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Abstract Groves and Ledyard (Econometrica 45:783–809, 1977) constructed a
mechanism attaining Pareto efficient allocations in the presence of public goods.
After this path-breaking paper, many mechanisms have been proposed to attain desir-
able allocations with public goods. Thus, economists have thought that the free-rider
problem is solved, in theory. Our view to this problem is not so optimistic. Rather,
we propose fundamental impossibility theorems with public goods. In the previous
mechanism design, it was implicitly assumed that every agent must participate in the
mechanism that the designer provides. This approach neglects one of the basic features
of public goods: non-excludability. We explicitly incorporate non-excludability and
then show that it is impossible to construct a mechanism in which every agent has an
incentive to participate.
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1 Introduction

Hurwicz (1972), in his path-breaking paper, showed that Walrasian mechanism has
an incentive problem although many researchers at that time considered that it solves
agents’ incentive problem. That is, some agents have incentive not to reveal true excess
demand functions. Later, Ledyard and Roberts (1974) showed the same problem in
public good economies. In other words, it is impossible to design a mechanism that
satisfies incentive compatibility where each agent reveals her true utility function or
excess demand function as her dominant strategy in private or public good economies.

On the other hand, Groves and Ledyard (1977) designed a Nash implementable
mechanism to achieve Pareto efficiency in the presence of public goods. Right after
this discovery, Hurwicz (1979a) and Walker (1981) designed Nash implementable
mechanisms for Lindahl allocations. Hereafter, many mechanisms having nice fea-
tures have been proposed. Thus, economists have thought that the free-rider problem
is solved, in theory.

Our view to this problem is not so optimistic. Rather, we propose fundamental
impossibility theorems with public goods. In the previous mechanism design, it
was implicitly assumed that every agent must participate in the mechanism that the
designer provides. This approach neglects one of the basic features of public goods:
non-excludability. In Saijo and Yamato (1999), we explicitly incorporated non-exclud-
ability in mechanism design by examining a two-stage game on voluntary participation
in a mechanism for providing a non-excludable public good: in the first stage, each
agent simultaneously decides whether or not to participate in the mechanism; and in
the second stage, after knowing the other agents’ participation decisions, the agents
who chose participation in the first stage play the mechanism.

We fully characterized the equilibrium set of participants in the two-stage game
for any second-stage mechanism satisfying symmetry, feasibility, and Pareto effi-
ciency only for participants in symmetric Cobb-Douglas economies.1 In particular,
we found that there exist economies for which full participation of all agents is not
an equilibrium, implying that it is impossible to design reasonable mechanisms in
which all agents always have participation incentives. The same negative result on
voluntary participation holds for the voluntary contribution mechanism. In Saijo and
Yamato (1999), however, we made a restrictive assumption that each agent has the
same Cobb-Douglas utility function as well as the same endowment.

1 Our solution concept for the two-stage game assumes sequential rationality, although any equilibrium
concept with complete information is allowed for the second stage. For example, if Nash equilibrium is the
equilibrium concept for the second stage, then we examine subgame perfect Nash equilibria of the two-stage
game.
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Fundamental impossibility theorems on voluntary participation 53

In this paper, we show the above negative results on participation incentives are
robust in the sense that they occur in more general environments. We formulate full par-
ticipation of all agents as an axiom on a mechanism called the voluntary participation
condition: each agent always prefers participation to non-participation in the mecha-
nism when all other agents participate in it.

First, we consider any mechanism implementing the Lindahl correspondence, called
Lindhal mechanism. We show that any Lindahl mechanism fails to satisfy the volun-
tary participation condition in asymmetric Cobb-Douglas utility as well as quasi-linear
utility economies in which agents may have different utility functions and endow-
ments. Moreover, we identify the classes of Cobb-Douglas and quasi-linear utility
economies for which the voluntary participation condition is satisfied. These classes
become smaller and eventually vanish as the number of agents become larger, which
can be interpreted as a support for Olson (1965) conjecture: a public good is less likely
provided as the size of a group grows large.

The Lindahl correspondence satisfies individual rationality and Pareto efficiency,
and moreover it is the only Nash implementable social choice correspondence that is
Pareto efficient and individually rational under suitable conditions (Hurwicz 1979b).2

However, neither Pareto efficiency nor individual rationality is necessary to obtain a
negative result on voluntary participation. We demonstrate that the voluntary contri-
bution mechanism, which does not satisfy Pareto efficiency under Nash equilibrium,
fails to meet the voluntary participation condition in asymmetric Cobb-Douglas and
quasi-linear utility economies, even though the name of the mechanism contains the
term “voluntary”.

Moreover, we investigate a large class of mechanisms that are necessarily neither
individually rational nor Pareto efficient. We establish impossibility results on volun-
tary participation in mechanisms meeting mild conditions. For the case of two agents,
there is no feasible mechanism satisfying the voluntary participation condition and
the Robinson Crusoe condition, which requires that if only one agent participates in
the mechanism, then she choose an outcome that is best for her, on a domain of econ-
omies that include a Cobb-Douglas utility economy or a quasi-linear utility economy
satisfying a certain condition. Furthermore, for the case of more than two agents,
there is no feasible mechanism satisfying the voluntary participation condition and
contribution monotonicity, which means that if n − 1 agents chose participation and
a new agent becomes a participant additionally, then the sum of contributions to the
public good by the previous n − 1 participants in the mechanism does not rise, on a
sufficiently large domain of economies.

Palfrey and Rosenthal (1984), Moulin (1986), and Dixit and Olson (2000) studied
the participation incentive problem in the provision of a public good. In those papers,
however, the public good is discrete, while it is continuous in our model. Moreover,
the mechanisms studied there are different from ours. Palfrey and Rosenthal (1984)
examined voluntary contribution (or provision point) mechanisms with and without
a refund to decide whether to produce a discrete public project or not. Contribu-

2 More specifically, Hurwicz (1979b) proved that if all Nash equilibrium allocations are Pareto efficient and
individually rational, then every Lindahl allocation is a Nash allocation and every interior Nash allocation
is a Lindahl allocation under appropriate assumptions on environments and mechanisms.
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tions are binary and making a fixed contribution can be interpreted as participation
in a mechanism. They identified mixed strategy Nash equilibria of the mechanisms.
Moulin (1986) used the no free ride axiom, requiring each agent have a participation
incentive in a mechanism, to characterize the pivotal mechanism in economies with a
discrete public good and quasi-linear preferences.

Dixit and Olson (2000) independently considered a two-stage participation game,
similar to that in Saijo and Yamato (1999), from the viewpoint of the Coase theorem
rather than mechanism design: in the first stage, each agent simultaneously decides
whether to participate or not, and in the second stage, those who selected participa-
tion play a cooperative game of Coaseian bargaining with no costless enforcement
of contracts. They examined a binary public good model like Palfrey and Rosenthal
(1984). In particular, they found that the efficient equilibrium outcome of the partic-
ipation game is not robust when introducing even very small transaction costs. This
casts doubt on the validity of Coaseian claims of universal efficiency, which is similar
to our negative view in the design of efficient resource allocation mechanisms with
participation decisions.

The paper is organized as follows. In Sect. 2, we explain examples illustrating our
basic idea. In Sect. 3, we introduce notation and definitions. We establish impossibility
results on voluntary participation in Lindahl mechanisms in Sect. 4. In Sect. 5, we char-
acterize a condition for which each agent loses a participation incentive in any Lindahl
mechanism in a replica of a Cobb-Douglas or quasi-linear utility economy. In Sect. 6,
we consider the participation problem on the voluntary contribution mechanism and
a class of mechanisms satisfying mild conditions. In the final section, we make
concluding remarks.

