims and that the losses should also
be ordered as claims are. Now, fix an endowment and take two Lorenz-comparable
awards vectors whose coordinates add up to the same amount. Hougaard and Østerdal
(2005) propose the requirement that the awards and losses vectors selected by a rule
for those two problems are also Lorenz comparable in the same direction. Kasajima
and Velez (2010, 2011) show that, when there are more than three claimants, the only
rule that satisfies order preservation and claims-inequality preservation in gains and
losses is the proportional rule. These results reinforce the role of the proportional rule
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as the rule of reference to define the deviation indices. The information provided by
the pair of proportionality deviation indices of a rule for a given claims problem not
only indicates if the rule and the proportional division are Lorenz-comparable but also
gives a clear and simple numerical value that quantifies how far from proportionality
is the awards vector selected by the rule. We also show that, for a fixed vector of
claims, the graph plotting the corresponding index for a given rule as a function of the
endowment, the index path, is a good visual instrument that conveysmuch information
about the rule itself.

We choose, for the reasons explained above, the proportional rule as the base rule to
define the pair of deviation coefficients. But, each division rule entails different prin-
ciples of fairness, equity, or justice. In order to make the best decision when solving a
particular claims problem, it could be interesting to measure the degree of discrepancy
of the awards vectors selected by two arbitrary rules. Fix a rule as the base for com-
parison. We define the curve representing the vector of cumulative percentages of the
awards selected by any given rule against the vector of cumulative percentages of the
awards recommended by our base rule. Now, the identity line represents the distribu-
tion of resources given by the rule of reference. Then, we introduce the deviation index
(or signed deviation index) of a rule with respect to the rule of reference, bymeasuring,
for each claims problem, the deviation (respectively, signed deviation) between the
cumulative proportions of the initial endowment assigned by both rules. Therefore,
the corresponding deviation indices quantify how far any rule moves away from the
reference rule. Of particular interest are the indices with respect to the constrained
equal awards and the constrained equal losses rules, since they are Lorenz-maximal
and Lorenz-minimal among the order preserving rules, and the indices with respect to
the average of awards rule, because it is the mean value of all the awards vectors.

Bosmans and Lauwers (2011) and Thomson (2012) explicitly emphasize that the
fact that a rule Lorenz-dominates another rule should not be interpreted as a sign that
the first rule is superior or inferior to the other. Obviously, the same applies to the
claims-awards curves and the deviation indices. Given two rules, the relative position
of its curves or the value of their indices just reveal how they are related, how they
treat large claims in relation to small claims or how they depart from the proportional
division or from any other rule of reference. Of course, it is up to the decision maker
to use this information depending on the specific real-world context of the claims
problem.

In Sect. 2 we introduce the basic definitions, notations, rules and properties and
recall the Lorenz-ranking of the basic rules. We compare in Sect. 3 the average of
awards and the other rules. We introduce, in Sect. 4, the cumulative claims-awards
curve, the proportionality deviation indices, and the index path, three alternative tools
to compare rules with the proportional division. Section 5 generalizes the indices to
compare any two given rules. Finally, we leave to the Appendix the proofs of the
results. The computations and figures in the examples were carried out using the
ClaimsProblems R package (Núñez Lugilde et al. 2021).
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Fig. 1 Claims arranged in ascending order on the interval [0, d(N )]

2 Preliminaries

LetN be the set of all finite non-empty subsets of the natural numbersN.Given N ∈ N ,
x ∈ R

N , and S ∈ 2N let |N | be the number of elements of N and x(S) = ∑

i∈S
xi . Given

x, y ∈ R
N , the notation x ≤ y means that xi ≤ yi for all i ∈ N . If N ′ ⊂ N ∈ N

and x ∈ R
N , let xN ′ = (

xi
)
i∈N ′ ∈ R

N ′
be the projection of x onto R

N ′
. In particular

denote x−i = xN\{i} ∈ R
N\{i} the vector obtained by neglecting the i th-coordinate of

x , i.e., x−i = (x1, . . . , xi−1, xi+1, . . . , xn). For simplicity, we write x = (x−i , xi ).
A claims problem with set of claimants N ∈ N is a pair (E, d) where E ≥ 0 is the

endowment to be divided and d ∈ R
N is the vector of claims satisfying di ≥ 0 for all

i ∈ N and d(N ) ≥ E . We denote the class of claims problems with set of players N
by CN .

For each (E, d) ∈ CN and each i ∈ N let D−i = d(N ) − di = d(N\{i}).
The minimal right of claimant i ∈ N in (E, d) ∈ CN is the quantity mi (E, d) =
max

{
0, E − D−i

}
, what is left of the endowment after all other claimants have been

fully compensated if possible, and 0 otherwise. The truncated claim of claimant i ∈
N in (E, d) ∈ CN is ti (E, d) = min{E, di }, the minimum of the claim and the
endowment. Letm(E, d) = (

mi (E, d)
)
i∈N and t(E, d) = (

ti (E, d)
)
i∈N . To simplify,

sometimes we write mi = mi (E, d) and ti = ti (E, d).
Let Rn≤ be the set of nonnegative n-dimensional vectors x = (x1, . . . , xn) with

coordinates ordered from small to large, i.e., 0 ≤ x1 ≤ . . . ≤ xn . For simplicity, given
(E, d) ∈ CN with |N | = n, we will assume throughout the paper that N = {1, . . . , n}
and that d ∈ R

n≤. As a consequence of such an arrangement of the claims we have
that di ≤ D−i , D−i ≥ D−(i+1) and mi (E, d) ≤ mi+1(E, d) for all i ∈ N\{n}. As it
is illustrated in Fig. 1, either dn ≤ D−n or D−n ≤ dn , but in both cases 1

2d(N ) is the
middle point of the line segment with endpoints dn and D−n . In fact, 1

2d(N ) is also
the middle point of the intervals [di , D−i ] for all i ∈ N\{n}.

A vector x ∈ R
N is an awards vector of (E, d) ∈ CN if 0 ≤ x ≤ d and x(N ) = E .

Let X(E, d) be the set of awards vectors for (E, d) ∈ CN . O’Neill (1982) associates
to each claims problem (E, d) ∈ CN a coalitional game with set of players N and
characteristic function v(S) = max

{
0, E − d(N\S)

}
, S ∈ 2N . Thomson (2019)

shows that the set of awards vectors for a claims problem coincides with the core of
the associated coalitional game, that is, X(E, d) is the set of allocations satisfying
the balance requirement that are bounded from below by the minimal rights and are
bounded from above by the truncated claims:
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X(E, d) = {
x ∈ R

N : x(N ) = E, m(E, d) ≤ x ≤ t(E, d)
}
.

Then, X(E, d) is a nonempty convex polytope that has, at most, dimension n − 1.
A rule is a functionR : CN → R

N assigning to each claims problem (E, d) ∈ CN

an awards vectorR(E, d) ∈ X(E, d). The following rules have been discussed in the
literature and will be used throughout the paper.

• Proportional rule (PRO): For each (E, d) ∈ CN and each i ∈ N , PROi (E, d) =
di

d(N )
E .

• Adjusted proportional rule (APRO): For each (E, d) ∈ CN and each i ∈ N ,

APROi (E, d) = mi + PROi

(
E −

∑

j∈N
m j ,

(
min

{
d j − m j , E −

∑

j∈N
m j

})
j∈N

)
.

• Constrained equal awards rule (CEA): For each (E, d) ∈ CN and each i ∈
N , CEAi (E, d) = min{α, di }, where α ≥ 0 is chosen such that E =∑

j∈N
CEA j (E, d).

• Constrained equal losses rule (CEL): For each (E, d) ∈ CN and each i ∈ N ,
CELi (E, d) = max{0, di − β}, where β ≥ 0 is chosen such that E =∑

j∈N
CEL j (E, d).

• Talmud rule (T): For each (E, d) ∈ CN and each i ∈ N ,

Ti (E, d) =
{
CEAi (E, d

2 ) if E ≤ 1
2d(N )

di − CEAi (d(N ) − E, d
2 ) if E ≥ 1

2d(N )
.

