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Abstract This paper provides sufficient conditions to ensure nonemptiness of
approximate cores of many-player games and symmetry of approximate core payoffs
(the equal treatment property). The conditions are: (a) essential superadditivity—an
option open to a group of players is to partition into smaller groups and realize the
worths of these groups and (b) small group effectiveness (SGE)—almost all gains
to collective activities can be realized by cooperation only within members of some
partition of players into relatively small groups. Another condition, small group neg-
ligibility (SGN), is introduced and shown to be equivalent to SGE. SGN dictates that
small groups of players cannot have significant effects on average (i.e., per capita)
payoffs of large populations; thus, SGN is a analogue, for games with a finite player
set, of the condition built into models with a continuum of player that sets of measure
zero can be ignored. SGE implies per capita boundedness (PCB), that the supremum
of average or per capita payoffs is uniformly bounded above. Further characterization
of SGE in terms of its relationship to PCB is provided. It is known that if SGE does
not hold, then approximate cores of many-player games may be empty. Examples
are developed to show that if SGE does not hold and if there are players of “scarce
types” (in other works, players with scarce attributes) then even if there is only a finite
number of types of players and approximate cores are non-empty, symmetry may be
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lost; moreover, even players of abundant types may be treated asymmetrically by the
core.
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1 Introduction

Since the classic early works of general equilibrium theory of Arrow and Debreu
(1954); Arrow and Hurwicz (1958), and McKenzie (1959), general equilibrium the-
ory has been at the foundations of economic theory. The theory has primarily focused
on economies with only private goods. Economies with (pure) public goods and other
externalities have also been important; see, for example, Lindahl (1958), Samuelson
(1954), Foley (1970), Mas-Colell (1980) and Hurwicz (1999). Yet, there are many
possible divergences of economies from these two classic models; there may be indi-
visibilities, non-monotonicities, and non-convexities. Also, public goods may be local
(subject to exclusion and/or congestion) or individuals may be social and gain enjoy-
ment from consuming and/or producing jointly with others, or there may be issues of
matching individuals with other individuals, and so on. Some divergences from the
classic models have been studied in the context of specific economic models but there
has been less research aimed at more broadly identifying essential characteristics of
models that undergird the notion of price-taking economic behavior.

It has been recognized for some time that price-taking behavior requires a large num-
ber of economic agents, even in private goods exchange economies. It has also been
recognized that in private goods economies with many agents, problems of noncon-
vexities disappear or become insignificant; some seminal contributions are Aumann
(1964), Shapley and Shubik (1966), Aumann and Shapley (1974), and, for economies
with production, Hurwicz and Uzawa (1977). More specifically, in a number of sit-
uations it has been shown that, in economies with many agents, cores are nonempty,
price-taking equilibria exist, and equilibrium outcomes are close to core outcomes,
where approximations, if any, become arbitrarily good as the economies become large.
For private goods economies, there are many contributions to this literature; a fairly
recent contribution is Hurwicz (1995). Study of this literature and other papers suggests
that there is some underlying set of properties driving the conclusion that economies
with many agents pass the cooperative-game-theoretic tests for competitiveness—
cores are nonempty, equilibria exist and equivalence of outcomes of in the core and
price-taking equilibrium outcomes holds.

For equivalence of the outcomes of cooperation and competition to hold, since price
taking equilibria have the equal treatment property (symmetry), it must be the case that
approximate cores treat similar players similarly or nearly equally. The equal treat-
ment property of cores for private goods economies has been studied in several papers,
for example, Shubik (1959), Green (1972) and Hildenbrand and Kirman (1973). The
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Cores of many-player games 133

equal treatment property of the core has also attracted much interest in economies
with clubs and/or local public goods; see for example Wooders (1980) and, for recent
results, Allouch and Wooders (2009).

This paper explores conditions for many-player games with side payments to
have nonempty approximate cores and for cores to converge to symmetric outcomes.
The convergence is in the sense that for large numbers of players, any distribution
of total payoff that is in the core treats similar players nearly equally, except for
possibly a small exceptional set of players. To obtain our results, we use the frame-
work of a pregame. A pregame consists of a compact metric space of player attri-
butes (sometimes called “player types”) and a function assigning a worth to any finite
list of attributes (repetitions allowed). A list of attributes is interpreted as a descrip-
tion of a possible group of players in terms of the attributes of the group members.
The framework is sufficiently broad to accommodate games derived from econo-
mies with indivisibilities, non-monotonicities, non-convexities, local public goods
and clubs.

The main conditions underlying our model and results are essential superadditivity
and small group effectiveness. Essential superadditivity ensures that an option open
to a group of players is to partition into smaller groups and realize the total payoffs
attainable in these groups. Small group effectiveness, (SGE), dictates that almost all
gains to collective activities can be realized by cooperation only within members of
some partition of players into relatively small groups. The relationship of SGE to
two other conditions, discussed below, and its usefulness in obtaining results for large
economies motivate the emphasis that we place on the concept.

The concept of small group negligibility (SGN), is introduced and shown to be
equivalent to SGE. SGN dictates that relatively small groups of players can have
only (vanishingly) small effects on the payoffs of large groups. SGN is an analogue,
for arbitrarily large (but finite) games of the condition implicit in continuum models
following Aumann (1964) that sets of players of measure zero can be ignored.

SGE implies per capita boundedness (PCB), the condition that the supremum of
average or per capita payoffs is uniformly bounded above. PCB is a very reasonable
condition; if PCB were not satisfied then, as the size of the total player population is
allowed to go to infinity, per capita payoffs could also go to infinity. With some further
restrictions on the model, PCB is also necessary and sufficient for our results; in partic-
ular, if the set of player types is finite and there are “many” players of each type, then
PCB (along with essential superadditivity) implies both nonemptiness of approximate
cores and their convergence to symmetric outcomes. Examples are developed to show
that with only PCB, however, if there are players of “scarce types” in the total player
set (in other works, players with scarce attributes), then the equal treatment property
of approximate cores may be lost, even if there is only a finite number of types of
players; moreover, even players of abundant types may be treated asymmetrically by
the core.

It is well known that if a coalition structure (a partition of players into groups)
associated with a payoff vector in the core has the property that there are two identical
players in two disjoint coalitions then the core must treat these two players equally;
a version of this result is shown in Wooders (1983). However, for the class of games
we consider it may be the case that there does not exist a core payoff with identical
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players in disjoint coalitions. Moreover, it may hold that the ε-core, for ε = 0, is
empty. In this paper we allow situations where per capita payoff may strictly contin-
ually increase as the number of players becomes large; in such situations, while it is
impossible for all outcomes in the exact core to have the equal treatment property, we
show that nevertheless most similar players are treated nearly equally by outcomes in
approximate cores.1

1.1 Some background for the model and results

The results in this paper grew out of research focusing on a special case—games with a
fixed distribution of a finite number of player types, or in other words, replica games.2

Moreover, the first results required that effective group sizes be uniformly bounded,
say by an integer B (strict small group effectiveness, SSGE, a special case of SGE).
Two examples are marriage models and soccer teams. Here we sketch the main ideas
of this work for two special cases with the hope to provide some insight into what
follows.

Let us first consider a very special example. Suppose all possible players are iden-
tical and any two-player group can cooperate and earn $1. Groups of other sizes are
worthless, but a larger group has open the possibility to form multiple two-player
groups. Any specification of the total number of players now determines a game—a
total player set and the worth of any subset of players. When as many two-person groups
as possible are formed from the total player set, there will be at most one player left-
over. For any even number of players greater than two, the core will be nonempty and
symmetric (easy to show), assigning each player $.50. If the total player set is ‘large’
then each player can be assigned nearly $.50 and this assignment will be in an approx-
imate core. There are many payoffs in the approximate core which treat some players
worse than average and other players better than average; but any approximate core
payoff vector (for close approximations) must assign most players nearly $.50 (which
is, hopefully, intuitive, and also not especially difficult to show for this example).