2 Examples

Let us consider the following two-agent economies with one private good x and one
pure public good y. Agent i’s consumption bundle is denoted by (xi , y) ∈ �2+ where
xi ∈ �+ is the level of private good she consumes on her own, and y ∈ �+ is the
level of public good. Each agent has a Cobb-Douglas utility function: uαi

i (xi , y) =
αi ln xi + (1 − αi ) ln y, where αi ∈ (0, 1) and i = 1, 2. Agent i ’s initial endowment
is given by (ωi , 0) for i = 1, 2, that is, there is no public good initially. However, the
public good can be produced from the private good by means of a constant return to
scale technology, and let y = ∑

i (ωi − xi ) be the production function of the public
good.

Consider any mechanism implementing the Lindahl correspondence (for exam-
ple, see Hurwicz 1979a; Walker 1981; Hurwicz et al. 1984, and Tian 1990 for Nash
implementation,3 and Moore and Repullo 1988 and Varian 1994 for subgame perfect
implementation). Suppose that each agent is able to choose whether she participates
in the mechanism. Then in order to achieve the desired Lindahl equilibrium allocation
by using the mechanism, every agent must choose participation. Therefore, we ask a

3 The Lindahl correspondence is not Nash implementable due to the boundary problem, but the constrained
Lindahl correspondence is Nash implementable.
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crucial question of whether each agent always has an incentive to participate in the
mechanism. Unfortunately, our answer to this question is negative.

To see why, let T ⊆ {1, 2} be the set of agents who participate in the mechanism.
An equilibrium allocation of the mechanism when the agents in T participate in it
is denoted by

((
xT

i

)
i∈T , yT

)
.4 If two agents decide to participate in the mechanism,

then
(

x {1,2}
1 , x {1,2}

2 , y{1,2}
)

should be a Lindahl allocation of the economy consist-

ing of two agents, since the mechanism implements the Lindahl correspondence.5

It is straightforward to check that there exists a unique Lindahl allocation given by(
x {1,2}

1 , x {1,2}
2 , y{1,2}

)
= (

α1ω1, α2ω2,
∑

i=1,2 (1 − αi )ωi
)
.

Now suppose that some agent i does not participate in the mechanism, while the

other agent j �= i does, i.e., T = { j}. Then
(

x { j}
j , y{ j}

)
is a unique Lindahl allocation

of the economy consisting of only one agent j. It is easy to see that
(

x { j}
j , y{ j}

)
=

(
α jω j , (1 − α j )ω j

)
. Notice that non-participant i can enjoy her initial endowment,

ωi , as well as the non-excludable public good produced by agent j �= i, y{ j}. On the
other hand, she is no longer able to affect the decision on the provision of the public
good. Because of this trade-off, it is not obvious whether or not each agent has an
incentive to participate in the mechanism. The following condition should be satisfied
if each agent has such a participation incentive:

uαi
i

(
x {1,2}

i , y{1,2}) ≥ uαi
i

(
ωi , y{ j}) for i, j = 1, 2, j �= i,

where uαi
i is any Cobb-Douglas utility function. We call condition (1) the voluntary

participation condition.6

We show that no mechanism implementing the Lindahl correspondence satisfies
this condition. This fact can be illustrated by using Kolm’s triangle. See Fig. 1 in which
(α1, α2) = (0.5, 0.7) and (ω1, ω2) = (10, 20). In this economy, agent 1’s valuation
of the public good is higher than agent 2’s, but agent 1 is “poorer” than agent 2. We
will see that neither agent has a participation incentive. Point A in Fig. 1 denotes
the Lindahl equilibrium allocation when both agents participate in the mechanism:

A =
(

x {1,2}
1 , x {1,2}

2 , y{1,2}
)

= (5, 14, 11). Point B represents the allocation when agent

1 does not participate in the mechanism, but agent 2 does: B =
(
ω1, x {2}

2 , y{2}
)

=
(10, 14, 6). Since uα1

1

(
x {1,2}

1 , y{1,2}
)

≈ 2.004 < uα1
1

(
ω1, y{2}) ≈ 2.047 for

α1 = 0.5, agent 1 prefers Point B to Point A and she does not participate in the

4 Here we consider a general definition of a mechanism which specifies a strategy set of each participant
in T and an outcome function for each T ⊆ {1, 2}.
5 A mechanism is said to implement the Lindahl correspondence if for each set of participants T ⊆ {1, 2}
and each economy consisting of the participants in T , every equilibrium allocation is a Lindahl allocation
and every Lindahl allocation is an equilibrium allocation.
6 The voluntary participation condition is different from the individually rational condition which requires

that u
αi
i

(
x{1,2}

i , y{1,2}) ≥ u
αi
i (ωi , 0) for i = 1,2. Since uα

i

(
ωi , y{ j}) ≥ uα

i (ωi , 0), the voluntary partici-

pation condition is stronger than the individually rational condition.
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Fig. 1 No Lindahl mechanism
satisfies the voluntary
participation condition when
preferences are Cobb-Douglas
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ω

mechanism when agent 2 does. The same thing holds for agent 2. In Fig. 1, the
allocation when agent 2 does not participate in the mechanism, but agent 1 does is

represented by Point C =
(

x {1}
1 , ω2, y{1}

)
= (5, 20, 5). Agent 2 prefers Point C to

Point A: uα2
2

(
x {1,2}

2 , y{1,2}
)

≈ 2.567 < uα2
2

(
ω2, y{1}) ≈ 2.580 for α2 = 0.7.

A similar negative result on voluntary participation in any Lindahl mechanism holds
with quasi-linear preferences. Suppose that each agent has a quasi-linear utility func-
tion: uβi

i (xi , y) = xi + βi ln y, where βi ∈ (0, ωi ) (i = 1,2). It is easy to check that a
unique Lindahl allocation when both agents participate in the mechanism is given by(

x {1,2}
1 , x {1,2}

2 , y{1,2}
)

= (
ω1 − β1, ω2 − β2,

∑
i=1,2 βi

)
and a unique Lindahl allo-

cation when only one agent j participates in it is
(

x { j}
j , y{ j}

)
= (

ω j − β j , β j
)
. The

following voluntary participation condition should be satisfied if each agent has a
participation incentive:

uβi
i

(
x {1,2}

i , y{1,2}) ≥ uβi
i

(
ωi , y{ j}) for i, j = 1, 2, j �= i,

where uβi
i is any quasi-linear utility function.

We will see that no Lindahl mechanism satisfies this condition. Suppose that
(β1, β2) = (2, 3) and (ω1, ω2) = (3, 4). Then neither agent has a participation incen-
tive. Point A in Fig. 2 represents the Lindahl equilibrium allocation when both agents

participate: A =
(

x {1,2}
1 , x {1,2}

2 , y{1,2}
)

= (1, 1, 5). Point B stands for the allocation

when agent 1 does not participate, but agent 2 does: B =
(
ω1, x {2}

2 , y{2}
)

= (3, 1, 3).

Since uβ1
1

(
x {1,2}

1 , y{1,2}
)

≈ 4.219 < uβ1
1

(
ω1, y{2}) ≈ 5.197 for β1 = 2, agent

1 prefers Point B to Point A, in other words, she has no participation incentive
when agent 2 participates. The same thing holds for agent 2. In Fig. 2, the alloca-
tion when agent 2 does not participate, but agent 1 does is denoted by Point C =(

x {1}
1 , ω2, y{1}

)
= (1, 4, 2). Agent 2 prefers Point C to Point A: uβ2

2

(
x {1,2}

2 , y{1,2}
)

≈
5.828 < uβ2

2

(
ω2, y{1}) ≈ 6.079 for β2 = 3.
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Fig. 2 No Lindahl mechanism
satisfies the voluntary
participation condition when
preferences are quasi-linear

3 Notation and definitions

In the previous section, we see that any Lindahl mechanism fails to satisfy the volun-
tary participation condition in economies with two agents by looking at certain values
of Cobb-Douglas and quasi-linear preference and endowment parameters. We will
show similar negative results hold for any number of agents. Also, we will identify
classes of preference and endowment parameters for which agents lose participation
incentives. In particular, these classes become larger as the number of agents increases.