• Piniles’ rule (PIN): For each (E, d) ∈ CN and each i ∈ N ,

PINi (E, d) =
{
CEAi (E, d

2 ) if E ≤ 1
2d(N )

di
2 + CEAi

(
E − 1

2d(N ), d
2

)
if E ≥ 1

2d(N )
.

• Constrained egalitarian rule (CE): For each (E, d) ∈ CN and each i ∈ N ,

CEi (E, d) =
{
CEAi (E, d

2 ) if E ≤ 1
2d(N )

max
{ di
2 ,min{di , λ}} if E ≥ 1

2d(N )
,

where λ ≥ 0 is chosen such that
∑

j∈N
max

{ d j
2 ,min{d j , λ}} = E .

• Random arrival rule (RA): For each (E, d) ∈ CN and each i ∈ N ,

RAi (E, d) = 1

|N |!
∑

π∈�N

min
{
di ,max{0, E − d(Pπ (i))}},
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where �N is the set of strict orders on N and Pπ (i) = { j ∈ N : π( j) < π(i)} for
π ∈ �N .

• Minimal overlap rule (MO): Let d0 = 0. For each (E, d) ∈ CN and each i ∈ N ,

i) If E ≤ dn then MOi (E, d) = t1
n + t2−t1

n−1 + · · · + ti−ti−1
n−i+1 .

ii) If E > dn , let s∗ ∈ (dk∗, dk∗+1], with k∗ ∈ {0, 1, . . . , n − 2}, be the unique
solution to the equation

∑

j∈N
max{d j − s, 0} = E − s. Then,

MOi (E, d) =
{

d1
n + d2−d1

n−1 + · · · + di−di−1
n−i+1 if i ∈ {1, . . . , k∗}

MOi (s∗, d) + di − s∗ if i ∈ {k∗ + 1, . . . , n} .

Recently, Mirás Calvo et al. (2020) introduce the average of awards rule. For each
(E, d) ∈ CN the average of awards rule, AA(E, d), selects the centroid of the set
of awards vectors X(E, d). Let μ be the (n − 1)-dimensional Lebesgue measure and
denote V (E, d) = μ(X(E, d)) the volume (measure) of the set of awards vectors. If
V (E, d) > 0 then for each i ∈ N ,

AAi (E, d) = 1

V (E, d)

∫

X(E,d)

xidμ.

The core-center solution was introduced by González-Díaz and Sánchez-Rodríguez
(2007) for the class of balanced games as the centroid of the core. Since the set
of awards vectors for a claims problem coincides with the core of the associated
coalitional game, the average of awards rule corresponds to core-center solution.

We focus now on properties of division rules. We say that a ruleR satisfies:

• anonymity, if for each (E, d) ∈ CN , each π ∈ �N , and each i ∈ N , we have
Rπ(i)

(
E, (dπ(i))

) = Ri (E, d), where �N is the class of bijections from N into
itself.

• continuity, if for each sequence (E�, d�) ∈ CN and each (E, d) ∈ CN , we have
that if (E�, d�) → (E, d) then R(E�, d�) → R(E, d).

• 1
|N | -truncated-claims lower bounds on awards, if for each (E, d) ∈ CN we have

R(E, d) ≥ 1
|N | t(E, d).

• minimal rights first, if for each (E, d) ∈ CN then R(E, d) = m(E, d) + R(
E −∑

i∈N
mi (E, d), d − m(E, d)

)
.

• claims truncation invariance, if for each (E, d) ∈ CN we have R(E, d) =
R(E, t(E, d)).

• order preservation in awards, if for each (E, d) ∈ CN and each {i, j} ⊂ N , if
di ≤ d j then Ri (E, d) ≤ R j (E, d).

• order preservation in losses, if for each (E, d) ∈ CN and each {i, j} ⊂ N , if
di ≤ d j then di − Ri (E, d) ≤ d j − R j (E, d).

• midpoint property, if for each (E, d) ∈ CN such that E = 1
2d(N ), thenR(E, d) =

d
2 .

• self-duality, if for each (E, d) ∈ CN we have R(E, d) = d − R(
d(N ) − E, d

)
.
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Table 1 Main properties satisfied by the ten rules

PRO APRO MO CEA CEL CE PIN T RA AA

Anonymity � � � � � � � � � �
Continuity � � � � � � � � � �
1

|N | -truncated-claims lower bounds − � � � − � � � � �
Minimal rights first − � � − � − − � � �
Claims truncation invariance − � � � − − − � � �
Order preservation � � � � � � � � � �
Midpoint � � − − − � � � � �
Self-duality � � − − − − − � � �
Endowment monotonicity � � � � � � � � � �
Claim monotonicity � � � � � � � � � �

• endowment monotonicity, if for each (E, d) ∈ CN and each E ′ ≥ 0, if d(N ) ≥
E ′ ≥ E then R(E ′, d) ≥ R(E, d).

• claim monotonicity, if for each (E, d) ∈ CN , each i ∈ N , and each d ′
i ≥ di , then

Ri (E, (d−i , d ′
i )) ≥ Ri (E, d).

A rule satisfies order preservation if it satisfies both order preservation in awards
and in losses. Observe that self-duality implies the midpoint property. The weaker
version of continuity obtained by considering small changes only in the endowment
is called endowment continuity.

With each ruleR we can associate a unique dual ruleR∗, defined byR∗(E, d) =
d−R(

d(N )− E, d
)
. A ruleR is self-dual ifR = R∗. Of the rules listed above, PRO,

APRO, T, RA, and AA are self-dual. The CEA and CEL rules are dual. Two properties
are dual if, whenever a rule satisfies one of them, its dual satisfies the other. A property
is self-dual if it coincides with its dual. The following are pairs of dual properties: order
preservations in awards and order preservation in losses; and minimal rights first and
claims truncation invariance. The problems (E, d) ∈ CN and (d(N ) − E, d) ∈ CN

are dual claims problems. Table 1, adapted from Thomson (2019) and Mirás Calvo
et al. (2020), summarizes which of the above properties are satisfied by the basic rules.
A check mark, �, in a cell means that the property in the row is satisfied by the rule
indexing the column. A minus sign, −, means the opposite.

One of the most commonly used criteria to rank rules is the Lorenz order. Let x, y ∈
R
n≤. We say that x Lorenz-dominates y, and write x 	 y, if for each k = 1, . . . , n−1,

k∑

j=1

x j ≥
k∑

j=1

y j and
n∑

j=1

x j =
n∑

j=1

y j .

The Lorenz order is a partial order in R
n≤, so it is a binary relation that is reflexive,

antisymmetric, and transitive. If x Lorenz-dominates y and x 
= y, then at least one
of the n − 1 inequalities is strict.
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Fig. 2 Ranking of the ten rules

We have assumed that given a claims problem (E, d) ∈ CN the vector of claims
d ∈ R

N has its coordinates ordered from small to large, that is, d ∈ R
n≤. Moreover,

the ten rules satisfy order preservation in awards. So if R is any of these rules then
R(E, d) ∈ R

n≤. Therefore, we can use the Lorenz criterion to check whether a rule
is more favorable to smaller claimants relative to larger claimants than other. Let R
and R′ be two rules that satisfy order preservation in awards. We say that R Lorenz-
dominates R′, and we write R 	 R′, if R(E, d) 	 R′(E, d) for all (E, d) ∈ CN .

Several authors contributed to the ranking of rules. To summarize these results, we
borrow from Bosmans and Lauwers (2011) and Thomson (2019) a simple diagram,
Fig. 2, that illustrates the ranking of rules using the Lorenz order. An arrow (or a
sequence of arrows) from a rule R to a rule R′ indicates that R Lorenz-dominates
R′, and the absence of an arrow (or of a sequence of arrows) indicates that there is no
relationship. We have added the average of awards rule to the picture, so, in the next
section we justify its place in the diagram of Fig. 2.

3 Ranking the average of awards rule

We have defined the average of awards rule in geometrical terms, as the centroid of
the set of awards vectors for a claims problem. Naturally, an alternative and simple
way of describing this rule is to assume that all the awards vectors are equally likely
and therefore choosing their “average”. The average of awards rule assigns to each
(E, d) ∈ CN the value AA(E, d) given by the expected value of the (continuous)
uniform distribution over the set of awards vectors X(E, d). Besides its intuitive
definition, the average of awards rule satisfies a good number of properties, see Table 1.
Therefore, if only as a “central” point of reference inside the set of awards vectors, it
is worthy to compare it to the basic rules.