Let us next discuss games with T types of players, for some integer T . Let ZT+ denote
the T -fold Cartesian product of the non-negative integers. Let s = (s1, . . . , sT ) ∈ Z

T+
represent a group of players, where st ∈ Z+ denotes the number of players of type
t in the group. Let �(s) ∈ R+ be the total payoff that the group can realize, the
worth of the group. The pair (T, �), where � : Z

T+ → R+, is called a pregame
(with a finite number of types). For convenience, we will assume that the pregame
is essentially superadditive—that is, the worth of a group s is at least as great as the
worth of any “partition” of the group into subgroups s1, . . . , sK (s = ∑

sk); thus,

1 The total worth of a group p of n identical players, could be, for example, n − 1
n , so the per capita worth

would be 1 − 1
n2 . No (exact) core payoff vector would admit a partition of the total player set into two

disjoint coalitions.
2 The first working paper version of Wooders (1979) already provided statements and proofs of the results
discussed in this subsection. For the convenience of the reader, the results described in this subsection are
also proven in an Appendix.
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�(s) ≥ ∑
�(sk).3 Note that a pregame is not a game since no total player set is

specified.
Let rn = r(n1, . . . , nT ) ∈ Z

T+ be a vector listing an integer number of players of
each type t = 1, . . . , T , taken as a description of the total player set of a game. The
pair, � and rn, determines a game where, for each s ∈ Z

T+, s ≤ n, the worth of s is
given by �(s). From SSGE it follows that

max
r

�(rn)

r

exists. Let r∗ satisfy maxr
�(rn)

r = �(r∗n)
r∗ . It now holds that any game derived from

the pregame (T, �) with total player set �r∗n has a nonempty core for any positive
integer �. (For the convenience of the reader, a proof is provided in the Appendix.4)

Any positive integer r can be written as r = �r∗ + j where 0 ≤ j < r∗. Thus, any
game with the total player population described by r(n1, . . . , nT ), r ≥ r∗, contains
a largest subgame with player set described by �r∗(n1, . . . , nT ) for some integer �;
this subgame has a nonempty core. If r �= �r∗, then “left-over” players, described by
the vector j (n1, . . . , nT ) cause the core to be empty. But the number of left-overs is
bounded above by r∗ ∑

nt . Thus, given ε > 0, for large r , starting with a payoff vec-
tor in the core for a player set described by �r∗(n1, . . . , nT ), members of this player
set can each be “taxed” ε per capita and transfers can be made to left-over players to
create an outcome in the ε-core.

Now consider an outcome in the exact core of a game with player set described by
�r∗(n1, . . . , nT ) for some �r∗ > B, the bound on effective group sizes. An outcome
in the core will have the property that if one player is assigned a smaller payoff than
another player of the same type, then there will be a coalition, excluding the better-off
player, that can do better for all its members, which is a contradiction.5 It follows
easily that all players of type t must be assigned the same payoffs by an outcome in
the core. It also follows that ε-cores must treat most players of the same type nearly
equally. Here the argument is more complex but the basic ideas are intuitive. Given an
outcome in the ε-core, let the “poor” be those players treated significantly worse than
average and let the “rich” be those players treated significantly better than average.
The ε-core outcome can treat some of the poor very badly but the number of poor
players cannot be too large; otherwise, these players could join with some subset of
the middle class (neither rich nor poor) and improve upon the ε-core payoff vector.
The number of rich players is bounded by how much the poor and the middle class
can be discriminated against.

The results discussed above all rely on strict small group effectiveness, SSGE.
A beautiful feature of small group effectiveness, SGE, is that it allows us to approximate

3 One way that the group s may achieve its worth �(s) is by partitioning into subgroups, as in a club or
local public good economy, for example.
4 The arguments for this special case are already in Wooders (1979) and, for NTU games, in Wooders
(1983). See also Kovalenkov and Wooders (2003) for recent extensions for parameterized collections of
games.
5 See Proposition 1 in Section 5. SSGE, with more players of each type than the bound B on group sizes
implies that any outcome in the core will satisfy the conditions of that Proposition.
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games with a compact metric space of player types by replication games with a finite
number of player types satisfying SSGE. For our convergence results especially, the
approximations can become quite complex but nevertheless, the finite type replication
results for games satisfying SSGE underpin the general results. Another compelling
aspect of SGE is its close relationship to small group negligibility, SGN, and PCB. It is
hard to imagine an interesting economic model for which PCB would not be satisfied.

2 Games

We begin with some standard definitions from the theory of cooperative games with
side payments.

Let (N , v) be a pair consisting of a finite set N = {1, . . . , n}, called the player set,
and a function v, called the worth function, from subsets of N to the non-negative real
numbers with v(φ) = 0. The pair (N , v) is a game (with side payments). Nonempty
subsets of N are called groups.6

Let (N , v) be a game. Let δ ≥ 0 be a non-negative real number. Two players i and
j are δ-substitutes if for every group S with i /∈ S and j /∈ S, it holds that

|v(S ∪ {i}) − v(S ∪ { j})| ≤ δ.

A payoff vector for a game (N , v) is a vector x ∈ R
N . The payoff vector x is

feasible if

x(N )
def=

n∑

i=1

xi ≤
K∑

k=1

v(Sk) (2.1)

for some partition {S1, . . . , SK } of N .
Given ε ≥ 0, a payoff vector x is in the ε-core of the game if it is feasible and if,

for all groups S ⊂ N ,

x(S) ≥ v(S) − ε|S|.

Remark Our definition of feasibility ensures essential superadditivity, that is, an option
open to a group of players is to partition itself into subgroups and realize, in total, the
sum of the payoffs to the subgroups. As discussed at length in Wooders (2008), for
the study of ε-cores, we can replace condition (2.1) by the condition that

x(N ) ≤ vs(N ), (2.2)

where vs(N )
def= maxP

∑K
k=1 v(Sk) and P is the set of all partitions {Sk} of N . This

is without loss of generality because, with the definition of feasibility given by (2.1),

6 To state our assumptions on the model we use the term “groups” instead of “coalitions” as we interpret
the model as pertaining to socio-economic structures rather than to the cooperative behavior suggested by
the word “coalition”.
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for any ε ≥ 0 the ε-core of a game (N , v) is equal to the ε-core of the superadditive
cover game derived from (N , v).7

3 Pregames

Let (�, d) be a compact metric space of player attributes (or types) equipped with a
metric denoted by d. An element ω of � is interpreted as a description of a player. Let
f be a function from � to Z+. The support of f , denoted by support( f ), is defined
by

support( f ) = {ω ∈ � : f (ω) �= 0}.

A profile on � is a function f from � to Z+ with finite support, that is, |support( f )|,
the number of elements in the set support( f ), is finite. In interpretation, a profile f is
a description of a finite group of players in terms of the numbers of players of each
type in the group. Let F denote the set of all profiles on �. By the norm of a profile
f we shall mean the L1 vector norm:

‖ f ‖1
def=

∑

ω∈support( f )

f (ω).

A partition of a profile f is a collection of profiles { f k}, called subprofiles of f, satis-
fying the property that

∑
f k = f .

Definition 3.1 (A pregame) Let � be a function from the set of profiles F on �

to R+ with �(0) = 0, where 0 denotes the profile that is identically zero. The pair
(�,�) is called a pregame with worth function �.

In the definition of a pregame, the worth �( f ) shall be interpreted as the total payoff
a group of players, described by the profile f , can achieve by collective activities of
the group membership.

We require an assumption ensuring that players whose attributes are close in attri-
bute space are approximate substitutes for each other. To this end, we first define a
metric on the set of profiles F as follows: For any two profiles f, g, if ‖ f ‖1 �= ‖g‖1
define

dist( f, g)
def= max

ω1,ω2∈�
d(ω1, ω2) + 1.

If ‖ f ‖1 = ‖g‖1, let a = (a1, . . . , a‖ f ‖1) and b = (b1, . . . , b‖g‖1) be lists of the ele-
ments in support( f ) and support(g) with each element appearing as many times as its

7 The superadditive cover of a game (N , v) is the game (N , v∗) with, for each nonempty subset S ⊂
N , v∗(S)

def= maxP∈P

∑

Sk∈P
v(Sk ) where P = {S1, . . . , SK } is a partition of S and P is the set of all

partitions of S. See Wooders (2008) for further discussion.
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multiplicity. Let θ be a permutation of the components of the index set (1, . . . , ‖g‖1).
Define

dist( f, g)
def= min max d(ak, bθ(k))

where the maximum is over the index set (1, . . . , ‖g‖1) and the minimum is over all
permutations θ of the index set. It is easy to verify that dist is a metric on the set F .

Definition 3.2 (Substitution, STN) Given ε > 0 there is a δ(ε) > 0 such that if
dist( f, g) < δ(ε), then

∣
∣
∣
∣
�( f )

‖ f ‖1
− �(g)

‖g‖1

∣
∣
∣
∣ < ε. (3.1)

Substitution ensures that similar profiles have similar worths.
For ease in notation and without any loss of generality (we could instead require only

essential superadditivity), we will consider only superadditive pregames. A pregame
(�,�) is superadditive if

�( f ) = max
P∈P

∑

g∈P

�(g),

where P is the set of all partitions P of the profile f . We will also require, throughout
the following, that pregames satisfy STN (3.1).