First of all, we introduce notation and definitions. As in Sect. 2, there are one
private good x and one public good y with a constant return to scale technology. Let
N = {1, 2, . . . , n} be the set of agents, with generic element i. Each agent i’s prefer-
ence relation admits a numerical representation ui : �2+ → � which is continuously
differentiable, strictly quasi-concave, and strictly monotonic. Let Ui be the class of
utility functions admissible for agent i and U ≡ ∏

i∈N Ui . Agent i’s initial endowment
is denoted by (ωi , 0). There is no public good initially. Let �i be the class of private
good endowments admissible for agent i and � ≡ ∏

i∈N �i . An economy is a list of
utility functions and endowments of all agents, e = (u, ω) = ((ui )i∈N , (ωi )i∈N ) and
the class of admissible economies is denoted by E = U × �.

Let an economy e = (u, ω) ∈ E be given. Also, let P(N ) be the collection of all
no-empty subsets of N. Given T ∈ P(N ), eT = (uT , ωT ) = ((ui )i∈T , (ωi )i∈T ) is a
sub-economy consisting of agents in T. A feasible allocation for eT is a list (xT , y) ≡
((xi )i∈T , y) ∈ �#T +1+ such that

∑
i∈T (ωi − xi ) = y. The set of feasible allocations

for eT is denoted by A(eT ).
A mechanism is a function � that associates with each T ∈ P(N) a pair �(T ) =(

ST , gT
)
, where ST = ×i∈T ST

i and gT : ST → �#T +1. Here ST
i is the strategy

space of agent i ∈ T and gT is the outcome function when the agents in T play the
mechanism. Given gT (s) = (xT , y), let gT

i (s) ≡ (xi , y) for i ∈ T and gT
y (s) = y.

The allocation for the entire economy when the agents in T ∈ P(N ) participate in the
mechanism is provided by (xT , (ωi )i∈N−T , y), that is, every non-participant enjoys
her endowment ωi and the public good y produced by the participants. Notice that
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we assume neither individual feasibility
(

gT (s) ∈ �#T +1+ for all s ∈ ST
)

nor balanc-

edness
(
gT (s) ∈ A(eT ) for all s ∈ ST

)
. Our negative results hold without requiring

these conditions.
An equilibrium correspondence is a correspondence µ which associates with each

mechanism �, each economy e ∈ E , and each set of agents T ∈ P(N ), a set of
strategy profiles µ�(eT ) ⊆ ST , where

(
ST , gT

) = �(T ). The set of µ-equilibrium
allocations of � for eT is denoted by gT ◦ µ�(eT ) ≡ {(xT , y) ∈ �#T +1| there exists
s ∈ ST such that s ∈ µ�(eT ) and gT (s) = (xT , y)}, where

(
ST , gT

) = �(T ). In
this paper, we consider an arbitrary equilibrium correspondence with complete infor-
mation among agents. Examples of equilibrium correspondences include the Nash
equilibrium correspondence, the strong Nash equilibrium correspondence, and any
refinement of the Nash equilibrium correspondence such as the perfect and proper
equilibrium correspondences.

Given an economy e = (u, ω) ∈ E and a set of agents T ∈ P(N ), a feasible
allocation (xT , y) ∈ A(eT ) is a Lindahl allocation for eT if there is a price vector
p ∈ �#T+ such that for each agent i ∈ T, xi + pi y = ωi and ui (xi , y) ≥ ui (x ′

i , y′) for
any (x ′

i , y′) ∈ �2+ such that x ′
i + pi y′ ≤ ωi . Let L(eT ) be the set of Lindahl allocations

for eT .
Let an equilibrium correspondence µ be given. A Lindahl mechanism under µ

is a mechanism such that for each economy e = (u, ω) ∈ E and each set of agents
T ∈ P(N ), gT ◦ µ�(eT ) = L(eT ).

A Lindahl mechanism under µ is a mechanism implementing the Lindahl corre-
spondence in µ-equilibrium, that is, for each set of participants T ∈ P(N ) and each
economy consisting of the participants in T, every µ-equilibrium allocation is a Lin-
dahl allocation and every Lindahl allocation is a µ-equilibrium allocation. The above
definition of a mechanism implementing the Lindahl correspondence is a generaliza-
tion of the usual one, in which all agents are supposed to participate, to the case in
which voluntary participation is allowed.

4 Impossibility results on voluntary participation in Lindahl mechanisms

We introduce the following condition on voluntary participation in mechanisms. Let
an equilibrium correspondence µ be given.

Definition 1 The mechanism � satisfies voluntary participation for an economy
e = (u, ω) underµ if for all

(
x N , yN

) ∈ gN ◦ µ�(eN ) and all i ∈ N ,

ui

(
x N

i , yN
)

≥ ui

(
ωi , yN−{i}

min

)
,

where yN−{i}
min ∈ arg min

yN−{i}∈gN−{i}
y ◦µ�(eN−{i})

ui
(
ωi , yN−{i}). Also, the mechanism � satis-

fies voluntary participation on the class of economies E under µ if it satisfies voluntary
participation for all economies e = (u, ω) ∈ E under µ.
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Since there is one public good and preferences satisfy monotonicity, yN−{i}
min is the

minimum equilibrium level of public good when all agents except i participate in the
mechanism. Consider an agent who decides not to participate in the mechanism. Then
she can enjoy the non-excludable public good produced by the other agents without
providing any private good, while she cannot affect the decision on the provision of
the public good. Voluntary participation requires that no agent can benefit from such
a free-riding action. Note that when an agent chooses non-participation, she has a
pessimistic view on the outcome of her action: an equilibrium outcome that is most
unfavorable for her will occur. Moulin (1986) proposed a similar condition, called the
No Free Ride axiom, when public goods are discrete and costless, and preferences are
quasi-linear.

We will show any Lindahl mechanism fails to satisfy the voluntary participation
condition under mild conditions. First of all, consider the class of Cobb-Douglas
utility economies: EC D ≡ {((ui )i∈N , (ωi )i∈N )| ∀i ∈ N , ui (xi , y) = uαi

i (xi , y) =
αi ln xi + (1 − αi ) ln y, αi ∈ (0, 1), ωi ∈ �++}. Such an economy is specified by a
list of Cobb-Douglas preference parementers and endowments of n agents, (α, ω) ≡
((α1, . . . , αn), (ω1, . . . , ωn)) such that αi ∈ (0, 1) and ωi ∈ (0, ω̄] for all i. Here
ω̄ is the upper bound of each endowment. Without loss of generality, we assume
that ω̄ = 1. Hence, the set of economies is represented by the product of intervals
EC D = (0, 1)n × (0, 1]n endowed with Lebesgue measure λ.

Let α(n) ∈ (0, 1) be a unique value satisfying α ln α/(α − 1) = ln(n/(n − 1)). We
have the following negative result on voluntary participation regarding Cobb-Douglas
utility economies.

Theorem 1 Let (α, ω) ∈ EC D be any Cobb-Douglas utility economy in which αi >

α(n) for agent i such that (1 − αi )ωi ≤ (1 − α j )ω j for all j �= i . Then any Lindahl
mechanism fails to satisfy voluntary participation for (α, ω) under µ.