Let us see that the ranking of the average of awards rule is, in fact, the one shown
in Fig. 2. The absence of arrows connecting the average of awards rule with the
Talmud, the random arrival, the adjusted proportional, and the proportional rules is a
consequence of the fact that any two self-dual rules are incomparable. Then, we just
have to prove that the sequence PIN → AA → MO holds.

Let us introduce three additional properties of rules.Null claims consistency implies
that to compute the recommendation made by a rule we can remove the agents whose
claims are 0 and apply the rule to the remaining claims problem. Order preservation
under endowment variations implies that, given any two agents, if the endowment
increases, the smaller claimant should receive a share of the increment that is at most
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as large as the share received by the larger claimant. Order preservation under claims
variations says that if an agent claim increases, given any two claimants whose claim
remains the same, the change in the award to the smaller one should be at most as large
as the change in the award to the larger one. Formally, we say that a rule R satisfies:

• Null claims consistency, if for each N ⊂ N , each (E, d) ∈ CN , and each N ′ ⊂ N ,
if d(N\N ′) = 0 then RN ′(E, d) = R(E, dN ′).

• Order preservation under endowment variations, if for each (E, d) ∈ CN and each
pair {i, j} ⊆ N and each E ′ > E , if d(N ) ≥ E ′ and di ≤ d j , then Ri (E ′, d) −
Ri (E, d) ≤ R j (E ′, d) − R j (E, d).

• Order preservation under claims variations, if for each (E, d) ∈ CN with |N | ≥ 3,
each i ∈ N , each d ′

i > di , and each pair { j, k} ⊆ N\{i}, if d j ≤ dk , then
R j (E, d) − R j (E, (d−i , d ′

i )) ≤ Rk(E, d) − Rk(E, (d−i , d ′
i )).

The following characterizations of Piniles’ and theminimal overlap rules as Lorenz-
minimal and Lorenz-maximal within some classes of rules were established by
Schummer and Thomson (1997) and Bosmans and Lauwers (2011) respectively.

1. LetS1 be the set of rules that satisfy order preservation in awards, endowmentmono-
tonicity, themidpoint property, and order preservation under endowment variations.
Piniles’ rule is the only rule in S1 that Lorenz-dominates each rule in S1.

2. Let S2 be the set of rules that satisfy 1
|N | -truncated-claims lower bounds on awards,

order preservation, null-claims consistency, and order preservation under claims
variations. The minimal overlap rule is the only rule in S2 that is Lorenz-dominated
by each rule in S2.

Now, according to Table 1, the average of awards rule satisfies the midpoint property,
order preservation, endowment monotonicity, and 1

|N | -truncated-claims lower bounds

on awards. Let (E, d) ∈ CN and N ′ ⊂ N such that d(N\N ′) = 0. It is easy to
see that X(E, d) = 0N\N ′ × X(E, dN ′). Then AA j (E, d) = 0 for all j ∈ N\N ′
and AAN ′(E, d) = AA(E, dN ′), so the average of awards rule satisfies null claims
consistency. We prove in Appendix A that the average of awards rule also satisfies
order preservation under endowment variations and order preservation under claims
variations. Therefore, as a direct consequence of the Lorenz-based characterizations
of the minimal overlap and Piniles’ rules we have that, in fact, the average of awards
rule Lorenz-dominates the minimal overlap rule and is Lorenz-dominated by Piniles’
rule.

4 The proportionality deviation index

In 1912, the statistician and sociologist Corrado Gini introduced a coefficient intended
to measure the degree of income inequality within a population. To compute the Gini
coefficient, first one has to find the Lorenz curve, developed by the economist Max O.
Lorenz in 1905, that represents in the horizontal axis the proportion of the population,
from lowest to highest income, and in the vertical axis the cumulative percentage of
income or wealth owned. A perfectly equal distribution of wealth would have a Lorenz
curve equal to the line y = x . The Gini coefficient measures how far the actual Lorenz
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curve for a population’s income is from the line of equality. In our setting, given a
claims problem if one plots the cumulative percentage of awards with respect to the
proportion of claimants, from lowest to highest claims, the line of equality represents
the egalitarian division of the endowment. But, the egalitarian division is not a rule
and so this line is not particularly suitable. Therefore, instead of the proportion of
population, we represent in the horizontal axis the cumulative percentage of claims,
ordered from small to large. As a consequence, since the proportional rule shares the
endowment in the same proportion as claims, now the line y = x represents the line
of proportionality. In this section, we define a pair of indices aimed at measuring the
degree of discrepancy between the division proposed by a rule and the proportional
distribution.

Given d = (d1, . . . , dn) ∈ R
n≤ let d0 = d̄0 = 0 and d̄i = 1

d(N )

i∑

k=0
dk for i ∈ N .

Then d̄ = (d̄1, . . . , d̄n) ∈ R
n≤ is the vector of the percentages of the cumulative claims

with respect to the total sum of claims d(N ). Naturally, 0 ≤ d̄ ≤ 1 and d̄n = 1. For
each i ∈ N denote �d̄i = d̄i − d̄i−1 = 1

d(N )
di .

Let R be a rule that satisfies order preservation in awards. Then, for each claims
problem (E, d) ∈ CN we know that R(E, d) ∈ R

n≤. In what follows assume that

E > 0. As above, let R0(E, d) = R̄0(E, d) = 0 and R̄i (E, d) = 1
E

i∑

k=0
Rk(E, d)

for i ∈ N . Then R̄(E, d) = (R̄1(E, d), . . . , R̄n(E, d)) ∈ R
n≤ is the vector of the

percentages of the cumulative awards assigned by the rule R with respect to the
endowment. Obviously, 0 ≤ R̄(E, d) ≤ 1 with R̄n(E, d) = 1. For each i ∈ N denote
�R̄i (E, d) = R̄i (E, d) − R̄i−1(E, d) = 1

E Ri (E, d).

Definition 4.1 Given a claims problem (E, d) ∈ CN with d ∈ R
n≤ and a rule R

satisfying order preservation in awards, the polygonal path connecting the n + 1
points

(
d̄i , R̄i (E, d)

)
, i = 0, . . . , n, is called the cumulative claims-awards curve.

The continuous piecewise linear function LR
E,d : [0, 1] → [0, 1]whose graph is the

cumulative claims-awards curve is called the cumulative claims-awards function ofR
for the problem (E, d):

LR
E,d(t) = R̄i−1(E, d) + �R̄i (E, d)

�d̄i
(t − d̄i−1) if t ∈ [d̄i−1, d̄i ].

Clearly, LR
E,d(0) = 0 and LR

E,d(1) = 1 but, contrary to a conventional Lorenz curve,

the graph of LR
E,d does not necessarily lay below the identity line (see Figs. 3, 4,

and 5). Nevertheless, from elementary calculus, we have that LR
E,d is a monotonically

increasing function so its graph is contained in the unit square, i.e., 0 ≤ LR
E,d(t) ≤ 1 for

all t ∈ [0, 1]. Note that if E = d(N ) then LR
d(N ),d(t) = t for all t ∈ [0, 1]. Basically,

the function LR
E,d represents the proportion of the initial endowment assigned by the

rule R to each cumulative proportion of claims. Since the proportional rule divides
the endowment in the same proportions as claims, that is PRO(E, d) = d̄, we have
that its claims-awards curve is always the identity, LPRO

E,d (t) = t for all t ∈ [0, 1]. In
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Fig. 3 Cumulative
claims-awards curve of the
random arrival rule for the
problem

(
4, (1, 4, 5)

) ∈ CN

this context, we refer to the diagonal of the unit square connecting the points (0, 0)
and (1, 1) as the line of proportionality.

Example 4.2 Let N = {1, 2, 3}, d = (1, 4, 5) ∈ R
3≤, and E = 4. Then d(N ) = 10,

d̄ = ( 1
10 ,

1
2 , 1

)
, and RA(E, d) = ( 1

3 ,
11
6 , 11

6

)
. Therefore, RA(E, d) = ( 1

12 ,
13
24 , 1

)
.