Let us provide a simple example of a pregame based on the well known Shapley–
Shubik glove game.

Example 1 A glove pregame. Suppose there are two types of players, players who
each own a RH (right-hand) glove and players who each own a LH (left-hand) glove.
A (RH, LH) pair of gloves is worth $1.00. Formally, in the notation used above, let
� = {ω1, ω2} denote a set of attributes, where ω1 denotes the attribute “is endowed
with a RH glove” and ω2 denotes the attribute “is endowed with a LH glove”. In inter-
pretation, a profile f describes a group consisting of f (ω1) players with attribute ω1
and f (ω2) players with attribute ω2. Define �( f ) = min{ f (ω1), f (ω2)}. The pair
(�,�) is a pregame. Note that a pregame is not a game since we do not yet have a set
of players.

3.1 Induced games

Let N be a finite set and let α be a map from N into �, called an attribute function.
For any group S ⊂ N let prof(S, α) be the function with domain � defined by

prof(S, α)(ω)
def=

∣
∣
∣α−1(ω) ∩ S

∣
∣
∣ ;
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Cores of many-player games 139

thus, prof(S, α) is a function stating the number of players assigned each attribute in
the group S. For each S ⊂ N define

v(S)
def= �(prof(S, α)).

Then the pair (N , v) is a game induced by the pregame (�,�) and the attribute
function α or simply an induced game.

It is sometimes convenient, especially for cases where � is a finite set, to describe a
game induced by a pregame simply by a pair [n, �] where n is a profile (i.e., n ∈ F).
Let {ω1, . . . , ωT } denote the elements in support(n). Denote a total player set by
N = {(t, q) : t = 1, . . . , T and, for each t, q = 1, . . . , n(ωt )}. As above, the profile
of a subset S ⊂ N can be defined by its components,

prof(S)t = |{(t, q) : q = 1, . . . , n(ωt )} ∩ S}|

and the worth function v can also be defined as above.

Example 1 continued. Take as given the glove pregame described above in Example 1.
Let N denote a finite set, called the set of players, and let α be an attribute function from
N to �. In this example, the function α tells us whether player i ∈ N owns a RH glove
or a LH glove; if α(i) = ω1 then player i owns a RH glove and if α(i) = ω2 then player
i is owns a LH glove. Given α, the worth of a group of players S is determined by the
number of RH-LH glove pairs owned by the members of the group. Givenα and S ⊂ N ,
define prof (S, α) by its components prof(S, α)(ωi ) = ∣

∣S ∩ α−1(ωi )
∣
∣ , i = 1, 2,

simply a listing of the numbers of players with each attribute in the set S. For each
group S ⊂ N , define v(S) = �(prof(S, α)). The pair (N , v) is then a game induced
by the pregame.

3.2 Small group effectiveness, per capita boundedness, and small group negligibility

We first introduce the notion of per-capita boundedness, which simply bounds the
supremum of average (or, in other words, per-capita) payoffs of games derived from
a pregame.

Definition 3.3 (Per capita boundedness, PCB) A pregame (�,�) satisfies per capita
boundedness, PCB, if there is a constant C such that for all profiles f it holds that

�( f )

‖ f ‖1
≤ C, (3.2)

that is, per capita payoffs are bounded over all profiles f .
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PCB is itself too weak to ensure nonemptiness of approximate cores of many-player
games and core convergence.8 Our next condition ensures these results.9

Definition 3.4 (Small group effectiveness, SGE) A pregame (�,�) satisfies small
group effectiveness, SGE, if it is superadditive and if, given any real number ε > 0 ,
there is an integer η0(ε) such that for each profile f ∈ F , for some partition { f k}k of
f into subprofiles with

‖ f k‖1 ≤ η0(ε) for each subprofile f k in the partition

it holds that

�( f ) −
∑

k

�( f k) ≤ ε‖ f ‖1. (3.3)

Thus, for every profile f , almost all (within ε per capita) gains to collective activi-
ties can be realized by aggregating collective activities within groups of participants
bounded in size (by η0(ε)). Small group effectiveness is a natural relaxation of the
condition that all gains to collective activities can be realized by groups of players
uniformly bounded in size, now commonly called strict small group effectiveness.
Example 1 satisfies strict small group effectiveness while Example 2 below does not.

Example 2 A pregame satisfying SGE but not strict SGE. Let � = {ω}, so there is
only one attribute. For each profile f on �, let �( f ) = f (ω) − 1

‖ f ‖1
. Clearly the

pregame (�,�) satisfies PCB and also SGE but not strict small group effectiveness.

To further characterize SGE, we introduce another assumption limiting increas-
ing returns to group formation. Roughly, this condition dictates that relatively small
groups of players have only negligible effects on per-capita payoffs of large groups.
Although there may be hints at such a condition in the literature, its formulation, at
least for cooperative games, appears to be new to this paper and earlier working papers
due to this author.

Definition 3.5 (Small group negligibility, SGN) A pregame (�,�) satisfies small
group negligibility if it satisfies PCB and if, for any sequence of profiles { f ν} where

‖ f ν‖1 → ∞ as ν → ∞,

support( f ν) = support( f ν′
) for all ν and ν′ and

limν→∞ 1
‖ f ν‖1

f ν and limν→∞ �( f ν )
‖ f ν‖1

both exist,
(3.4)

8 For simple examples, suppose that there are only two types of players and all players of type 2 are
dummies—a player of type 2 adds nothing to the worth of any group of players. Suppose any two players
of type 1 can earn $1.00 but a third player of type 1 adds nothing. To demonstrate possible emptiness of the
core, suppose there are three players of type 1; then the core is empty. To demonstrate non-equal treatment,
suppose that there are only two players of type 1. Then any division of $1.00 is in the core.
9 This condition was introduced in Wooders (1992a, 1994). In the condition superadditivity could be relaxed
to essential superadditivity.
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Cores of many-player games 141

then, for any sequence of profiles {�ν} with

lim
ν→∞

‖�ν‖1

‖ f ν‖1
= 0, (3.5)

it holds that

limν→∞ �( f ν+�ν)
‖ f ν+�ν‖1

exists, and

limν→∞ �( f ν+�ν)
‖ f ν+�ν‖1

= limν→∞ �( f ν )
‖ f ν‖1

.

(3.6)

The property of small group negligibility appears quite mild. It simply ensures that
a small group of possibly distinct player types cannot significantly affect per capita
payoffs of large player sets.

Theorem 1 Equivalence of small group effectiveness, SGE, and small group negligi-
bility, SGN: Let (�,�) be a pregame. Then (�,�) satisfies SGE if and only if (�,�)

satisfies SGN.

Informally, Theorem 1 states that small groups are effective for the realization of
almost all gains to collective activities if and only if small groups become negligible
in many-player games.10 Small group negligibility is a natural condition for games
that can be approximated by games with an atomless continuum of players, since in
such games (for example, those in Aumann and Shapley 1974), sets of measure zero
are taken as unable to affect aggregates. Note that Theorem 1 does not require that |�|
be finite.

If we require that there are many substitutes for each player and only a finite num-
ber of player attributes, then, as shown in Wooders (1994, Theorem 4), there is an
equivalence between SGE and PCB. The following Theorem is an extension in that
in states that SGE implies PCB, even with a compact metric space of player attributes.
We first require a further definition.

Definition 3.6 (Thickness) Let (�,�) be a pregame with |�| = T for some finite
number T . Then, given a real number ρ ∈ (0, 1), the ρ-thick restriction of (�,�) is
the pregame (�,�ρ) with admissible profiles f required to satisfy the condition that
for each t = 1, . . . , T , either ft

‖ f ‖ > ρ or ft = 0.

Note that a sequence of profiles derived from the ρ-thick restriction of (�,�) does
not allow vanishingly small but positive percentages of players of any type.

Theorem 2 Relating SGE and PCB. Let (�,�) be a pregame.

(a) Suppose that (�,�) satisfies SGE. Then (�,�) satisfies PCB.

10 For some intuition behind this, consider the special case of a marriage model. Two person groups can
achieve all gains to collective activities but, if there are many players, no one or two player group can have
a significant effect on per capita worths of large player sets.
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(b) Suppose that � is a finite set and that (�,�) satisfies PCB. Then given any
ρ ∈ (0, 1), the ρ-thick restriction (�,�ρ) of (�,�) satisfies SGE.