Proof Fix any (α, ω) ∈ EC D . For each T ∈ P(N ), it is easy to check there exists a
unique Lindahl equilibrium allocation for (αi , ωi )i∈T , which coincides with a unique
µ-equilibrium allocation of the mechanism when agents in T participate in it, given

by
(
xT

i , yT
) =

(
αiωi ,

∑
j∈T (1 − α j )ω j

)
. Therefore, the difference between agent

i’s utility level when all agents participate in the mechanism and that when all agents
except i participate in it is given by

�ui (α, ω) ≡ uαi
i

(
x N

i , yN
)

− uαi
i

(
ωi , yN−{i})

= αi ln αi + (1 − αi )

⎧
⎨

⎩
ln

⎡

⎣(1 − αi )ωi +
∑

j �=i

(1 − α j )ω j

⎤

⎦

− ln

⎡

⎣
∑

j �=i

(1 − α j )ω j

⎤

⎦

⎫
⎬

⎭
. (4.1)

Take i ∈ N such that (1 − αi )ωi ≤ (1 − α j )ω j for all j �= i . Without loss of
generality, let i = 1. We prove that �u1(α, ω) < 0 if α1 > α(n), so that the voluntary
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participation condition is violated. Since (n − 1)(1 − α1)ω1 ≤ ∑
j �=1 (1 − α j )ω j ,

�u1(α, ω) ≤ α1 ln α1 + (1 − α1)

⎧
⎨

⎩
ln

⎡

⎣(1/(n − 1) + 1)
∑

j �=1

(1 − α j )ω j

⎤

⎦

− ln

⎡

⎣
∑

j �=1

(1 − α j )ω j

⎤

⎦

⎫
⎬

⎭

= (1 − α1) [ln(n/(n − 1)) − α1 ln α1/(α1 − 1)] .

Let h(α) ≡ α ln α/(α − 1). First, we show that h(α) is strictly increasing in α ∈
(0, 1). Note that dh(α)/dα = (α −1− ln α)/(α −1)2. Since (α −1)2 > 0, it remains
to prove that B(α) ≡ α − 1 − ln α > 0. It is easy to check that d B(α)/dα < 0
if α ∈ (0, 1), d B(α)/dα = 0 if α = 1, and B(1) = 0. Therefore, B(α) > 0 for
α ∈ (0, 1).

Second, by L ′Hô pital ′s rule, limα→0 h(α) = limα→0[ln α/{1 − 1/α}] =
limα→0[α] = 0 and limα→1 h(α) = limα→1[α] = 1. Since dh(α)/dα > 0 and
ln(n/(n − 1)) < 1 for n ≥ 2, it follows that there exists a unique α(n) ∈ (0, 1) such
that h(α(n)) = ln(n/(n − 1)) and h(α) > ln(n/(n − 1)) for α > α(n), implying that
�u1(α, ω) < 0 if α1 > α(n). �

Each agent contributes (1 −αi )ωi of the private good to the production of the pub-
lic good in a Lindahl allocation for a Cobb-Doulas utility economy (see the proof of
Theorem 1). Consider agent i such that (1 −αi )ωi ≤ (1 −α j )ω j for all j �= i , that is,
agent i’s contribution to the public good is the minimum and hence the reduction in the
public good provision level by agent i’s non-participation is the lowest among agents.
Theorem 1 says that if this agent’s value of the private good relative to the public
good is large enough (αi > α(n)), then she has a non-participation incentive and the
voluntary participation condition is violated. By Theorem 1, if the class of admissible
economies E contains a Cobb-Douglas utility economy satisfying the above condition,
then any Lindahl mechanism fails to satisfy voluntary participation on E.

Table 1 illustrates how the value of α(n) depends on the number of agents, n. Since
α(n) is strictly decreasing in n and limn→∞ α(n) = 0, the measure of the set of Cobb-
Douglas utility economies for which any Lindahl mechanism satisfies the voluntary
participation condition becomes smaller and converges to zero, as the number of agents
grows large.7 As Olson (1965) asserted, a public good would be less likely provided as
the size of an economy becomes larger. The above result verifies this conjecture from
the perspective of a participation incentive for any Lindahl mechanism in asymmetric
Cobb-Douglas economies.

A similar negative result holds for quasi-linear utility economies. Let E QL ≡{
((ui )i∈N , (ωi )i∈N )| ∀i ∈ N , ui (xi , y) = uβi

i (xi , y) = xi + βi ln y, βi ∈ (0, ωi )
}

be

7 The condition in Theorem 1 for which the voluntary participation condition is violated becomes identical
to that discussed in Saijo and Yamato (1999) if each agent has the same Cobb-Douglas utility function and
endowment.
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Table 1 The value of α(n)

n 2 3 4 5 10 50 100 500 1000

α(n) 0.50000 0.20246 0.11910 0.08186 0.02886 0.00357 0.00155 0.00024 0.00011

the class of quasi-linear utility economies. Here we assume that ωi > βi for each i to
ensure an interior solution. Such an economy is specified by a list of quasi-linear prefer-
ence parementers and endowments of n agents, (β, ω) ≡ ((β1, . . . , βn), (ω1, . . . , ωn))

such that βi ∈ (0, ωi ) and ωi ∈ (0, 1] for all i. In this case, the set of economies is
given by E QL ≡ {(β, ω) ∈ (0, 1)n × (0, 1]n : βi < ωi ,∀i}.
Theorem 2 Let (β, ω) ∈ E QL be an arbitrary quasi-linear utility economy. Any
Lindahl mechanism fails to satisfy voluntary participation for (β, ω) under µ.

Proof Fix any (β, ω) ∈ E QL . For each T ∈ P(N), it is easy to check there exists a
unique Lindahl equilibrium allocation at (βi , ωi )i∈T , which coincides with a unique
µ-equilibrium allocation of the mechanism when agents in T participate in it, given by
(
xT

i , yT
) =

(
ωi − βi ,

∑
j∈T β j

)
. Therefore, the difference between agent i’s utility

level when all agents participate in the mechanism and that when all agents except i
participate in it is given by

�ui (β) ≡ uβi
i

(
x N

i , yN
)

− uβi
i

(
ωi , yN−{i})

= βi

⎧
⎨

⎩
−1 + ln

⎡

⎣βi +
∑

j �=i

β j

⎤

⎦− ln

⎡

⎣
∑

j �=i

β j

⎤

⎦

⎫
⎬

⎭
. (4.2)

We will show that there exist some i such that �ui (β) < 0. Take i ∈ N such that
βi ≤ β j for all j �= i . Without loss of generality, let i = 1. Since (n−1)β1 ≤ ∑

j �=1 β j ,

�u1(β) ≤ β1

⎧
⎨

⎩
−1 + ln

⎡

⎣(1/(n − 1) + 1)
∑

j �=1

β j

⎤

⎦− ln

⎡

⎣
∑

j �=1

β j

⎤

⎦

⎫
⎬

⎭

= β1 {−1 + ln n − ln(n − 1)} .

Since the function ln n − ln(n − 1) is decreasing in n and ln 2 − ln 1 ≈ 0.693<1, it
follows from the above inequality that �u1(β) < 0 for n ≥ 2. Therefore, the voluntary
participation condition is violated. �

By Theorem 2, if the class of admissible economies E contains a quasi-linear utility
economy (β, ω) ∈ E QL , then any Lindahl mechanism fails to satisfy voluntary partic-
ipation on E. Notice that Theorem 2 holds without making any condition on parameters
of quasi-linear utility functions, on endowments, nor on the number of agents, except
that the endowment of each agent is large enough to guarantee an interior solution
(i.e., ωi > βi ). In this sense, the result for quasi-linear utility economies is stronger
than Theorem 1 for Cobb-Douglas utility economies.
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5 A participation incentive of each agent in a replica economy

In the previous section, we show that there exist Cobb-Douglas and quasi-linear utility
economies for which some agent fails to have a participation incentive in any Lindahl
mechanism, so that the mechanism does not satisfy the voluntary participation condi-
tion. In this section, we check whether or not each agent has a participation incentive
in any Lindahl mechanism in a replica of any given Cobb-Douglas or quasi-linear
utility economy. We will find that in a sufficiently large replica of any economy of
n-type agents, every type of agent has no participation incentive.