Fig. 3 shows the line of proportionality and the claims-awards curve of the random
arrival rule for (E, d).

The claims-awards curve allows us to compare the division recommended by the
ruleR with the division that preserves the proportions of the claims, the proportional
rule. The claims-awards curve also captures graphically whether or not two rules are
Lorenz-comparable.

Proposition 4.3 Let R and R′ be two rules satisfying order preservation in awards.
For each (E, d) ∈ CN with d ∈ R

n≤,R(E, d) Lorenz-dominatesR′(E, d) if and only

if LR
E,d(t) ≥ LR′

E,d(t) for all t ∈ [0, 1].

Obviously, R Lorenz-dominates R′ if LR
E,d lies above LR′

E,d for all (E, d) ∈ CN .
Figure 3 shows the claims-awards curve of the random arrival rule for the claims
problem of Example 4.2. The polygonal curve intersects transversally the line of
proportionality indicating that the random arrival rule is not Lorenz-comparable to the
proportional rule.

Following the idea underlying the definition of the Gini index, we introduce a pair
of coefficients that measure the deviation of the claims-awards curve from the line of
proportionality. The signed proportionality deviation index is the ratio of the net signed
area that lies between the line of proportionality and the claims-awards curve over the
total area under the line of proportionality. The proportionality deviation index is the
ratio of the area between the line of proportionality and the claims-awards curve over
the area under the line of proportionality.
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Definition 4.4 Let (E, d) ∈ CN with d ∈ R
N≤ and let R be a rule satisfying order

preservation in awards. The signed proportionality deviation index ofR for the prob-
lem (E, d) is:

I(R, E, d) =

∫ 1

0

(
t − LR

E,d(t)
)
dt

∫ 1

0
tdt

=
1
2 −

∫ 1

0
LR
E,d(t)dt

1
2

= 1 − 2
∫ 1

0
LR
E,d(t)dt .

The proportionality deviation index ofR for the problem (E, d) is:

I+(R, E, d) =

∫ 1

0
|t − LR

E,d(t)|dt
∫ 1

0
tdt

= 2
∫ 1

0
|t − LR

E,d(t)|dt .

Note that, since the Lorenz curve lies below the identity line, the usual Gini coefficient
is a value between 0 and 1. In our context, as it is illustrated in Example 4.7 and
Fig. 4, the claims-awards curve is not bounded from above by the identity so, as
a consequence, the signed proportionality deviation index can take negative values.
Obviously −1 ≤ I(R, E, d) ≤ 1 and 0 ≤ I+(R, E, d) ≤ 1. A proportionality
deviation coefficient of zero expresses a distribution equal to the one implied by the
vector of claims, that is, the proportional distribution.

In Appendix B we obtain formulae to compute the two proportional deviation
indices, I(R, E, d) andI+(R, E, d), in terms of the values of the vector of claims d ∈
R
n≤ and the recommendation made by the rule R(E, d). Naturally, I(PRO, E, d) =

I+(PRO, E, d) = 0 for all (E, d) ∈ CN . Also, for each d ∈ R
n≤ and each rule R

we have I(R, d(N ), d) = I+(R, d(N ), d) = 0. IfR satisfies the midpoint property
then I(R, 1

2d(N ), d) = I+(R, 1
2d(N ), d) = 0 for all d ∈ R

n≤.

Example 4.5 Let N = {1, 2, 3}, d = (1, 4, 5) ∈ R
3≤, and E = 4 as in Example 4.2.

Recall that RA(E, d) = ( 1
3 ,

11
6 , 11

6

)
and that, see Fig. 3, the claims-awards curve

LRA
E,d crosses the line of proportionality. Then RA(E, d) and PRO(E, d) are not

Lorenz-comparable so the absolute value of the signed proportionality index and the
proportionality index of the random arrival rule for this problem are not equal, in
fact, I(RA, E, d) = − 7

240 = −0.0292 and I+(RA, E, d) = 61
1680 = 0.0363. Note,

that even though RA(E, d) is not Lorenz-comparable to the proportional division, we
know that the corresponding cumulative awards vectors differ by 3.63%.

As a direct consequence of Proposition 4.3 andDefinition 4.4,we have the following
properties of the proportionality deviation coefficients.

Proposition 4.6 Let R and R′ be two rules satisfying order preservation in awards.
Let (E, d) ∈ CN with d ∈ R

n≤. Then:

1. I+(R, E, d) = 0 if and only ifR(E, d) = PRO(E, d).
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2. |I(R, E, d)| < I+(R, E, d) if and only ifR(E, d) andPRO(E, d) are not Lorenz-
comparable.

3. I(R, E, d) = I+(R, E, d) if and only if R(E, d)is Lorenz-dominated by
PRO(E, d).

4. I(R, E, d) = −I+(R, E, d) if and only ifR(E, d)Lorenz-dominatesPRO(E, d).
5. If R(E, d) Lorenz-dominates R′(E, d) then I(R, E, d) ≤ I(R′, E, d).

Proposition 4.6 shows that when the recommendation made by a rule for a claims
problem and the proportional division are Lorenz-comparable, the corresponding pro-
portionality deviation indices reflect the ordering. If a rule R Lorenz-dominates the
proportional rule then its signed proportionality deviation index must be negative, but
if it is Lorenz-dominated by the proportional rule it must be positive. But, as we have
seen in Example 4.5, even when the awards vectors selected byR and the proportional
rule are incomparable, the indices reveal how far from proportionality is the division
proposed by the rule.

Example 4.7 Let N = {1, 2, 3, 4} and d = (3, 4, 5, 6) ∈ R
4≤ so d(N ) = 18. Then

(E, d) PRO(E, d) CEA(E, d) MO(E, d)
(
9, (3, 4, 5, 6)

) ( 3
2 , 2,

5
2 , 3

) ( 9
4 ,

9
4 ,

9
4 ,

9
4

) ( 3
4 ,

7
4 ,

11
4 , 15

4

)

I(R, E, d) 0 − 5
36

5
36

The claims-awards curves of the constrained equal awards and the minimal over-
lap rules for the problem (9, d) ∈ CN are depicted in Fig. 4. Neither of these
two rules satisfies the midpoint property. We know that CEA 	 PRO so LCEA

E,d

lies above the line of proportionality and I+(CEA, E, d) = 5
36 . Even though, in

general, MO and PRO are not comparable, since LMO
E,d lies below the line of pro-

portionality we have that MO(E, d) is Lorenz-dominated by PRO(E, d). Therefore,
I+(MO, E, d) = 5

36 . Observe that, in Fig. 4, the shadowed area for the CEA rule

corresponds to
∫ 1

0

(
LCEA
E,d (t) − t

)
dt , so the signed proportionality deviation index is

negative. On the contrary, the signed proportionality deviation index for theMO rule is

positive because the shadowed area for theMO rule corresponds to
∫ 1

0

(
t−LMO

E,d(t)
)
dt .

Let (E, d) ∈ CN andR be a rule satisfying order preservation in awards. Since the
CEA rule Lorenz-dominates each rule that satisfies order preservation in awards, so,
by Proposition 4.6, I(CEA, E, d) ≤ I(R, E, d). Moreover, the CEL rule is Lorenz-
dominated by each rule that satisfies order preservation in losses, so ifR is such a rule
then I(R, E, d) ≤ I(CEL, E, d). As a corollary, if R satisfies order preservation
then I(CEA, E, d) ≤ I(R, E, d) ≤ I(CEL, E, d).

Let R be a rule and R∗ its dual. The cumulative claims-awards function LR∗
E,d

represents the cumulative proportion of gainswith respect to the cumulative proportion
of claims of the dual rule R∗ for the problem (E, d) ∈ CN . But, since R∗(E, d) =
d − R(d(N ) − E, d) then LR∗

E,d can also be interpreted as the cumulative proportion
of losses of the ruleR with respect to the cumulative proportion of claims. Naturally,
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Fig. 4 Curves of the CEA and MO rules for the problem (9, d) ∈ CN with d = (3, 4, 5, 6)

the cumulative “gains” and “losses” curves of a rule are related and so are the signed
proportionality deviation indices of a rule and that of its dual.