If SGE is not satisfied, then small groups of players of scarce types can have major
impacts on per capita payoffs, which prevents the full equivalence of PCB and SGE
in the finite-type case. The partial equivalence of Theorem 2 (b) demonstrates that if
there are many substitutes for each player in a finite set of types, then the two con-
ditions are equivalent. Theorem 2 (b) could be relaxed to hold for a compact metric
space of player types, but then the statement of the Theorem would be more com-
plex. In particular, thickness would need to be redefined to require that there be many
near-substitutes (players with similar attributes) for each player in each admissible
profile and the argument would use substitution, STN. SGE strengthens PCB to allow
nonemptiness and convergence results for many-player games in which some types
of players appear in vanishingly small percentages.

4 Nonemptiness and equal treatment properties of cores of games
with many players

4.1 Nonemptiness

The following Theorem is an extension of the nonemptiness of approximate cores of
many-player games of Wooders (1992a,b). The framework of that paper required PCB
as part of the definition of a pregame. Since SGE implies PCB, when SGE is assumed
the assumption of PCB is not required.

Theorem 3 (Nonemptiness of approximate cores of many player games.) Let (�,�)

be a pregame satisfying SGE. Then:
Given any positive real number ε > 0 there is a positive real number ν(ε) such that,

for any induced game (N , v), if |N | > ν(ε) then the game has a nonempty ε-core.

4.2 Equal treatment properties

Since the equal treatment properties of approximate cores of games with many players
are easiest to state and understand for the case of a finite number of types, we first state
a result for this case and then proceed to the case of a compact metric space of player
types. The first theorem below states that, given a sufficiently small non-negative real
number ε, for any game with a finite set of player attributes (or types) any payoff
vector x in the ε-core of the game has the property that, for each type of player that
appears in sufficient abundance in the population, most players of that type are treated
approximately equally. Note that in interpretation of the theorem the numbers γ and
λ are to be thought of as ‘small’.

Theorem 4 (Near equal treatment of most players of the same type.) Let (�,�) be
a pregame where � = {ω1, . . . , ωT } is a finite set and assume that (�,�) satisfies
SGE. Then given any real numbers γ > 0, λ > 0 and δ > 0 there is a positive real
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number ε∗ and an integer η such that for each ε ∈ [0, ε∗] and for every profile n ∈ F
with ‖n‖1 > η, if x ∈ R

N is in the ε-core of the game [n, �] with player set

N = {(t, q) : t = 1, . . . , T and, for each t, q = 1, . . . , n(wt )}

then, for each t ∈ {1, . . . , T } with n(ωt )‖n‖1
≥ δ, it holds that

|{(t, q) : |xtq − zt | > γ }| < λn(ωt ),

where

zt = 1

n(ωt )

n(ωt )∑

q=1

xtq ,

the average payoff received by players of type t.

Note that the above result allows ‘scarce’ types; it is not required that all players
have many close substitutes. Some players could be quite exceptional—extremely
talented, handsome, and charismatic, or completely unable to dance the salsa, for
example. With SGE the following Corollary, which admits scarce types in its conclu-
sion, is a consequence of the total payoff to scarce types becoming small relative to
the total numbers of players.

Corollary 1 Let (�,�) be a pregame where � = {ω1, . . . , ωT } is a finite set and
assume that (�,�) satisfies SGE. Then given any real numbers γ > 0 and λ > 0
there is a positive real number ε∗ and an integer ρ such that for each ε ∈ [0, ε∗] and
for every profile n ∈ F with ‖n‖1 > ρ, if x is in the ε-core of the game [n, �] with
player set

N = {(t, q) : t = 1, . . . , T and, for each t, q = 1, . . . , n(ωt )}

then, for each t ∈ {1, . . . , T }, it holds that

|{(t, q) : |xtq − zt | > γ }| < λ‖n‖1, (4.1)

where

zt = 1

n(ωt )

n(ωt )∑

q=1

xtq ,

the average payoff received by players of type t.

Notice that in Corollary 1, the conclusion has an upper bound that depends on the
size ‖n‖1 of the total player set. If some type, say t ′, appears in only a small proportion
in the population, then it may be the case that for all players of this type |xt ′q −zt ′ | > γ .
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We stress that the Corollary, and Theorem 4 need not hold under the assumption of
only PCB; we refer the reader to Example 4 of the following section.

Our next result allows a compact metric space of player types. For ease of statement,
Theorem 5 extends Corollary 1. We leave the extension of Theorem 4 to the interested
reader.

Theorem 5 (Near equal-treatment of similar players.) Let � be a pregame satisfying
SGE. Then given any real numbers γ > 0 and λ > 0 there are real numbers ε∗ > 0
and δ > 0, integers T and ρ, and a partition of � into no more than T subsets,
say �1, . . . , �T , each contained in a ball of diameter less than δ, such that for each
ε ∈ [0, ε∗] and for every game (N , vα) induced by the pregame, if x ∈ R

N is in the
ε-core of the game (N , vα) and if |N | ≥ ρ, it holds that

|{i ∈ N : α(i) ∈ �t, |xi − zt | > γ }| < λ|N |,

where

zt = 1

|{i ∈ N : α(i) ∈ �t }|
∑

i∈N :α(i)∈�t

x i ,

the average payoff received by players with attributes in the set �t .

5 Inequality and the importance of alternative opportunities

The next example demonstrates that under the assumption of SGE players of scarce
types need not be treated approximately equally while the following example demon-
strates that, in the absence of thickness of the player set (ensuring many substitutes
for each player), even players of abundant types may be treated unequally.

Example 3 (Unequal treatment of scarce types.) Let (�,�) be a pregame where
|�| = 2 and the payoff �(n) to any profile n = (n1, n2) is given by:

�(n) =
⎧
⎨

⎩

n(ω1) + n(ω2) if n(ω1) ≥ 2
n(ω2) if n(ω1) = 0
0 otherwise.

Observe that the pregame satisfies SGE. Now consider a sequence of games (N ν, vν)

where the profile of N ν is given by n(ω1) = 2, n(ω2) = ν. Then for any ν, the payoff
vector assigning 0 to one player of type 1, 2 to the other player of type 1, and 1 to
each of the ν players of type 2 is in the core of the game (N ν, vν).

Given the equivalence, with thickness, of PCB and SGE, one might wonder whether
PCB would suffice to obtain the results of Theorem 4 or 5. The following example
illustrates that it will not. In the presence of small percentages of players of some types,
that is, without thickness of the total player set (when PCB is equivalent to SGE) the
result that players of abundant types are treated nearly equally may not hold.
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Example 4 (Without thickness, PCB does not imply equal treatment, even of players
of abundant types.) Let (�,�) be a pregame where � = {ω1, ω2} and the worth �(n)

to any profile n is given by:

�(n) =
⎧
⎨

⎩

n(ω1) + n(ω2)

0

if n(ω1) > 0, n(ω2) > 0

otherwise.

Now consider a sequence of games (N ν, vν) where the profile of N ν is denoted by
nν and satisfies nν(ω1) = 1, nν(ω2) = ν. Then given ν, consider a payoff vector
xν ∈ R

N ν
assigning xν

2q = q
ν

to the qth player of type 2, q = 1, . . . , ν, and assigning
1 + ν − ∑

q xν
2q to the one player of type 1. Then, for any ν, xν is in the core of the

game (N ν, vν). With some additional work, the same conclusion can be obtained for
approximate cores.

The following Proposition illustrates the importance of alternative opportunities
for equal treatment;

Proposition 1 Let (N , v) be a game and let x ∈ R
N be in the core of the game.

Suppose that there are two players i and j who are δ-substitutes for each other, for
some δ > 0, and also suppose that there are two disjoint groups S, S′ ⊂ N satisfying
i ∈ S, j ∈ S′ and x(S) = v(S), x(S′) = v(S′). Then it follows that

∣
∣xi − x j

∣
∣ ≤ δ.

Notice that in the above Proposition there is no need for any topological structure on
the set of player types. The key feature enabling the result is that there exist two disjoint
coalitions containing players i and j which can both achieve the core payoff vector x for
their members. The following Proposition also illustrates the effectiveness of disjoint
coalitions containing similar players – that is, there are alternative opportunities –
without any topological structure on the set of player types.11

Proposition 2 Let (N , v) be a game and let x ∈ R
N satisfy x(N ) ≤ v(N ) (so x

is a feasible payoff vector). Suppose that two players i and j are 0-substitutes for
each other, and also suppose that there are two disjoint groups S, S′ ⊂ N satisfy-
ing i ∈ S, j ∈ S′ and x(S) = v(S), x(S′) = v(S′). Suppose xi > x j and define
γ = xi − x j . Set εγ = γ

2|N | . Then for all ε ∈ [0, εγ ] the payoff vector x cannot be in
the ε-core of the game.