Let µ be any equilibrium correspondence, � be any Lindahl mechanism under
µ, and (α, ω) ∈ EC D be any Cobb-Douglas utility economy of n-type agents. Con-
sider the k-replica of this economy in which there are k agents of type (αi , ωi ) for each
i ∈ N . Denote the set of all kn agents in the k-replica economy by k N . Let

(
xk N

i , yk N
)

be the consumption bundle each agent of type (αi , ωi ) receives at the unique Lindahl
allocation for k N and yk N−{i} be the public good level at the unique Lindahl allocation
for k N − {i}. Also, let

�ui (α, ω, k) ≡ uαi
i

(
xk N

i , yk N
)

− uαi
i

(
ωi , yk N−{i})

be the difference between the utility level of each agent of type (αi , ωi ) when all
agents participate in the mechanism � and that when all agents except her, that is,
k − 1 agents of type (αi , ωi ) as well as k(n − 1) agents of other types participate in
� in the k-replica economy. If the mechanism � satisfies the voluntary participation
condition for the k-replica economy, then for any (α, ω) ∈ EC D and for any i ∈ N , we
must have �ui (α, ω, k) ≥ 0. However, we have the following negative result. Given
any n ≥ 2, any (α, ω) ∈ EC D , and any i ∈ N , let ki (α, ω) be the largest integer

less than or equal to eh(αi )(1 − αi )ωi/
{
(eh(αi ) − 1)

∑n
j=1 (1 − α j )ω j

}
, where e is

the base of the natural logarithm and h(αi ) ≡ αi ln αi/(αi − 1).

Theorem 3 Consider an arbitrary Lindahl mechanism � under µ. Given any n ≥ 2,
any (α, ω) ∈ EC D , and any i ∈ N ,�ui (α, ω, k) ≥ 0 for any positive integer
k ≤ ki (α, ω); and �ui (α, ω, k) < 0 for any positive integer k > ki (α, ω).

Proof It is not hard to check that
(
xk N

i , yk N
) =

(
αiωi , k

∑
j∈N (1 − α j )ω j

)
and

yk N−{i} = (k − 1)(1 − αi )ωi + k
∑

j �=i (1 − α j )ω j . Therefore,

�ui (α, ω, k) = αi ln αi

+(1 − αi )

⎧
⎨

⎩
ln

⎡

⎣k(1 − αi )ωi + k
∑

j �=i

(1 − α j )ω j

⎤

⎦

− ln

⎡

⎣(k − 1)(1 − αi )ωi + k
∑

j �=i

(1 − α j )ω j

⎤

⎦

⎫
⎬

⎭
.
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Fig. 3 Participation incentives in two-agent Cobb-Dogulas utiltiy economies with symmetric endowments

Let k∗
i (α, ω) be a value satisfying the equation �ui (α, ω, k∗

i (α, ω)) = 0. This equation
can rewritten as

ln

[
k∗

i (α, ω)(1 − αi )ωi + k∗
i (α, ω)

∑
j �=i (1 − α j )ω j

(k∗
i (α, ω) − 1)(1 − αi )ωi + k∗

i (α, ω)
∑

j �=i (1 − α j )ω j }

]

= h(αi ) = αi ln αi/(αi − 1).

Thus, k∗
i (α, ω) = eh(αi )(1 − αi )ωi/

{(
eh(αi ) − 1

)∑n
j=1 (1 − α j )ω j

}
. Notice that

�ui (α, ω, k) is strictly decreasing in k:

∂

∂k
�ui (α, ω, k) = − (1 − αi )

2ωi

k
[
(k − 1)(1 − αi )ωi + k

∑
j �=i (1 − α j )ω j

] < 0.

Therefore, �ui (α, ω, k)
<=
>

0 if and only if k
>=
<

k∗
i (α, ω). This implies the desired result.

�
Theorem 3 implies that for any Cobb-Douglas economy (α, ω) ∈ EC D , no agent

has a participation incentive in a sufficiently large replica of the economy. Figure 3
illustrates the result in Theorem 3 when there are n = 2 agents, each agent has the
same endowment, ω1 = ω2, and the number of replication is k = 1, 2, and 5. As
k increases, the region of preference parameters (α1, α2) for which �u1 < 0 and
�u2 < 0 becomes larger and it converges to the entire space (0, 1) × (0, 1). In other
words, the measure of the set of Cobb-Dogulas utility economies for which at least
one of two agents has a participation incentive vanishes as the replication size grows
large. That is, the participation incentive disappears in a large economy. This could be
interpreted as another support for Olson (1965) conjecture that a public good would
be less likely provided as the number of agents increases.

A similar negative result holds for quasi-linear preferences. Given a quasi-linear
utility economy (β, ω) ∈ E QL consisting of n-type agents, we consider the k-replica
of this economy in which there are k agents of type (βi , ωi ) for each i ∈ N . For each
agent of type (βi , ωi ), let
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�ui (β, ω, k) ≡ uβi
i

(
xk N

i , yk N
)

− uβi
i

(
ωi , yk N−{i})

where
(
xk N

i , yk N
)

is the consumption bundle each agent of type (βi , ωi ) receives at
the unique Lindahl allocation when all agents participate in a Lindahl mechanism
and yk N−{i} is the public good level produced at the unique Lindahl allocation when
all agents except one of agents of type (βi , ωi ) participate in the mechanism in the
k-replica economy. We have the following result:

Theorem 4 Consider an arbitrary Lindahl mechanism Γ under µ. Given any n ≥ 2,
any (β, ω) ∈ E QL , and any i ∈ N ,�ui (β, ω, 1)

>=
<

0 if and only if βi
>=
<

(e − 1)
∑

j �=i β j , where e is the base of the natural logarithm; and �ui (β, ω, k) < 0 for any
positive integer k ≥ 2.

Proof It is not difficult to see that
(
xk N

i , yk N
) =

(
ωi − βi , k

∑
j∈N β j

)
and yk N−{i} =

(k − 1)βi + k
∑

j �=i β j . Hence,

�ui (β, ω, k) = βi

⎧
⎨

⎩
−1 + ln

⎡

⎣kβi + k
∑

j �=i

β j

⎤

⎦− ln

⎡

⎣(k − 1)βi + k
∑

j �=i

β j

⎤

⎦

⎫
⎬

⎭
.

Let k∗
i (β, ω) be a value satisfying the equation �ui

(
β, ω, k∗

i (β, ω)
) = 0. This

equation can be rewritten as ln
[{

k∗
i (β, ω)βi + k∗

i (β, ω)
∑

j �=i β j

}
/
{
(k∗

i (β, ω) −1)βi+
k∗

i (β, ω)
∑

j �=i β j

}]
= 1. Therefore, k∗

i (β, ω) = eβi/{(e − 1)
∑n

j=1 β j }. Also, note

that �ui (β, ω, k) is strictly decreasing in k:

∂

∂k
�ui (β, ω, k) = − β2

i

k
[
(k − 1)βi + k

∑
j �=i β j

] < 0.

Hence, �ui (β, ω, k)
>=
<

0 if and only if k
<=
>

k∗
i (β, ω). Let k = 1. Then �ui (β, ω, 1)

>=
<

0

if and only if βi
>=
<

(e − 1)
∑

j �=i β j . On the other hand, if k ≥ 2, then k > k∗
i (β, ω) =

eβi/
{
(e − 1)

∑n
j=1 β j

}
, so that �ui (β, ω, k) < 0. �

Figure 4 illustrates the result in Theorem 4 for the case of two agents, n = 2 and
no replication, k = 1. In this case, it follows from Theorem 4 that �u1(β, ω, 1)

>=
<

0

if and only if β2
<=
>

β1/(e − 1) and �u2(β, ω, 1)
>=
<

0 if and only if β2
>=
<

(e − 1)β1.

Notice there is no possibility for which �ui (β, ω, 1) > 0 holds for all i ∈ {1, 2},
that is, both agents have participation incentives. In other words, the measure of the
set of economies for which the voluntary participation condition is satisfied is zero.
No replication of an economy is necessary to obtain this negative result. Moreover,
for the just k = 2-replica of any economy (β, ω) ∈ E QL ,�ui (β, ω, 2) < 0 holds for
any i ∈ {1, 2}, that is, no agent has a participation incentive. This negative conclusion
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Fig. 4 Participation incentives
in two-agent quasi-linear
economies: the k = 1-replica
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holds for at least two-replica of an arbitrary quasi-linear utility economy. In this sense,
the result for quasi-linear utility economies is stronger than that for Cobb-Douglas
utility economies.