Proposition 4.8 Let R be a rule satisfying order preservation in awards and R∗ its
dual rule. Then, for all (E, d) ∈ CN , E > 0, we have that:

EI(R, E, d) + (d(N ) − E)I(R∗, d(N ) − E, d) = 0.

Proof Let (E, d) ∈ CN with E > 0. Since R(E, d) + R∗(d(N ) − E, d) = d, some
simple algebraic manipulations lead to the following equalities:

1. ER̄ j (E, d) + (d(N ) − E)R̄∗
j (d(N ) − E, d) = d(N )d̄ j for all j ∈ N .

2. E�R̄ j (E, d) + (d(N ) − E)�R̄∗
j (d(N ) − E, d) = d j for all j ∈ N .

3. ELR
E,d(t) + (d(N ) − E)LR∗

d(N )−E,d(t) = d(N )LPRO
E,d (t) for all t ∈ [0, 1].

4. E
∫ d̄ j

d̄ j−1

LR
E,d(t)dt + (d(N ) − E)

∫ d̄ j

d̄ j−1

LR∗
d(N )−E,d(t)dt = d j

2
(d̄ j−1 + d̄ j ) for all

j ∈ N .

5. E
∫ 1

0
LR
E,d(t)dt + (d(N ) − E)

∫ 1

0
LR∗
d(N )−E,d(t)dt = 1

2d(N ).

Now, from the last equality and Definition 4.4, it is straightforward to obtain that
EI(R, E, d) + (d(N ) − E)I(R∗, d(N ) − E, d) = 0. �

We compute in Example 4.9 the proportionality deviation indices of the constrained
equal awards and the constrained equal losses rules for some particular claims prob-
lems. The example also illustrates that the signed proportionality deviation index can
be a number as close to −1 or 1 as wanted.

Example 4.9 Fix n ∈ N, n ≥ 2, and let N = {1, . . . , n}. For the claims problem( 1
2 , d

′) ∈ CN with d ′ = (1, . . . , 1, n2 − 2n + 1), we have that CEA( 12 , d
′) =
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Fig. 5 The curves LCEA0.5,d ′ , LCELE,d , and LCEAd(N )−E,d for n = 6

( 1
2n , . . . , 1

2n , 1
2n

)
so I+(CEA, 1

2 , d
′) = −I(CEA, 1

2 , d
′) = 1 − 2

n . Certainly, the
proportionality deviation indices confirm that, for all n ≥ 2, CEA( 12 , d

′) Lorenz-
dominates PRO( 12 , d

′). But these two coefficients convey more information. When
n = 2 we know that CEL and PRO coincide (the indices are zero), but as n increases,
the CEL rule selects awards vectors that differ more and more from proportionality
(the deviation index tends to 1), and we have a precise measure of that discrepancy.

If n > 2, consider the claims problem (E, d) ∈ CN with E = 1
n−2 and

d = (1, . . . , 1, 1 + E). Then CEL(E, d) = (0, . . . , 0, E). The signed propor-
tionality deviation index of the constrained equal losses rule for this problem is
I(CEL, E, d) = 1− 1

n−1 . By Proposition 4.8 we know that I(CEA, n, d) = − 1
n(n−1) .

Since I+(CEL, E, d) = I(CEL, E, d) and I+(CEA, 1
2 , d

′) = −I(CEA, 1
2 , d

′), we
have instances where the proportionality deviation index is very close to 1. The cumu-
lative claims-awards curves for the three problems are depicted in Fig. 5 when n = 6.

Fix d ∈ R
N≤ . Given a rule R that satisfies order preservation in awards, let us

consider the function IRd : (0, d(N )] → [−1, 1] that assigns to each E ∈ (0, d(N )]
the signed proportionality deviation index of rule R for the problem (E, d) ∈ CN ,
that is, IRd (E) = I(R, E, d). Let us call IRd the signed index path of R for the
vector of claims d. Observe that IRd (d(N )) = 0. Of course, the signed index path
of the proportional rule is the zero constant function, i.e., IPRO

d (E) = 0 for all E ∈
(0, d(N )]. Naturally, ifR is endowment continuous then the signed index path IRd is
also continuous. The signed index path is a simple way to visualize the discrepancy of
the divisions given by a rule for a fixed vector of claimswith respect to the proportional
distribution as the endowment increases from zero to the sum o the claims and to
compare it with other rules. Similarly, we can define the corresponding index path
for the proportionality deviation index, (I+)Rd : (0, d(N )] → [0, 1] that assigns to
each E ∈ (0, d(N )] the proportionality deviation index of rule R for the problem
(E, d) ∈ CN , that is, (I+)Rd (E) = I+(R, E, d).

Example 4.10 Let N = {1, 2, 3, 4} and d = (3, 4, 5, 6) ∈ R
4≤. Now, I(MO, 4, d) =

− 35
432 and I(MO, 5, d) = 1

135 . Since IRd is continuous on [4, 5], applying Bolzano’s
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Fig. 6 Detail of the index paths of the MO rule on the interval [4, 6] for d = (3, 4, 5, 6)

Theorem we conclude that there is E∗ ∈ (4, 5) such that IRd (E∗) = 0. But
MO(E∗, d) 
= PRO(E∗, d) because MO1(E∗, d) = 3

4 , MO2(E∗, d) = 13
12 ,

PRO1(E∗, d) = 1
6 E

∗, and PRO2(E∗, d) = 2
9 E

∗. Therefore, we have an instance
of a non proportional division with signed deviation index equal to zero. Nevertheless,
we know that the proportional deviation index of the minimal overlap rule for this
problem must be strictly positive, I+(MO, E∗, d) > 0. Figure 6 shows the signed
proportionality deviation index path, its absolute value, and the signed proportionality
deviation index path of the minimal overlap rule restricted to the interval [4, 6]. In
the subinterval where the signed proportionality deviation index path and its absolute
value differ, we know that the minimal overlap and the proportional rules are not
Lorenz-comparable, and that they deviate less that 5%.

The cumulative claims-awards curve, the proportionality deviation indices, and the
index path can be useful tools to compare rules beyond the information provided by
the Lorenz order. For any given claims problem, they are easy to compute from the
values of the vector of claims and the rule and convey much information about the rule
and its properties in a clear and simple visual way. Nevertheless, as the proportionality
deviation indices (and by extension the index path) comprise all the data from the
cumulative claims-awards curve in a pair of numbers, some information must be
lost in the process. Nevertheless, the combination of both coefficients solves some
shortcomings that each of them has when taken alone. Certainly, as Example 4.7
illustrates, the proportionality index does not capture the Lorenz-ranking of awards
vectors that is fully reflected by the signed index. On the other hand, Example 4.10
shows that two different divisions can have the same signed proportionality deviation
coefficient, but the corresponding proportionality deviation indices must be different.

Figure 7 portrays the signed proportionality deviation index paths of the ten rules
for the vector of claims d = (3, 4, 5, 6). At first sight, one observes that only the
proportional rule and the average of awards rule have smooth paths, because they are
the only rules that are endowment differentiable.1 Moreover, according to Proposi-

1 Since the average of awards rule coincides with the concede-and-divide rule for two-claimant problems,
it is an endowment differentiable extension of this rule for |N | ≥ 3.
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Fig. 7 Signed index path of the ten rules for the claims vector d = (3, 4, 5, 6)

tion 4.6, the ranking of rules is reflected in the graph so, for instance, all the paths
lie between those of the CEL and the CEA rules. Whether or not a rule satisfies the
midpoint property has a clear implication on its index path. Note that, the index paths
of the constrained egalitarian, the Talmud, and Piniles’ rules coincide in the interval
[0, 1

2d(N )].2
Certainly, for the constrained equal losses rule, both the proportionality deviation

index path and the signed proportionality deviation index path coincide. The propor-
tionality deviation index paths of the average of awards, the minimal overlap, and the
constrained equal awards rule are compared to the corresponding signed index paths
in Fig. 8. For the average of awards and the constrained equal awards rules, the propor-
tionality index path is just the absolute value of the signed proportionality index path.
Therefore, according to Proposition 4.6, CEA(E, d)Lorenz-dominates PRO(E, d) for
all E ∈ [0, d(N )], while AA(E, d) Lorenz-dominates PRO(E, d) if E ∈ [0, 1

2d(N )]
but AA(E, d) is Lorenz-dominated by PRO(E, d) if E ∈ [ 12d(N ), d(N )]. For the
minimal overlap rule there is a neighbourhood of E = 5 where the proportionality
index path is not the absolute value of the signed proportionality index path, so for
these values of the endowment MO(E, d) and PRO(E, d) are not comparable (see
Fig. 6).