As one can see from Propositions 1 and 2, if there are alternative opportunities for
a player that do not require the participation of some substitute for that player, then
the player and his substitute must be treated equally or nearly equally. It is not always
the case, however, that such opportunities exist. In fact, while such opportunities
arise in models of local public good/club economies with many players, congestion
and one private good (cf., Wooders, 1980) they are not required for convergence of
the core to equal treatment (cf., Allouch and Wooders, 2008). Indeed, assumptions

11 Kovalenkov and Wooders (2001) provides related results for situations in which, instead of having an
underlying space of player types, the concept of δ-substitutes is used to treat similar players. For their
model, with “limited side payments,” approximate cores treat any two similar players nearly equally.
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commonly made on private goods exchange economies do not ensure the existence
of such opportunities. Thus, requiring the existence of alternative opportunities is a
severe restriction.

6 Relationships to prior literature on cooperative games with many players

Approximate cores of economies with quasi-linear utility functions were introduced
in Shapley and Shubik (1966), which showed that when the player set is replicated,
then, for all sufficiently large replications, approximate cores are nonempty.12 A con-
tribution by Owen (1975) is also relevant. In this paper, Owen demonstrates that
economies with linear production also generate totally balanced games. Hurwicz and
Uzawa (1977) demonstrate that aggregation over large numbers of production sets
yields approximate convexity. While approximate cores were studied in the context of
economies (for example, Kannai 1970, 1972), there were few results treating approx-
imate cores in the game-theoretic literature. Exceptions are Weber (1979, 1981) for
games with a continuum of players. To obtain his results, Weber introduced concepts
of balancedness for games with a continuum of players and demonstrated that, for
every ε > 0, the ε-core was nonempty—the continuum of players did not suffice to
obtain nonemptiness of the core.

Nonemptiness of approximate cores of TU games with many players, without bal-
ancedness assumptions, was initiated in Wooders (1979) under a condition of strict
small group effectiveness and first results on convergence of cores to equal treatment
cores were demonstrated for games with a fixed distribution of player types. Variations
of the condition have appeared in a number of papers of this author and her co-authors.
The nonemptiness results were extended to hold for NTU (and TU) games in Wooders
(1983). Shubik and Wooders (1982) applied Wooders (1979) results for TU games
satisfying PCB to demonstrate nonemptiness of approximate cores of games derived
from economies with production and with possibly multiple-membership clubs. For
the TU case, Wooders and Zame (1984) extended Wooders’ earlier results to hold with
a compact metric space of player types but, as it turns out, under the unnecessarily
restrictive assumption of boundedness of individual marginal contributions to coali-
tions. Numerous other papers have since considered nonemptiness of approximate
cores; see Kovalenkov and Wooders (2003) for a survey and Wooders (2008) for most
recent results for NTU games satisfying a condition of small group effectiveness.

The condition of small group effectiveness in this paper appeared in Wooders
(1992a,b). Both small group effectiveness and small group negligibility were intro-
duced in earlier working papers due to this author (cf. Wooders 1992a and references
therein).

As noted in the introduction, the study of equal treatment outcomes in cores of pri-
vate goods economies has a long history with some papers demonstrating that under
their conditions, cores have the equal treatment property (Debreu and Scarf, 1963, for

12 There has been vast literature on convergence of cores in models of economies, or ones where the worth
of a coalition is achieved by joining together commodities or attributes owned by its members. Except for
a few classic references here and in the introduction, we do not address this literature.
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example) and other papers demonstrating that under other conditions, cores do not have
the equal treatment property (Green, 1972, for example). Another paper, Khan and
Polemarchakis (1978) shows, roughly, that in some sense an arbitrary outcome in the
core of an economy is not likely to treat all individuals who are the same equally. They,
as much of this literature, however, address the issue of whether individuals who have
the same preferences and endowments will be assigned the same commodity bundles
by an outcome in the core. Our concern has been with the issue of whether similar indi-
viduals will be assigned similar utilities or payoffs by payoff vectors in the core. Our
results relate most, in spirit, to those of Hildenbrand and Kirman (1973) who show, as
we do (but for a different model and different formulations), “size removes inequality.”

7 Conclusion

This paper contributes to a line of research investigating the competitive-economy-
like properties of games with many players. The foundational papers of the early
literature noted in the introduction take as given specific economic models and study
their properties in depth. This paper contributes to a literature seeking to understand
competitive properties of games. These properties may be satisfied by a diversity of
economic models (subject to the constraint that utilities are linear in one commod-
ity), including economies with public good, clubs, coalition production, and so on.
Our results apply then to games derived from such economies, independently of fur-
ther specification of economic structures. A companion paper relates the results of
this paper to market-game equivalence, as in Shapley and Shubik (1969), but, as in
Wooders (1994), for many-player games.

Besides our approximate core convergence results, an important part of the paper is
demonstrating the equivalence of small group effectiveness and small group negligi-
bility. SGN is an appealing condition since it relates well to models with a continuum
of players. In such a model, it is implicit that sets of measure zero can be ignored.
SGN dictates that relatively small groups of players can have only small effects on
aggregate outcomes. Thus, SGN (or alternatively, SGE) arguably is a necessary con-
dition underlying the use of the continuum as an approximation to models with a large
but finite set of players.

Another important part of the paper is to reveal the importance of scarce player
types. With only the assumption of PCB, finiteness of the supremum of average payoff,
as in Wooders (1979) and Shubik and Wooders (1982), if some players have “few”
substitutes then even players who have many close substitutes may be almost all treated
far from the average for their types. Example 4, making this point within the context
of cooperative games with many players, is, to the best of our knowledge, unique to
this paper.

8 Appendix: Proofs

First, it is convenient to introduce some notational conventions. Given a profile n with
support {ω1, . . . , ωT }, as previously, to discuss payoff vectors in the core we must
have given a set of players rather than a list of numbers of players of each type. Thus,
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we let N = {(t, q) : t = 1, . . . , T and q = 1, . . . , n(ωT )} denote an associated total
player set. Similarly, for any positive integer r we denote the total player set of the
game [rn, �] by Nr = {(t, q) : t = 1, . . . , T and q = 1, . . . , rn(ωT )}. When we
consider a sequence of games, {[nν,�]}ν we denote the corresponding player sets by
N ν .

8.1 A sketch of the claims in subsection 1.1

We will now sketch the proof of core nonemptiness from Sect. 1.1. First, we introduce
balanced covers of games and pregames.

The balanced cover game generated by a game [n, �] is a game [n, �b] where

1. �b(s) = �(s) for all s �= n and
2. �b(n) ≥ �(n) and �b(n) is as small as possible consistent with the nonemptiness

of the core of [n, �b].
From the Bondareva–Shapley Theorem it follows that �b(n) = �(n) if and only

if the game [n, �] is balanced (ε-balanced, with ε = 0).
Let (�,�) be a pregame where � = {ω1, . . . , ωT }. For each profile f , define

a balanced collection of subprofiles of f as a collection of subprofiles {gk}k with
corresponding weights {γk : γk ≥ 0} satisfying

∑
k γk gk = f . The balanced cover

pregame, denoted by (�,�b) is the pregame with

�b( f )
def= max

β

∑

g∈β

γk�(gk), (8.1)

where the maximum is taken over all balanced collections β of subprofiles of f . Since
a partition of a profile is a balanced collection of subprofiles it is immediately clear
that �b( f ) ≥ �( f ) for every profile f .

With the above definitions in hand, we consider a pregame satisfying strict small
group effectiveness, SSGE, with bound B on effective group sizes. Formally, this
means that for any profile f there is a partition of f into subprofiles { f k} (repetitions

allowed) such that �( f ) =
�∑

k
�( f k) and ‖ f k‖ ≤ B for each f k in the partition.

Let a profile n be interpreted as the profile of an initially given player set and let
r be an integer sufficiently large so that rn(ωt ) > B for each t = 1, . . . , T . From
SSGE, there is a balanced collection of subprofiles of n, say {gk}k such that for some
corresponding weights {γ ∗

k }k it holds that ‖gk‖ ≤ B for each k and

�b(n) =
∑

k

γ ∗
k �(gk). (8.2)

Without loss of generality, we can suppose that all the weights γ ∗
k are rational num-

bers (Shapley 1967). Therefore there is an integer m0 such that m0γ
∗
k is an integer

for each γ ∗
k . Thus, there is a partition of n into subprofiles with m0γ

∗
k elements gk
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in the partition for each k; that is,
∑

k
(m0γ

∗
k )gk = n. From superadditivity and (8.2)

it follows that the games [rm0n, �] have nonempty cores for all positive integers r
(Wooders 1979; Wooders 1983).

For the convenience of the reader we state the results before presenting their proofs.
We first review the concept of balanced games, which will be used in the proofs.