6 Impossibility results on voluntary participation in general mechanisms

So far we have limited our attentions to Lindahl mechanisms, which satisfy individual
rationality and Pareto efficiency, in Cobb-Douglas and quasi-linear utility economies.
However, neither Pareto efficiency nor individual rationality is necessary to obtain a
negative result on voluntary participation. In this section, we consider a large class
of mechanisms that are necessarily neither individually rational nor Pareto efficient,
including the voluntary contribution mechanism. We establish impossibility results
that no mechanisms satisfy the voluntary participation condition on a sufficiently
large domain of economies.

6.1 The voluntary contribution mechanism

First, let us study the voluntary contribution mechanism that does not satisfy Pareto
efficiency when the equilibrium concept is Nash equilibrium. We will find that this
mechanism fails to meet the voluntary participation condition, even though the name
of the mechanism contains the term “voluntary”.

Definition 2 The voluntary contribution mechanism is a mechanism such that for all
T ∈ P(N) and i ∈ T, ST

i = [0, ωi ] and gT
i (s) = (

ωi − si,
∑

i∈T si
)

for s ∈ ST .

The above definition of the voluntary contribution mechanism is a generalization
of the usual one, in which all agents are supposed to participate, to the case in which
voluntary participation is allowed. When the equilibrium concept is Nash equilibrium,
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Fig. 5 The proof of Lemma 1
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ixi
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y min
N -{i}

y N

y

ui

each agent i selects her contribution out of her endowment to the provision of the pub-

lic good, si , to maximize her utility ui

(
ωi − si ,

∑
j∈T s j

)
, given contributions of the

other agents in T, (s j ) j∈T −{i} in the voluntary contribution mechanism.
We begin by proving the following result that is simple, but useful below. Let an

equilibrium correspondence µ be given.

Lemma 1 Suppose that a mechanism � and an economy (u, ω) satisfy the following
condition: for some (x N , yN ) ∈ gN ◦ µ�(eN ) and some i ∈ N,

yN − yN−{i}
min

ωi − x N
i

≤ MRSi

(
ωi , yN−{i}

min

)
, (6.1)

where M RSi

(
ωi , yN−{i}

min

)
≡ ∂ui

(
ωi ,y

N−{i}
min

)

∂xi
/

∂ui

(
ωi ,y

N−{i}
min

)

∂y is agent i’s marginal rate

of substitution at (ωi , yN−{i}
min ). Then the mechanism � fails to satisfy voluntary par-

ticipation for the economy (u, ω) under µ.

Proof The basic idea behind the proof is illustrated in Fig. 5 in which the horizontal
axis denotes agent i’s consumption level of private good xi , and the vertical axis stands
for the public good level, y. The above inequality (6.1) says that the slope of the line

going through Point A =
(
ωi , yN−{i}

min

)
and Point B =

(
ωi , yN−{i}

min

)
is smaller than or

equal to the slope of the tangent to agent i’s indifference curve, that is, the marginal rate

of substitution at B =
(
ωi , yN−{i}

min

)
. By strict quasi-concavity of ui , agent i strictly

prefers Point B to Point A, so that she fails to have the participation incentive in this
economy. �

The usefulness of Lemma 1 is that it is applicable to any mechanism and any
utility function form. Firs of all, we apply Lemma 1 to the voluntary contribution
mechanism and any Cobb-Douglas utility economy. In what follows, we assume that
for all i ∈ N ,
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ωi >
αi
∑

j �=i ω j

(1 − αi )
{

1 +∑
j �=i [α j/(1−α j )]

} (6.2)

to ensure an interior equilibrium.8 We have the following negative result:

Theorem 5 Let (α, ω) ∈ EC D be any Cobb-Douglas utility economy in which αi ≥
1/n for agent i such that ωi ≤ ω j for all j �= i .Then the voluntary contribution mech-
anism fails to satisfy voluntary participation for (α, ω) under the Nash equilibrium
correspondence.

The proof of Theorem 5 is in the appendix. Theorem 5 says that if the agent whose
endowment is the smallest has a sufficiently large value of the private good relative
to the public good (i.e., αi ≥ 1/n), then she loses her participation incentive in the
voluntary contribution mechanism. Notice that the region of αi for which the voluntary
participation condition is violated (that is, αi ≥ 1/n) expands as the number of agents
n grows larger. This result is interpretable as another support of Olson’s conjecture
that a public good would be less likely provided as the size of an economy becomes
larger.

A similar negative result holds for any quasi-linear utility economy. Given a quasi-
linear utility economy (β, ω) ∈ E QL and T ∈ P(N), let βT

max ≡ maxi∈T βi be the
maximal value of βi among the agents in T and MT ≡ {

i ∈ T | βi = βT
max

}
be the set

of agents who have the maximal value βT
max. If #MT ≥ 2, then there are multiple Nash

equilibrium allocations in which the public good level and the sum of contributions
by the agents belonging to MT are equal to βT

max.

Theorem 6 Let (β, ω) ∈ E QL be any quasi-linear utility economy in which either (i)
#M N ≥ 2 , or (ii) M N = {i} and βi < e · β

N−{i}
max , where e is the base of the natural

logarithm. Then the voluntary contribution mechanism fails to satisfy the voluntary
participation condition for (β, ω) under the Nash equilibrium correspondence.

The proof of Theorem 6 is in the appendix. Theorem 6 means the following. First,
when #M N ≥ 2, at least one agent in #M N , say agent 1, makes a positive contribution
at each of Nash equilibria. If agent 1 chooses non-participation, then her contribution
becomes zero, while the public good level is unchanged and provided by the other
agents in M N , so that agent 1 becomes better off.9 Second, when M N = {i}, there is
a unique equilibrium allocation in which the public good level is βi and only agent
i contributes βi to the public good. By deciding not to participate in the mechanism,
agent i does not have to make any contribution, whereas the public good level becomes

8 It is easy to check that each agent i’s contribution to the public good in the voluntary contribution
mechanism for a Cobb-Doulas utility economy (α, ω) ∈ EC D when all agents participate is provided by

ωi − x N
i = 1+∑ j �=i [α j /(1−α j )]

1+∑n

=1 [α
/(1−α
)]

(

ωi − αi
∑

j �=i ω j
(1−αi ){1+∑ j �=i [α j /(1−α j )]}

)

, i ∈ N ,

which is positive by (6.2), increasing in ωi , and decreasing in αi .
9 Notice that the mechanism does not satisfy the voluntary participation condition if in at least one of
equilibrium allocations, some agent loses a participation incentive. However, we have a stronger result: at
each of the equilibrium allocations, there is some agent who will not participate in the mechanism. See the
proof of Theorem 6.
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β
N−{i}
max . If this new public good level is sufficiently large (i.e., βi < e · β

N−{i}
max ), then

agent i has a non-participation incentive.
By Theorem 5 (resp. 6), if the class of admissible economies E contains a Cobb-

Douglas (resp. quasi-linear) utility economy satisfying the condition in the theorem,
then the voluntary contribution mechanism fails to satisfy the voluntary participation
condition on E.

6.2 General mechanisms

In this section we will consider a large class of mechanisms and show impossibility
results on voluntary participation in mechanisms in the class. First, we investigate the
case of two agents. We impose the following mild conditions on a mechanism.

Definition 3 The mechanism � satisfies non-emptiness for an economy e under µ if
for all T ∈ P(N), gT ◦µ�(eT ) �= Ø.

Definition 4 The mechanism � satisfies feasibility for an economy e under µ if for
all T ∈ P(N), gT ◦µ�(eT ) ⊆ AT .

Non-emptiness says that there should always exist an equilibrium. Feasibility
demands that every equilibrium allocation of the mechanism be feasible. Note that
we require feasibility only at equilibrium, but not out of equilibrium. Moreover, a
feasible mechanism does not necessarily satisfy individual feasibility (i.e., for all
T ∈ P(N) and all s ∈ ST , gT (s) ∈ �#T +1+ ) nor balancedness (i.e., for all T ∈ P(N)
and all s ∈ ST , gT (s) ∈ AT ).