5 Generalized deviation indices

The proportionality deviation indices measure the discrepancy of an awards vector
with respect to the proportional division. But, depending on the principles of fairness,

2 By definition, if (E, d) ∈ CN and 0 ≤ E ≤ 1
2 d(N ) then CE(E, d) = T(E, d) = PIN(E, d).
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Fig. 8 The index paths IRd (dashed) and (I+)Rd (solid) of some rules for d = (3, 4, 5, 6)

equity, or justice, that the decision maker wants to apply when facing a particular
claims problem, the proportional division may not be the suitable rule of reference.
Therefore, we want to generalize the proportionality indices by providing a way to
measure the degree of discrepancy between two arbitrary awards vectors.

Given a pair of vectors x, y ∈ R
n≤ it is easy to define a cumulative curve Ly

x
representing the vector of cumulative percentages of the coordinates of y against the
vector of cumulative percentages of the coordinates of x . If x = (x1, . . . , xn) ∈ R

N≤

let x̄0 = 0 and x̄i = 1
x(N )

i∑

k=0
xk for i ∈ N . Then x̄ = (x̄1, . . . , x̄n) ∈ R

N≤ is the vector

of cumulative percentages of the coordinates of x with respect to the total sum x(N ).
Naturally, 0 ≤ x̄i ≤ 1 for all i ∈ N and x̄n = 1. Denote �x̄i = x̄i − x̄i−1 = 1

x(N )
xi

for i ∈ N . Now, giving a pair (x, y) ∈ R
N≤ × R

N≤ , consider the continuous piecewise
linear function Ly

x : [0, 1] → [0, 1] connecting the n+1 points (x̄i , ȳi ), i = 0, . . . , n.
Then:

Ly
x (t) = ȳi−1 + �ȳi

�x̄i
(t − x̄i−1) if t ∈ [x̄i−1, x̄i ].
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Clearly, Ly
x (0) = 0, Ly

x (1) = 1, and Ly
x is monotonically increasing so its graph is

contained in the unit square, i.e., 0 ≤ Ly
x (t) ≤ 1 for all t ∈ [0, 1]. Now, Lx

x (t) = t or
all t ∈ [0, 1] so the graph of the cumulative curve Lx

x is the diagonal of the unit square
connecting the points (0, 0) and (1, 1), the identity line. Moreover, Lx

y is the inverse

function of Ly
x and

∫ 1

0
Ly
x (t)dt +

∫ 1

0
Lx
y(t)dt = 1.

Now, we define the signed deviation index of y with respect to x , I(y, x), and the
deviation index of y with respect to x , I+(y, x), as:

I(y, x) =

∫ 1

0

(
t − Ly

x (t)
)
dt

∫ 1

0
tdt

and I+(y, x) =

∫ 1

0
|t − Ly

x (t)|dt
∫ 1

0
tdt

.

Both indices provide a measure of how far the cumulative percentages of the coordi-
nates of y are from the cumulative percentages of the coordinates of x . The signed
deviation index I(y, x) is the ratio of the net signed area that lies between the line
of equality and the cumulative curve Ly

x over the total area under the line of equality.
Then −1 ≤ I(y, x) ≤ 1 and I(y, x) = −I(x, y) (see Fig. 9). The deviation index
I+(y, x) is the ratio of the area between the line of equality and the cumulative curve
Ly
x over the area under the identity line. Naturally, 0 ≤ I+(y, x) ≤ 1.
Obviously, given a rule R and a claims problem (E, d) ∈ CN if we take

x = (1, . . . , n) and y = R(E, d) then I(y, x) and I+(y, x) give the deviation of
R(E, d) with respect to the egalitarian distribution (the usual Gini index). On the
other hand, if we take x = d (or, alternatively, x = PRO(E, d)) and y = R(E, d), the
proportionality deviation indices of R for (E, d) coincide with the deviation indices
of y with respect to x , that is, I(R, E, d) = I(y, x) and I+(R, E, d) = I+(y, x).

The role of the proportional rule as the benchmark for comparing awards vectors
in the analysis of Sect. 4 can be played by any other rule and a deviation index with
respect to this new reference rule can be computed.Given two rulesR andR′ satisfying
order preservation in awards and a claims problem (E, d) ∈ CN with d ∈ R

n≤, take
x = R(E, d) and y = R′(E, d). Then the cumulative curve Ly

x and the pair of indices
I(y, x) and I+(y, x) allow us to compare the awards vector selected by ruleR′ for the
claims problem (E, d)with respect to the one selected by ruleR. The properties stated
in Proposition 4.6 for the proportionality deviation indices, and their interpretations,
are also valid for the deviation indices of R′(E, d) with respect toR(E, d).

Example 5.1 Let N = {1, 2, 3}, E = 2, and d = (1, 1, 38) ∈ R
3≤. Then PRO(E, d) =

( 1
20 ,

1
20 ,

19
10

)
. The set of awards vectors has a particular simple structure, in fact,

X(E, d) = {(x1, x2, 2 − x1 − x2) ∈ R
3 : (x1, x2) ∈ [0, 1] × [0, 1]}.
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Fig. 9 The curves Ly
x and Lxy with x = PRO(2, (1, 1, 38)) and y = AA(2, (1, 1, 38))

Therefore AA(E, d) = ( 1
2 ,

1
2 , 1

)
. The claims-awards curve LAA

E,d and the curve

LPRO(E,d)
AA(E,d) are depicted in Fig. 9. Clearly, LPRO(E,d)

AA(E,d) is the inverse function of LAA
E,d so

∫ 1

0
LAA
E,d(t)dt +

∫ 1

0
LPRO(E,d)
AA(E,d) (t)dt = 1.

Therefore, I(
PRO(E, d),AA(E, d)

) = −I(AA, E, d) = 0.45. We conclude that
AA(E, d) Lorenz-dominates PRO(E, d) and that the proportional division deviates
by 45% from the average of awards rule, the geometrical center of the set of awards
vectors. Note that, for this particular claims problem, the adjusted proportional, the
constrained egalitarian, Piniles’, the random arrival, and the Talmud rules recommend
the same division as the average of awards rule.

For a rule R that satisfies order preservation, in addition to the proportionality
deviation indices, the coefficients I(

CEA(E, d),R(E, d)
)
, I(

CEL(E, d),R(E, d)
)
,

and I(
AA(E, d),R(E, d)

)
are particularly interesting. Since the constrained equal

awards and the constrained equal losses rules areLorenz-maximal andLorenz-minimal
respectively among the rules satisfying order preservation, the signed deviation indices
of rule R with respect to the CE A and CEL rules indicate the variation of rule R
compared to two extreme rules. The signed deviation index of ruleRwith respect to the
average of awards rule, I(

AA(E, d),R(E, d)
)
, measures the degree of discrepancy

of ruleR from a central rule, the geometrical center of the set of awards vectors.