8.2 Proof of Theorems 1 and 2

Given a pregame (�,�) let �b denote the balanced cover of � where, for each profile
n, �b(n) is defined as the smallest real number such that (N , vb) is the balanced cover
of (N , v) and (N , v) is the game induced by the pregame (�,�) and the profile n.

Theorem 1 (Equivalence of small group effectiveness, SGE, and small group neg-
ligibility, SGN): Let (�,�) be a pregame. Then (�,�) satisfies SGE if and only if
(�,�) satisfies SGN.

Proof Part 1: SGE implies SGN. We proceed by supposing the assertion is false.
Then there are sequences of profiles { f ν} and {�ν}, and, for some integer T, a subset
{ω1, . . . , ωT } ⊂ � and a function f : {w1, . . . , wT ζ → R such that

support( f ν) = {ω1, . . . , ωT } for each ν,
f ν (ωt )
‖ f ν‖1

converges to f (ωt ) for each ωt in {ω1, . . . , ωT },
limν→∞ ‖�ν‖1‖ f ν‖1

→ 0 as ν becomes large, and

limν→∞ �( f ν )
‖ f ν‖1

exists,

but either

lim
ν→∞

�( f ν + �ν)

‖ f ν + �ν‖1
does not exist,

or for some ε0 > 0 it holds that

∣
∣
∣
∣ lim
ν→∞

�( f ν + �ν)

‖ f ν + �ν‖1
− lim

ν→∞
�( f ν)

‖ f ν‖1

∣
∣
∣
∣ > 3ε0. (8.3)

For ease in notation for each ν define

gν = f ν + �ν.

Since (�,�) satisfies SGE there is an integer η(ε0) such that for each profile gν

there is a partition {gνk : k = 1, . . . , K } of gν satisfying

‖gνk‖1 ≤ η(ε0) for each k and

�(gν) −
K∑

k=1

�(gνk) ≤ ε0‖gν‖1.
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From the definition of gν there are at most ‖�ν‖ members of the partition {gνk} with
the property that support(gνk)∩ support (�ν) �= ∅. Thus, by renumbering profiles if
necessary we can suppose that for some integer K ′,

K ′ ≥ K − ‖�ν‖1,

support(gνk) ∩ support(�ν) = ∅ for all gνk with k ≤ K ′ and
K ′∑

k=1
gνk ≤ f ν .

From PCB (implied by SGE, from Theorem 2 below) and since, for each gνk,

η(ε0) ≥ ‖gνk‖1, it follows that there is a per capita bound C satisfying �‖gνk‖1
η(ε0)

< C

for all subprofiles {gνk}k and we have

�(gν) −
K ′
∑

k=1

�(gνk) − C‖�ν‖1η(ε0) < ε0‖gν‖1.

Since ‖�ν‖1‖ f ν‖1
→ 0 as ν → ∞ it follows that, for all sufficiently large ν,

C ‖�ν‖1‖ f ν‖1
η(ε0) < ε0‖gν‖1 and

0 ≤ �(gν) −
K ′
∑

k=1

�(gνk) < 2 ε0‖gν‖1.

Since
∑K ′

k=1 gνk ≤ f ν and from superadditivity it holds that
∑K ′

k=1 �(gνk) ≤ �( f ν)

and �(gν) ≥ �( f ν). Therefore,

0 ≤ �(gν) − �( f ν) < 2ε0‖gν‖1.

Since limν→∞ ‖�ν‖1‖ f ν‖1
→ 0, it follows that for all ν sufficiently large that

∣
∣
∣
∣
�(gν)

‖gν‖1
− �( f ν)

‖ f ν‖1

∣
∣
∣
∣ =

∣
∣
∣
∣
�( f ν + �ν)

‖ f ν + �ν‖1
− �( f ν)

‖ f ν‖1

∣
∣
∣
∣ < 3ε0,

a contradiction to (8.3).
Part 2: SGN implies SGE. Given a positive integer ν, a partition {gk}k of a profile

g will be ν-bounded if
∥
∥gk

∥
∥

1 < ν for each k. Suppose (�,�) satisfies SGN but does
not satisfy SGE. Then there is a positive real number ε0 > 0 and a sequence of profiles
{ f ν}ν such that for each integer ν, for every ν-bounded partition { f νk} of f ν it holds
that

�( f ν) −
∑

�( f νk) > 4ε0‖ f ν‖1. (8.4)

Let δ be a positive real number satisfying the property that whenever two profiles
f and g have dist( f, g) < δ, then ‖ f ‖1 = ‖g‖1 and |�( f ) − �(g)| < ε0‖ f ‖1; this
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is possible from STN (3.1). Let �, . . . , �T be a partition of � into nonempty subsets,
each contained in a ball of diameter less that δ, and for each t ∈ {1, . . . , T } let ωt be
a point in �t . For each profile f ν define the profile gν by

gν(ωt ) = ∑

ω ∈ support( f ν )∩�t

f ν(ω) and

gν(ω) = 0 for ω /∈ {ω1, . . . , ωT }.

Note that dist( f ν, gν) < δ so, from STN (3.1),

∣
∣�( f ν) − �(gν)

∣
∣ ≤ ε0

∥
∥ f ν

∥
∥

1 .

We can suppose without loss of generality that the sequence
{

1
‖gν‖1

gν
}

ν
converges,

say to g.
Observe that for some attributes ωt it may be the case that g(ωt ) = 0. We now

define another sequence {ĝν} as follows:

ĝν(ωt ) =
{

gν(ωt ) if g(ωt ) �= 0
0 otherwise.

Observe that from SGN, for all ν sufficiently large,

∣
∣�(gν) − �(ĝν)

∣
∣ < ε0

∥
∥gν

∥
∥

1

Since the pregame (�,�) satisfies PCB and since the sequence {ĝν} satisfies the
property that the percentages of players of each type that appears in positive propor-
tions in the game is bounded away from zero, we can now apply Wooders (1994,
Theorem 4) to the sequence {ĝν} and conclude that there is an integer η such that each
profile ĝν has a partition into subprofiles, say {ĝνk}K

k=1, with
∥
∥ĝνk

∥
∥

1 < η for each
k = 1, . . . , K and

∣
∣
∣
∣
∣
�(ĝν) −

K∑

k=1

�(ĝνk)

∣
∣
∣
∣
∣
< ε0

∥
∥ĝν

∥
∥

1 .

For each ν define a profile �ν on {ω1, . . . , ωT } by

�ν(ωt ) = gν(ωt ) −
K∑

k=1

ĝνk(ωt ).

Observe that for each t, �ν(ωt )‖gν‖1
→ 0 as ν → ∞. Thus, from SGN, for all ν sufficiently

large,

�(�ν) < ε0
∥
∥ĝν

∥
∥

1 .
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Let { f νk} be a partition of f ν into subprofiles where for k = 1, . . . , K , f νk = ĝνk

and for k > K , f νk satisfies
∥
∥ f νk

∥
∥ ≤ η and for each t ,

∑

k≥K+1

f νk(ωt ) = �ν(ωt ).

We now have

∣
∣
∣
∣
∣
�( f ν) −

∑

k

�( f νk)

∣
∣
∣
∣
∣

<
∣
∣�( f ν) − �(gν)

∣
∣ + ∣

∣�(gν) − �(ĝν)
∣
∣ +

∣
∣
∣
∣
∣
�(ĝν) −

K∑

k=1

�(ĝνk)

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

K∑

k=1

�(ĝνk) −
∑

k

�( f νk)

∣
∣
∣
∣
∣

< ε0
∥
∥ f ν

∥
∥

1 + ε0
∥
∥ f ν

∥
∥

1 + ε0
∥
∥ f ν

∥
∥

1 +
∣
∣
∣
∣
∣

∑

k>K

�( f νk)

∣
∣
∣
∣
∣

< 3ε0
∥
∥ f ν

∥
∥

1 + �(�ν)

< 4ε0
∥
∥ f ν

∥
∥

1 ,

which is a contradiction to (8.4). ��
Theorem 2 Relating SGE and PCB. Let (�,�) be a pregame.

(a) Suppose that (�,�) satisfies SGE. Then (�,�) satisfies PCB.
(b) Suppose that � is a finite set and that (�,�) satisfies PCB. Then given any

ρ ∈ (0, 1), the ρ-thick restriction (�,�ρ) of (�,�) satisfies SGE.

Proof In view of Wooders (1994, Theorem 4) we need only prove part (a) of the
theorem. To prove (a), given a pregame (�,�) satisfying SGE and ε0 > 0, let η(ε0)

satisfy the condition given in the definition of SGE.
Define

C ′ = max
{g∈F :‖g‖1≤η(ε0)}

�(g)

‖g‖1
.