Definition 5 The mechanism � satisfies the Robinson Crusoe condition for an econ-

omy e = (u, w) under µ if for all i ∈ N , if
(

x {i}
i , y{i}

)
∈ g{i} ◦ µ�(ei ), then

(
x {i}

i , y{i}
)

∈ Arg max
(xi ,y)∈A{i}

ui (xi , y).

The Robinson Crusoe condition means that if only one agent participates in the
mechanism, then she chooses an outcome that is best for her. Clearly, any Lindahl
mechanism and the voluntary contribution mechanism satisfy this condition.

We have the following two-agent impossibility theorems on voluntary participation:

Theorem 7 Let n = 2 and (α, ω) ∈ EC D be any Cobb-Douglas utility economy in
which αi > 0.5, i = 1, 2, and (1−α1)ω1 = (1−α2)ω2. If a mechanism satisfies non-
emptiness, feasibility, and the Robinson Crusoe condition for (α, ω) under µ, then it
fails to satisfy the voluntary participation condition for (α, ω) under µ.

Theorem 8 Let n = 2 and (β, ω) ∈ E QLbe any quasi-linear utility economy in which
βi < e1/2β j for agent i such that βi > β j , j �= i , where e is the base of the natu-
ral logarithm. If a mechanism satisfies non-emptiness, feasibility, and the Robinson
Crusoe condition for (β, ω) under µ, then it fails to satisfy the voluntary participation
condition for (β, ω) under µ.
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The proofs of Theorems 7 and 8 are in the appendix. Both Theorems 7 and 8 can
be applied to any mechanism, whereas the condition in Theorem 7 (resp. 8) for which
the voluntary participation condition is violated is stronger than that in Theorem 1
(resp. 2) focusing on any Lindahl mechanism as well as that in Theorem 5 (resp. 6) for
the voluntary contribution mechanism in the case of two agents with Cobb-Douglas
(resp. quasi-linear) utility economies.

Finally, we examine the general case of at least two agents. We introduce the fol-
lowing condition on a mechanism:

Definition 6 The mechanism � satisfies contribution monotonicity for an economy
e = (u, ω) under µ if for all

(
x N , yN

) ∈ gN ◦ µ�(eN ), all i ∈N, and all
(
x N−{i},

yN−{i}) ∈ gN−{i} ◦ µ�

(
eN−{i}

)
,
∑

j �=i ω j − x N
j ≤ ∑

j �=i ω j − x N−{i}
j .

Contribution monotonicity means the following. Suppose that n −1 agents except i
initially participate in the mechanism, and each of those n −1 participants contributes
ω j −x N−{i}

j of the private good to provide the public good at equilibrium. Now imagine
that the non-participant i also participates, so that the equilibrium contribution by each
of the previous n − 1 participants becomes ω j − x N

j . Then contribution monotonicity
requires that the sum of equilibrium contributions by the n − 1 participants should
not increase, that is,

∑
j �=i ω j − x N

j ≤ ∑
j �=i ω j − x N−{i}

j . Roughly speaking, contri-
bution monotonicity means that the burdens by participants in the mechanism do not
rise as the number of agents who choose participation become larger. It is not hard to
check that any Lindahl mechanism and the voluntary participation mechanism satisfy
contribution monotonicity for any Cobb-Douglas or quasi-linear utility economy.

By applying Lemma 1, we have the following impossibility result:

Theorem 9 Suppose that (i) a mechanism � satisfies non-emptiness, feasibility, and

contribution monotonicity for an economy (u, ω) under µ; and (ii) 1 ≤ ∂ui

(
ωi ,y

N−{i}
min

)

∂xi
/

∂ui

(
ωi ,y

N−{i}
min

)

∂y for some i. Then � fails to satisfy voluntary participation for (u, ω)

under µ.

The proof of Theorem 9 is in the appendix. By Theorem 9, there is no mecha-
nism satisfying non-emptiness, feasibility, contribution monotonicity, and voluntary
participation on a domain of economies E if E contains an economy (u, ω) satisfy-
ing the condition in Theorem 9. Theorem 9 is applicable to any mechanism and any
utility function, but the condition for which the voluntary condition is not satisfied is
stronger than that in Theorem 1 for Lindahl mechanisms and Cobb-Douglas utility
economies.10 This is because Theorem 1 is derived by comparing the utility level of
participation with that of non-participation directly, whereas Theorem 9 is obtained by

10 For any Lindahl mechanism and any Cobb-Dogulass economy, it is straightforward to check that the
condition (ii) in Theorem 9 holds if αi ≥ 1/(n − 1) for agent i such that (1 − αi )ωi ≤ (1 − α j )ω j for all
j �= i , which is stronger than the condition αi > α(n) in Theorem 1.
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using only local information on a utility function, i.e., the marginal rate substitution
(see Fig. 5 in Lemma 1).11

7 Concluding remarks

We see that the solutions to the free-rider problem, which have been proposed in
mechanism design theory, are not necessary solutions to the free-rider problem when
participation in mechanisms is voluntary. It is quite difficult or impossible to design
mechanisms with voluntary participation: any reasonable mechanism, including any
Lindhal mechanism and the voluntary contribution mechanism, fails to satisfy the vol-
untary participation condition on a sufficiently large domain of economies including
Cobb-Douglas or quasi-linear economies.

There are several open questions to examine. First, we assumed that preferences
and endowments are mutually known among agents, although the equilibrium notion
is arbitrary as long as it is consistent with the complete information assumption.12

It remains to investigate the voluntary participation problem when the agents do not
know the preferences of the others by using an equilibrium concept with incomplete
information such as Bayesian Nash equilibrium.

Second, we assumed that all agents can access the technology to the production of
the public good freely. Instead, if only the mechanism designer is able to use the pro-
duction technology and cancel a mechanism (that is, produce no public good) unless
all agents participate, then a mechanism satisfying the standard individual rational-
ity condition should work well. However, this is possible only if the designer have
enough power to force all agents not to produce the public good. It is an open question
to examine this issue.

Finally, Cason et al. (2002) and Cason et al. (2004) observed that cooperation has
emerged though spiteful behavior in their experiments on the voluntary contribution
mechanism with voluntary participation. Our theory in this paper suggests that no
cooperation will emerge. Reconciling theoretical results to experimental results is an
open area of our future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

11 On the other hand, for any Lindahl mechanism and any quasi-linear utility economy, it is easy to see
that the condition (ii) in Theorem 9 always holds regardless of the values of preference parameters, because

M RSi (ωi , yN−{i}
min ) = ∑

j �=i β j /βi ≥ n − 1 ≥ 1 for agent i such that βi ≤ β j for all j �= i . The result is
the same as that in Theorem 2, and Theorem 2 can be obtained as a corollary of Theorem 9, although the
proofs are quite different.
12 Nevertheless, even when the utility functions are privately known, a Nash equilibrium can be interpreted
as a rest point of the dynamic learning process (Hurwicz 1972). In fact, Nash equilibrium outcomes have
been observed in economic experiments even in incomplete information environments (Cason et al. 2006).
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Appendix

Proof of Theorem 5 Fix any (α, ω) ∈ EC D . For each T ∈ P(N ), it is easy to check
that there is a unique Nash equilibrium allocation of the voluntary contribution mech-
anism for (αi , ωi )i∈T when agents in T participate in it, given by

(
xT

i , yT
)

=
(

αi
∑


∈T ω


(1 − αi )
{
1 +∑


∈T [α
/(1−α
)]
} ,

∑

∈T ω


{
1 +∑


∈T [α
/(1−α
)]
}

)

for i ∈ T . Pick agent i such that ωi ≤ ω j for all j �= i . Since (n − 1)ωi ≤ ∑

j �=i
ω j ,

M RSi

(
ωi , yN−{i}

min

)
= αi

∑
j �=i ω j

ωi (1 − αi )
{

1 +∑
j �=i [α j/(1−α j )]

}

≥ αi (n − 1)

(1 − αi )
{

1 +∑
j �=i [α j/(1−α j )]

} .