Example 5.2 Let N = {1, 2, 3, 4}, E = 16, and d = (3, 10, 12, 13) ∈ R
4≤. We have

that:

AA(E, d) RA(E, d) CEA(E, d) CEL(E, d) PRO(E, d)

( 2920 ,
43
10 , 5,

21
4 ) ( 32 , 4, 5,

11
2 ) (3, 13

3 , 13
3 , 13

3 ) (0, 11
3 , 17

3 , 20
3 ) ( 2419 ,

80
19 ,

96
19 ,

104
19 )
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Since I(
AA(E, d),RA(E, d)

) = −0.0180 and I+(
AA(E, d),RA(E, d)

) = 0.0188
we conclude that the awards vectors AA(E, d) and RA(E, d) are not Lorenz-
comparable. Nevertheless, the deviation index of the random arrival rule with respect
to the average of awards rule is not very high, so the cumulative percentages of
the awards vectors selected by both rules are close. Among the other basic rules
the biggest deviation coefficients with respect to AA(E, d) correspond to the CEA
and CEL rules. In fact, I(

AA(E, d),CEA(E, d)
) = I+(

AA(E, d),CEA(E, d)
) =

0.1290 and I(
AA(E, d),CEL(E, d)

) = −I+(
AA(E, d),CEL(E, d)

) = −0.1650.
Finally, I(

AA(E, d),PRO(E, d)
) = −I+(

AA(E, d),PRO(E, d)
) = −0.0232

which implies that the awards vector AA(E, d) Lorenz-dominates PRO(E, d). Natu-
rally, the proportionality deviation indices of the average of awards rule for (E, d) are
I(AA, E, d) = −I+(AA, E, d) = −0.0232.

The coefficients that we introduce summarize in a couple of numbers the relative
distribution of the endowment recommended by two rules. Therefore, we know not
only if they are Lorenz-comparable but also by how much the corresponding awards
vectors differ from each other, thus helping the decision maker to select one over the
other. Depending on the values of the endowment and the claims, the indices between
a giving pair of rules can be very small or very large. If the deviation index is small,
both distributions are very similar. However, if the deviation index takes high values
then the recommendations made by both rules diverge, and factors like the axiomatics
of the rules would play a more significant role.
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A Properties of the average of awards rule

Let N = {1, 2} and (E, d) ∈ CN with d = (d1, d2) ∈ R
N such that 0 ≤ d1 ≤ d2.

Then, X(E, d) is the line segment with endpoints (m1, E − m1) and (E − m2,m2),
where m1 = max{0, E − d2} and m2 = max{0, E − d1}. The average of awards rule
selects the middle point of this segment:

123

http://creativecommons.org/licenses/by/4.0/


Deviation from proportionality and Lorenz-domination… 461

AA(E, d) =

⎧
⎪⎨

⎪⎩

( E
2 , E

2

)
if 0 ≤ E ≤ d1( d1

2 , E − d1
2

)
if d1 ≤ E ≤ d2( E+d1−d2

2 , E−d1+d2
2

)
if d2 ≤ E ≤ d1 + d2

. (1)

Therefore, for two-claimant problems, the average of awards rule coincides with the
concede-and-divide rule.

Let N ∈ N such that |N | ≥ 3 and i ∈ N . Consider the function gi (E, u) =√
n√

n−1
V (u,d−i )
V (E,d)

, (E, u) ∈ (0, d(N )) × [0, D−i ]. Mirás Calvo et al. (2020) show that if

(E, d) ∈ CN , with d ∈ R
n≤ such that 0 < d1, then, for all j ∈ N\{i},

AA j (E, d) =
∫ Ri (E,d)

ri (E,d)

AA j (u, d−i )gi (E, u)du, (2)

where ri (E, d) = max{0, E − di } and Ri (E, d) = min{E, D−i }. Moreover, the
function AA(·, d) : [0, d(N )] → R

N that assigns to each E ∈ [0, d(N )] the awards
vector AA(E, d) is a continuously differentiable function on [0, d(N )]. For each
j ∈ N let χ j (E, d) = 0 if E < d j and χ j (E, d) = 1 otherwise. The derivative
function ∂ AA

∂E (·, d) is given by:

1. If E ∈ [0, d1] then ∂ AA j
∂E (E, d) = 1

n for all j ∈ N .

2. If E ∈ [D−n, dn] then ∂ AA j
∂E (E, d) = 0 for all j ∈ N\{n} and ∂ AAn

∂E (E, d) = 1.
3. If E ∈ [

d1,min
{ 1
2d(N ), D−n

}]
then for each j ∈ N and i 
= j ,

∂ AA j

∂E
(E, d) = gi (E, E)

(
AA j (E, d−i ) − AA j (E, d)

)

+ χi (E, d)gi (E, E − di )
(
AA j (E, d) − AA j (E − di , d−i )

)
.

4. If E ∈ [ 12d(N ), d(N )] then ∂ AA j
∂E (E, d) = ∂ AA j

∂E (d(N ) − E, d) for all j ∈ N .

Observe that, according to Fig. 1, if E ∈ [0, d(N )] then E has to belong to one of the
intervals given above.

Proposition A.1 The average of awards rule satisfies order preservation under endow-
ment variations.

Proof The proof is by induction on the number of claimants. When N = {1, 2}, from
(1), given (E, d) ∈ CN we have that:

AA2(E, d) − AA1(E, d) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ E ≤ d1
E − d1 if d1 < E < d2
d2 − d1 if d2 ≤ E ≤ d1 + d2

.

Trivially, if E < E ′ ≤ d(N ) then AA2(E ′, d) − AA1(E ′, d) ≥ AA2(E, d) −
AA1(E, d).
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Now, by the induction hypothesis, suppose that the average of awards rule satis-
fies order preservation under endowment variations for any problem with n − 1 ≥ 2
claimants, and let us show that then it must satisfy the property for problems with
n claimants. So, let |N | = n ≥ 3. Since the average of awards satisfies endow-
ment differentiability, given d ∈ R

n≤ and i ∈ N\{n}, it suffices to prove that
∂(AAi+1 −AAi )

∂E (E, d) ≥ 0 for all E ∈ [0, d(N )], that is (AAi+1 −AAi )(·, d) is an
increasing function. Now, using the derivative expressions given above, we obtain:

∂(AAi+1 −AAi )

∂E
(E, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0 ≤ E < d1
0 if D−n ≤ E ≤ dn and i < n − 1

1 if D−n ≤ E ≤ dn and i = n − 1
∂(AAi+1 −AAi )

∂E (d(N ) − E, d) if 1
2d(N ) ≤ E ≤ d(N )

.

It suffices to establish the result for E ∈ [
d1,min

{ 1
2d(N ), D−n

}]
. First, assume that

i < n − 1. Then,

∂(AAi+1 −AAi )

∂E
(E, d) = gn(E, E)

(
AAi+1(E, d−n) − AAi+1(E, d)

−(AAi (E, d−n) − AAi (E, d))
)

+χn(E, d)gn(E, E − dn)
(
AAi+1(E, d)

−AAi+1(E − dn, d−n)

−(AAi (E, d) − AAi (E − dn, d−n)
)
. (3)

Since E ≤ D−n , we have that Rn(E, d) = E . Then, applying expression (2) and by
the induction hypothesis:

AAi+1(E, d) − AAi (E, d) =
∫ E

rn(E,d)

(AAi+1(u, d−n) − AAi (u, d−n))gn(E, u)du

≤
∫ E

rn(E,d)

(AAi+1(E, d−n) − AAi (E, d−n))gn(E, u)du

= (AAi+1(E, d−n)−AAi (E, d−n))

∫ E

rn(E,d)

gn(E, u)du

= AAi+1(E, d−n) − AAi (E, d−n).

On the other hand, χn(E, d) = 1 only if E ≥ dn and then rn(E, d) = E − dn . In that
case:

AAi+1(E, d) − AAi (E, d) =
∫ E

E−dn
(AAi+1(u, d−n) − AAi (u, d−n))gn(E, u)du

≥
∫ E

E−dn
(AAi+1(E − dn, d−n)

− AAi (E − dn, d−n))gn(E, u)du
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= AAi+1(E − dn, d−n) − AAi (E − dn, d−n).

Clearly, gn(E, E) ≥ 0 and gn(E, E − dn) ≥ 0, so from (3) we conclude that indeed
∂(AAi+1 −AAi )

∂E (E, d) ≥ 0.