It from some simple algebra that

sup
f

�( f )

‖ f ‖1
≤ ε0 + C ′.

which implies that ε0 + C ′ is a per capita bound. ��
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8.3 Proofs of equal treatment Theorems

The following Theorem, which appeared in Wooders (1979) and in Shubik and Wood-
ers (1982), will be used in the proof of our main results. For the purposes of the next
proof, we remark that for each type t the bound λr could be replaced by λrn(ωt ), the
number of players of type t in the r th game, since this would increase the size of an
upper bound and thus constitute a relaxation of the bound. Notice that this theorem
differs from Theorem 4 in that the theorem requires a fixed distribution of player types.

Theorem 6 (Wooders 1979; Shubik and Wooders 1982). Let � be a finite set with
|�| = T and let (�,�) be a pregame satisfying PCB. Let n be a given profile on �.
For any positive integer r , let

Nr
def= {(t, q) : t = 1, . . . , T and q = 1, . . . , rn(ωt )}.

Given any real numbers γ > 0 and λ > 0 there is a positive real number ε∗ and an
integer r∗ such that for each ε ∈ [0,ε∗] and for any r ≥ r∗, if x ∈ R

Nr is in the ε-core
of [rn, �], then for each t in support(n),

|{(t, q) : |xtq − zt | > γ }| < λr ,

where zt
def= 1

rn(ωt )

∑rn(ωt )
q=1 xtq , the average payoff received by players of type t.

Proof Let n be a profile over �. Given real numbers λ and γ greater than zero, select
ε∗, r∗ and r0 < r∗ so that:

(i) ε∗ > 0 and ε∗ < mint { λγ
4‖n‖1

,
γ n(ωt )
2‖n‖1

} where the minimum is over all t with
n(ωt ) �= 0;

(ii) for all r ≥ r0,

∣
∣
∣
�(rn)
r‖n‖1

− �b(r0n)
r0‖n‖1

∣
∣
∣ < ε∗;

(iii) ε∗r0
r∗ < λ

2‖n‖1
.

Since λ > 0 and γ > 0, and
∣
∣
∣
�(rn)
r‖n‖1

− �b(r0n)
r0‖n‖1

∣
∣
∣ → 0 as r0 → ∞ and r → ∞,

such a selection is possible. (This follows from the nonemptiness results of Wooders
1979, or 1983 restricted to TU games, and also from the market-game equivalence of
Wooders 1994.)

Select r ≥ r∗, let ε ∈ [0, ε∗], and let x be in the ε-core of [rn, �]. For each
t , define zt as in the statement of the Theorem. Since, for any ε ≥ 0, the ε-core is
convex, we have that the vector z = (z1, . . . , zT ) ∈ R

T , defined as in the statement
of the Theorem, represents a payoff vector in the equal-treatment ε-core of the game
[rn, �]. (Note that to obtain the vector z as a convex combination, for each type form
new payoff vectors by permuting the payoffs of players of that type and then take
the average of all the payoff vectors thus constructed.) It follows that for all profiles
s ≤ rn,

z · s ≥ �(s) − ε‖s‖1
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and

z · rn ≤ �(rn).

Thus, z represents a payoff vector in the equal-treatment ε -core of the game [rn, �].
Let Nr = {(t, q) : t = 1, . . . , T, q = 1, . . . , rn(ωt )}. It is convenient to establish

the convention that for each coalition S ⊂ Nr , St denotes the subset of players in S
of type t , i.e., St = {(t̂, q) : (t̂, q) ∈ S and t̂ = t} for each t = 1, . . . , T . We define
the profile of a coalition S by s ∈ Z

T+ with t th component given by |St | for each t .
Select a subset P of Nr so that the profile of P is r0n and P contains the “worst-off”

players of each type (the “poor”); thus, if (t, q) /∈ P then xtq ≥ xtq ′
for all q ′ with

(t, q ′) ∈ P . Define Pt = {(t ′, q) ∈ P : t ′ = t}. Suppose that, for some type t∗,

|P ∩ {(t∗, q) ∈ Nr : xt∗q < zt∗ − γ }| = r0n(ωt∗);

i.e. all players of type t∗ in P receive less than the average payoff for players of that
type minus γ . We then have

�b(r0n) − εr0‖n‖1 ≤ x(P) < r0(z · n) − γ r0n(ωt∗) ≤ r0
�(rn)

r
− γ r0n(ωt∗).

The first inequality follows from the fact that x in the ε -core of Nr . The second follows
from the facts that zt∗ ≥ xt∗q +γ for each q with (t∗, q) in Pt∗ and x(Pt ) ≤ r0zt n(ωt )

for each t . The final inequality is from the feasibility of z, that is, z · rn ≤ �(rn).
From the above inequality, the following inequality is immediate:

�b(r0n) − εr0‖n‖1 < r0
�(rn)

r
− γ r0n(ωt∗).

Subtracting �b(r0n) from both sides of the expression, adding γ r0n(ωt∗) to both
sides, and dividing by r0‖n‖1 we obtain

γ n(ωt∗)

‖n‖1
− ε <

�(rn)

‖rn‖1
− �b(r0n)

‖r0n‖1
.

From (i) above and the fact that ε ≤ ε∗, it holds that γ n(ωt∗ )

‖n‖1
−ε∗ > ε∗ which, along

with the preceding expression, implies that ε∗ <
�(rn)
‖rn‖1

− �b(r0n)
‖r0n‖1

, a contradiction to
(ii). Therefore, for each t∗ = 1, . . . , T it holds that

|P ∩ {(t∗, q) ∈ Nr : xt∗q < zt∗ − γ }| < r0n(ωt∗);

of the worst off players of type t∗, fewer than r0n(ωt∗) can be treated worse than the
average payoff for that type minus γ . This means that {(t, q) : xtq − zt < −γ } ⊂ P .
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From the facts that:

r0
�(rn)

r
− 2ε∗r0‖n‖1 ≤ �b(r0n) − ε∗r0‖n‖1 (from (ii)),

≤ x(P) (since x is in the ε∗-core),

≤ r0z · n (from the definition of P),

≤ r0
�(rn)

r
(from feasibility of x),

it follows that

0 ≤ r0z · n − x(P) ≤ 2ε∗r0‖n‖1. (8.5)

Informally, the above expression says that, for each t , on average players of type t in
P are receiving payoffs within 2ε∗ of zt .

We now turn to those players who are receiving payoffs significantly more (that is,
more than γ ) than the average for their types and put an upper bound on the number
of such players. Define the set of “best off” players (the “rich”) R by

R = {(t, q) ∈ Nr : xtq > zt + γ }.

Define the set of “middle class” players M by

M = Nr\(R ∪ P).

Observe that, since
∑

(t,q)∈Nr
(xtq − zt ) = 0, it follows that

γ |R| ≤
∑

(t,q)∈R

(xtq − zt ) =
∑

(t,q)∈P∪M

(zt − xtq).

From (8.5) and the above expression,

γ |R| < 2ε∗r0‖n‖1 +
∑

(t,q)∈M

(zt − xtq).

Obviously, the larger the value of
∑

(t,q)∈M (zt − xtq), the larger it is possible for
|R| to be. We claim that

∑
(t,q)∈M (zt − xtq) ≤ 2ε∗|M |. This follows from the fact

that the players in P are the worst off, and they are, on average, each within 2ε∗ of the
average payoff for their types. Since those players in M are at least as well off, they
must receive on average no less than the average for their types minus 2ε∗. Therefore,∑

(t,q)∈M (zt − xtq) ≤ 2ε∗|M |. It now follows that

γ |R| ≤ 2ε∗r0‖n‖1 + 2ε∗|M |.
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From |M | + |R| = r‖n‖1 − r0‖n‖1, |M | ≤ r‖n‖1 − r0‖n‖1, and

γ |R| ≤ 2ε∗r0‖n‖1 + 2ε∗(r‖n‖1 − r0‖n‖1) ≤ 2ε∗r‖n‖1,

it follows that |R|
r‖n‖1

≤ 2 ε∗
γ

and from (i), that |R|
r‖n‖1

≤ λ
2‖n‖1

.

Counting the number of players who may be treated significantly differently than
the average we see that:

|P|
‖rn‖1

+ |R|
‖rn‖1

≤ ε∗r0

r
+ λ

2‖n‖ <
λ

‖n‖ from (i) and (iii) above.