Also,
yN −yN−{i}

min
ωi −x N

i
= 1{

1+∑ j �=i [α j /(1−α j )]
} . Therefore,

yN −yN−{i}
min

ωi −x N
i

≤ M RSi

(
ωi , yN−{i}

min

)

if αi ≥ 1/n. By Lemma 1, we have the desired result. �
Proof of Theorem 6 Fix any (β, ω) ∈ E QL . For each T ∈ P(N ), it is easy to check
that the set of Nash equilibrium allocations of the voluntary contribution mechanism
for (βi , ωi )i∈T when agents in T participate in it, gT ◦ µ�(eT ), is given by

{

((xi )i∈T , y) ∈ �#T +1+
∣
∣
∣ y =

∑

i∈T

(ωi − xi ) = βT
max, xi ∈

[
ωi − βT

max, ωi

]
,

∀i ∈ MT , x j = ω j ,∀ j /∈ MT

}

.

There are multiple Nash equilibria unless #MT = 1, but the equilibrium level of the
public good is always uniquely determined.

Let
(
(x N

i )i∈N , yN
) ∈ gN ◦ µ�(eN ) be given. First, suppose that #M N ≥ 2. Notice

that there is some agent i ∈ M N such that x N
i < ωi and yN = yN−{i} = βN

max. Since

M RSi

(
ωi , yN−{i}

min

)
= βN

max/βi = 1 > 0 = yN −yN−{i}
min

ωi −x N
i

, it follows from Lemma 1 that

the voluntary participation condition is not satisfied.
Second, suppose that M N = {i} and βi < e · β

N−{i}
max . Then x N

i = ωi − βN
max =

ωi − βi , yN = βN
max = βi , and yN−{i} = β

N−{i}
max . Since βi < e · β

N−{i}
max ,�ui (β) =

uβi
i

(
x N

i , yN
)−uβi

i

(
ωi , yN−{i}) = −βi

{
1 − ln

[
βi/β

N−{i}
max

]}
< 0. Thus we have the

desired result. �
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Proof of Theorem 7 Suppose by way of contradiction that the mechanism satisfies the
voluntary participation condition. It is easy to check that by the Robinson Crusoe
condition, a unique equilibrium allocation of the mechanism for one agent Cobb-
Douglas utility economy is given by (x {i}

i , y{i}) = (αiωi , (1 − αi )ωi ), i = 1, 2. Let
V ((ωi , y{ j}), uαi

i ) ≡ {
(xi , y) ∈ �2+

∣
∣ uαi

i (xi , y) ≥ uαi
i

(
ωi , y{ j})} be agent i’s weak

upper contour set at
(
ωi , y{ j}) for uαi

i , where
(
ωi , y{ j}) = (

ωi , (1 − α j )ω j
)

and

j �= i . Pick any
(

x {1,2}
1 , x {1,2}

2 , y{1,2}
)

∈ g{1,2} ◦ µ�

(
uα1

1 , uα2
2

)
. By the voluntary

participation condition,

(
x {1,2}

i , y{1,2}) ∈ V
((

ωi , y{ j}) , uαi
i

)
(i, j = 1, 2; j �= i). (6.3)

We claim that

∀(xi , y) ∈ V
((

ωi , y{ j}) , uαi
i

)
, 2xi + y > 2ωi (i, j = 1, 2; j �= i). (6.4)

Suppose that (6.4) does not hold. Then for some i and some (x̄i , ȳ) ∈ �2+, uαi
i (x̄i , ȳ) ≥

uαi
i

(
ωi , y{ j}) and 2x̄i + ȳ ≤ 2ωi . Let

(
x∗

i , y∗) be a maximizer of the utility function
uαi

i (xi , y) = αi ln xi +(1−αi ) ln y subject to the constraint 2xi + y ≤ 2ωi . It is easy to
see that

(
x∗

i , y∗) = (αiωi , 2(1 − αi ) ωi ) and uαi
i

(
x∗

i , y∗)−uαi
i

(
ωi , y{ j}) = αi ln αi +

(1−αi ) ln
(
2(1 − αi )ωi/(1 − α j )ω j

) = αi ln αi +(1−αi ) ln 2 < 0 since (1−αi )ωi =
(1−α j )ω j and αi > 0.5. Thus, uαi

i (x̄i , ȳ) ≥ uαi
i (ωi , y{ j}) > uαi

i

(
x∗

i , y∗), which con-
tradicts the fact that

(
x∗

i , y∗) is the maximizer of uαi
i (xi , y) subject to 2xi + y ≤ 2ωi .

However, by (6.3) and (6.4), x {1,2}
1 + x {1,2}

2 + y{1,2} > ω1 + ω2. This contradicts
the feasibility condition on the mechanism. �
Proof of Theorem 8 Suppose by way of contradiction that the mechanism satisfies the
voluntary participation condition. It is easy to see that by the Robinson Crusoe
condition, a unique equilibrium allocation of the mechanism for one agent quasi-

linear utility economy is given by
(

x {i}
i , y{i}

)
= (ωi − βi , βi ), i = 1, 2. Let

V
((

ωi , y{ j}) , uβi
i

)
≡
{
(xi , y) ∈ �2+

∣
∣ uβi

i (xi , y) ≥ uβi
i

(
ωi , y{ j})

}
be agent i’s weak

upper contour set at
(
ωi , y{ j}) for uβi

i , where
(
ωi , y{ j}) = (

ωi , β j
)

and j �= i . Pick

any
(

x {1,2}
1 , x {1,2}

2 , y{1,2}
)

∈ g{1,2} ◦ µ�(uβ1
1 , uβ2

2 ). By the voluntary participation

condition,

(
x {1,2}

i , y{1,2}) ∈ V
((

ωi , y{ j}) , uβi
i

)
(i, j = 1, 2; j �= i). (6.5)

We claim that

∀(xi , y) ∈ V
((

ωi , y{ j}) , uβi
i

)
, 2xi + y > 2ωi (i, j = 1, 2; j �= i). (6.6)

Suppose that (6.6) does not hold. Then for some and some (x̄i , ȳ) ∈ �2+, uβi
i (x̄i , ȳ) ≥

uβi
i

(
ωi , y{ j}) and 2x̄i + ȳ ≤ 2ωi . Let

(
x∗

i , y∗) be a maximizer of the utility function
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uβi
i (xi , y) = xi +βi ln y subject to the constraint 2xi + y ≤ 2ωi . It is easy to check that
(
x∗

i , y∗)=(ωi −βi/2, βi ) and uβi
i (x∗

i , y∗)−uβi
i (ωi , y{ j})=βi [−1/2+ln(βi/β j )]<0,

since βi < e1/2β j if βi > β j . Thus, uβi
i (x̄i , ȳ) ≥ uβi

i

(
ωi , y{ j}) > uβi

i

(
x∗

i , y∗), which
is a contradiction.

However, by (6.5) and (6.6), x {1,2}
1 + x {1,2}

2 + y{1,2} > ω1 + ω2. This contradicts
the feasibility condition on the mechanism. �
Proof of Theorem 9 By feasibility and contribution monotonicity, yN −(ωi − x N

i

) =
∑

j �=i (ω j − x N
j )≤ ∑

j �=i

(
ω j − x N−{i}

j

)
= yN−{i} for any

(
x N , yN

) ∈ gN ◦µ�(eN )

and any (x N−{i}, yN−{i}) ∈ gN−{i} ◦ µ�(eN−{i}). Therefore,
yN −yN−{i}

min
ωi −x N

i
≤ 1. Since

1 ≤ ∂ui (ωi ,y
N−{i}
min )

∂xi
/

∂ui (ωi ,y
N−{i}
min )

∂y , it follows from Lemma 1 that the voluntary partici-
pation condition is violated for (u, ω). �
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