Finally, if i = n−1, we show that ∂(AAn −AAn−1)
∂E (E, d) ≥ 0 by repeating the same

arguments as above but applied to the integral representations of AAn and AAn−1
given by (2) in terms of the function g1. �

A rule R satisfies order preservation under population variation if for each
(E, d) ∈ BN , each i ∈ N with E < D−i and each pair { j, k} ⊆ N\{i}, if
d j ≤ dk , then Rk(E, d) − R j (E, d) ≤ Rk(E, d−i ) − R j (E, d−i ). A rule R sat-
isfies order preservation under the reduction operation if for each (E, d) ∈ BN ,
each i ∈ N with di < E , and each pair { j, k} ⊆ N\{i}, if d j ≤ dk , then
Rk(E, d) − R j (E, d) ≥ Rk(E − di , d−i ) − R j (E − di , d−i ). Let us show that
the average of awards rule satisfies order preservation under the reduction operation
and order preservation under population variation. Indeed, let (E, d) ∈ BN , i ∈ N
with di < E < D−i , and { j, k} ⊆ N\{i}, with d j ≤ dk . We need to prove that

AAk(E − di , d−i ) − AA j (E − di , d−i ) ≤ AAk(E, d)

−AA j (E, d) ≤ AAk(E, d−i ) − AA j (E, d−i ).

But, ri (E, d) = E − di and Ri (E, d) = E , so by equality (2),

AAk(E, d) − AA j (E, d) =
∫ E

E−di
(AAk(u, d−i ) − AA j (u, d−i ))gi (E, u)du.

We show in Proposition A.1 that AAk(., d−i )−AA j (., d−i ) is increasing. Then, both
properties hold.

Proposition A.2 The average of awards rule satisfies order preservation under claims
variations.

Proof Let (E, d) ∈ CN be a claims problem, i ∈ N\{n} and di < d ′
i ≤ di+1. Denote

d ′ = (d−i , d ′
i ). It suffices to prove that for each { j, k} ⊂ N\{i} with d j ≤ dk then

AA j (E, d) − AA j (E, d ′) − AAk(E, d) + AAk(E, d ′) ≤ 0.

Observe that if E ≤ di then X(E, d) = X(E, d ′) and the property follows at once.
Therefore, assume that di < E . Let b = di ei and c = d ′ − b = (d−i , d ′

i − di ), where
ei ∈ R

N is the vector with 1 in the i th-coordinate and 0’s elsewhere. Then, one can
check that the set of awards vectors for (E, d ′) can be decomposed as the union of
two pieces X(E, d ′) = X(E, d) ∪ (

b + X(E − di , c)
)
, and the intersection of the

two pieces has null Lebesgue measure, i.e. μ
(
X(E, d) ∩ (

b + X(E − di , c)
)) = 0.

The centroid of X(E, d ′) is the average of the centroids of each part weighted by its
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relative measure. Therefore, for each r ∈ N\{i}, we have that,

AAr (E, d ′) = V (E, d)

V (E, d ′)
AAr (E, d) + V (E − di , c)

V (E, d ′)
AAr (E − di , c).

Now, taking into account that V (E, d ′) = V (E, d) + V (E − di , c), we obtain that

AAr (E, d) − AAr (E, d ′) = AAr (E, d) − V (E, d)

V (E, d ′)
AAr (E, d)

− V (E − di , c)

V (E, d ′)
AAr (E − di , c)

= V (E − di , c)

V (E, d ′)

(
AAr (E, d) − AAr (E − di , c)

)
.

Applying the above equality to the pair { j, k} ⊂ N\{i}, we conclude that AA j (E, d)−
AA j (E, d ′) − AAk(E, d) + AAk(E, d ′) ≤ 0 if and only if

H = AA j (E, d) − AA j (E − di , c) − AAk(E, d) + AAk(E − di , c) ≤ 0.

Since the average of awards rule satisfies order preservation under population varia-
tions and order preservation under the reduction operation,

AAk(E − di , c) − AA j (E − di , c) ≤ AAk(E − di , d−i ) − AA j (E − di , d−i )

≤ AAk(E, d) − AA j (E, d),

and H ≤ AA j (E, d) −AAk(E, d) +AAk(E − di , d−i ) −AA j (E − di , d−i ) ≤ 0. �

B Areas below the cumulative claims-awards curve

Let x = (x1, . . . , xn) ∈ R
N≤ and y = (y1, . . . , yn) ∈ R

N≤ . Define

x̄i =

⎧
⎪⎨

⎪⎩

0 if i = 0

1
x(N )

i∑

k=0
xk if i ∈ N

, ȳi =

⎧
⎪⎨

⎪⎩

0 if i = 0

1
y(N )

i∑

k=0
yk if i ∈ N

.

For each i ∈ N denote �x̄i = x̄i − x̄i−1 = 1
x(N )

xi and �ȳi = ȳi − ȳi−1 = 1
y(N )

yi .

Consider the continuous piecewise linear function Ly
x : [0, 1] → [0, 1] connecting the

n + 1 points (x̄i , ȳi ), i = 0, . . . , n. that is,

Ly
x (t) = ȳi−1 + �ȳi

�x̄i
(t − x̄i−1) if t ∈ [x̄i−1, x̄i ].
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Fig. 10 Relative position of the claims-awards curve and the line of proportionality on [x̄i−1, x̄i ]

The difference between the area inside the unit square below the proportionality line
and the area below Ly

x is:

∫ 1

0

(
t − Ly

x (t)
)
dt =

∫ 1

0
tdt −

∑

i∈N

∫ x̄i

x̄i−1

Ly
x (t)dt

= 1
2

(
1 −

∑

i∈N
�x̄i (ȳi−1 + ȳi )

)
.

In particular, given a claims problem (E, d) ∈ CN with d ∈ R
N≤ and a rule satisfying

order preservation in awards R, taking x = d and y = R(E, d), we have that the
signed proportionality deviation index ofR for the problem (E, d) is given by:

I(R, E, d) = 1 −
∑

i∈N
�d̄i (R̄i−1(E, d) + R̄i (E, d)).

Now, the area between the line of proportionality and the piecewise polygonal curve
Ly
x is given by the integral

∫ 1

0
|t − Ly

x (t)|dt =
∑

i∈N

∫ x̄i

x̄i−1

|t − Ly
x (t)|dt .

For each i ∈ {1, . . . , n+1}, letαi =

⎧
⎪⎨

⎪⎩

1 if x̄i−1 > ȳi−1

0 if x̄i−1 = ȳi−1

−1 if x̄i−1 < ȳi−1

. Fix i ∈ N . Ifαiαi+1 = −1

then the line of proportionality and the curve Ly
x intersect at the point zi = x̄i ȳi−1−x̄i−1 ȳi

�x̄i−�ȳi
with zi ∈ (x̄i−1, x̄i ). The curve Ly

x lies above the line of proportionality whenever
αi , αi+1 ≤ 0 and lies below the line of proportionality whenever αi , αi+1 ≥ 0.
Clearly, if αi = αi+1 = 0 then Ly

x (t) = t for all t ∈ [x̄i−1, x̄i ]. The cases when
αiαi+1 
= 0 are depicted in Fig. 10. Therefore, from elementary calculus, we have:
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• If αi ≥ 0 and αi+1 ≥ 0 then

2
∫ x̄i

x̄i−1

|t − Ly
x (t)|dt = �x̄i (x̄i−1 − ȳi−1 + x̄i − ȳi ).

• If αi ≤ 0 and αi+1 ≤ 0 then

2
∫ x̄i

x̄i−1

|t − Ly
x (t)|dt = �x̄i (ȳi−1 − x̄i−1 + ȳi − x̄i ).

• If αi = 1 and αi+1 = −1 then

2
∫ x̄i

x̄i−1

|t − Ly
x (t)|dt = (zi − x̄i−1)(x̄i−1 − ȳi−1) + (x̄i − zi )(ȳi − x̄i ).

• If αi = −1 and αi+1 = 1 then

2
∫ x̄i

x̄i−1

|t − Ly
x (t)|dt = (zi − x̄i−1)(ȳi−1 − x̄i−1) + (x̄i − zi )(x̄i − ȳi ).

In particular, given a claims problem (E, d) ∈ CN with d ∈ R
N≤ and a rule sat-

isfying order preservation in awards R, taking x = d and y = R(E, d), we have
that the proportionality deviation index of R for the problem (E, d) is given by:

I+(R, E, d) = 2
∫ 1

0
|t − LR

E,d(t)|dt .
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