The conclusion of the Theorem is immediate from the observation that if x is in the
ε-core of rn for r ≥ r∗ and 0 ≤ ε ≤ ε∗, then x is in the ε∗-core of rn. ��
Theorem 4 (Near equal treatment of players of the same type.) Let (�,�) be a pre-
game where � = {ω1, . . . , ωT } is a finite set and assume that (�,�) satisfies SGE.
Then given any real numbers γ > 0, λ > 0 and δ > 0 there is a positive real number
ε∗ and an integer η such that for each ε ∈ [0, ε∗] and for every profile n ∈ F with
‖n‖1 > η, if x ∈ R

N is in the ε-core of the game [n, �] with player set

N = {(t, q) : t = 1, . . . , T and, for each t, q = 1, . . . , nt }

then for each t ∈ {1, . . . , T } with n(ωt )‖n‖1
≥ δ it holds that

|{(t, q) : |xtq − zt | > γ }| < λn(ωt ),

where

zt = 1

n(ωt )

n(ωt )∑

q=1

xtq ,

the average payoff received by players of type t.

Proof of Theorem 4 Suppose the statement of the Theorem is false. Then there is a
pregame (�,�), where � = {ω1, . . . , ωT } for some T, satisfying the condition of
SGE, and real numbers γ > 0 and λ > 0 such that: for every integer ν and every
positive real number εν there is a real number ε ∈ [0, εν], a game [nν,�] and a payoff
vector xν ∈ R

N ν
in the ε-core of the game with the property that, for some t with

nν (ωt )‖nν‖1
> δ,

∣
∣{(t, q) : q = 1, . . . , nν(ωt ) and

∣
∣xtq

ν − zt
ν

∣
∣ > γ }∣∣ > λnν(ωt ),

where zt
ν

def= 1
nν (ωt )

∑n(ωt )
q=1 xtq

ν , the average payoff received by players of type t .
[As a guide to the reader, the basic strategy of the following is to first describe

all sufficiently large games in the sequence {[nν,�]}ν as replica games plus some
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‘leftovers.’ The leftovers will constitute only a small fraction of the total player set.
Moreover, by Theorem 1, their effects on per capita payoff of large groups they might
join become small as the games grow in size. Thus, any approximate core payoff vec-
tor for a sufficiently large game must also be an approximate core payoff vector—for
a slightly less close approximation—for the subgame consisting of a large replica of
some player set.]

By passing, if necessary, to a subsequence of the sequence of games {[nν,�]}, we

can without loss of generality assume that for each ωt ∈ � the sequence
{

1
‖nν‖1

nν(ωt )
}

converges. Define

nt = lim
ν→∞

1

‖nν‖1
nν(ωt ).

By relabelling points in � we can assume that for some T ′ ≤ T it holds that nt > 0
for t = 1, . . . , T ′ and nt = 0 for t = T ′ + 1, . . . , T . We can similarly suppose (since
SGE implies PCB) that the sequence {�(nν )

‖nν‖1
} converges.

Let {hν} be a sequence of profiles on � with the properties that:

1. ‖hν‖1 → ∞.
2. For each t ∈ {1, . . . , T ′}, limν→∞ 1

‖hν‖1
hν(ωt ) = nt and for each t ∈ {T ′ +

1, . . . , T } and each ν, hν
t = 0.

3. For each t ∈ {1, . . . , T ′}, hν(ωt ) ≤ nν(ωt ) and limν→∞ hν (ωt )
nν (ωt )

= 0.

Now for each ν consider the sequence of induced games {[rhν,�]}∞r=1. Note that
this sequence satisfies the conditions of Theorem 6. Let ε̂ν > 0 be a positive real
number and let r̂ν be an integer such that for each ε ∈ [0, ε̂ν] and for any r ≥ r̂ν , if
y ∈ R

N̂ ν
is in the ε-core of [rhν,�], with total player set denoted by N̂ ν

r = {(t, q) :
t = 1, . . . , T, q = 1, . . . , rhν(ωt )}, then for each t ∈ {1, . . . , T ′}

|{(t, q) ∈ N̂ ν
r : q = 1, . . . , rhν(ωt ) and |ytq − ẑt

ν | >
γ
2 }| < λ

2 rhν
t ,

where ẑt
ν

def= 1
rhν (ωt )

∑rhν (ωt )
q=1 ytq , the average payoff assigned by y to players of type

t in the player set N̂ ν .
Next, let mν be the largest integer such that mνhν(ωt ) ≤ nν(ωt ) for each t =

1, . . . , T ′. Since for each t, hν (ωt )
mν

→ 0 as ν → ∞ (from 3.) for all ν sufficiently
large, say ν ≥ ν∗, it holds that mν ≥ r̂ν . Thus, for all sufficiently large games in
the sequence {[mνhν,�]}ν , the conclusion of Theorem 6 holds. That is, there is an
integer ν∗ and a positive real number ε̃ν such that for each ε ∈ [0, ε̃ν] and for any
ν ≥ ν∗, if y ∈ R

Ñ ν
is in the ε-core of [mνhν,�], (with total player set denoted by

Ñ ν = {(t, q) : t = 1, . . . , T, q = 1, . . . , mνhν(ωt )},) then for each t ∈ {1, . . . , T ′}
|{(t, q) ∈ Ñ ν : |ytq − z̃t

ν | >
γ
2 }| < λ

2 mνhν
t , where z̃t

ν
def= 1

mνhν (ωt )

∑mνhν (ωt )
q=1 ytq , the

average payoff assigned by y to players of type t in the player set Ñ ν .
For each ν, let ε∗

ν = min{̃εν,
γ
2 }.
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Let �ν be a profile satisfying the property that for each t ∈ {1, . . . , T },

mνhν(ωt ) + �ν(ωt ) = nν(ωt );

in terms of our informal discussion of the proof, the profile �ν represents the ‘leftovers.’
Observe that limν

mνhν (ωt )+�ν(ωt )‖mνhν+�ν‖1
= nt and that limν

�ν(ωt )‖mνhν+�ν‖1
= 0. It follows from

Theorem 1 that

lim
ν→∞

�(nν)

‖nν‖1
= lim

ν→∞
�(mνhν + �ν)

‖mνhν + �ν‖1
= lim

ν→∞
�(mνhν)

‖mνhν‖1
.

By passing to a subsequence and re-numbering if necessary, we can suppose that
for each ν sufficiently large, say ν ≥ ν∗,

∣
∣
∣
∣

�(nν)

‖mνhν‖1
− �(mνhν)

‖mνhν‖1

∣
∣
∣
∣ ≤ ε∗

ν

2
. (8.6)

Let ν0 be sufficiently large so that for all ν ≥ ν0 it holds that

∑T
t �ν(ωt )

nν (ωt )
≤ λ

2

Select ν ≥ max{ν∗, ν0}, an ε ∈
[
0,

ε∗
ν

2

]
, and a payoff vector xν ∈ R

N ν
be in the ε-core

of the induced game [nν,�] with player set denoted by N ν = {(t, q) : t = 1, . . . , T
and, for each t, q = 1, . . . , nν(ωt )} so that

∣
∣{(t, q) ∈ N ν : q = 1, . . . , nν

t and
∣
∣xtq

ν − zν
t

∣
∣ > γ }∣∣ > λnν(ωt ),

where zν
t = 1

n(ωt )

∑nt (ωt )
q=1 xtq

ν . From our initial supposition, such a selection is possible.
Let N ν

0 be a subset of N ν with profile equal to mνhν . We claim that, for each
t ∈ {1, . . . , T ′} it holds that

∣
∣
∣
{
(t, q) ∈ N ν

0 : |xtq
ν − zν

t | >
γ

2

}∣
∣
∣ <

λ

2
nν(ωt ) (8.7)

where again zt
ν = 1

nν (ωt )

∑nν (ωt )
q=1 xtq

ν . Since x is in the ε-core for ε ∈
[
0,

ε∗
ν

2

]
, the

payoff vector x∗
ν defined by x∗tq

ν = xtq
ν − ε∗

ν

2 (≥ xtq
ν − γ

2 ) for each (t, q) ∈ N ν
0 and

x∗tq

ν = xtq
ν otherwise, is in the ε′-core for ε′ = ε + ε∗

ν

2 ≤ ε∗
ν . This holds since x∗

cannot be ε′ improved upon by any coalition by at least ε′ and because, from (8.6)
and the fact that x is in the ε-core of the game [nν,�], and thus feasible for the total
player set N ν ,

x∗
ν (N ν

0 ) = x(N ν
0 ) − ε∗

ν

2

∣
∣N ν

0

∣
∣ ≤ �(nν) − ε∗

ν

2

∣
∣N ν

0

∣
∣ ≤ �(mνhν),
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which implies that (x∗tq
ν : (t, q) ∈ N ν

0 ) is feasible for N ν
0 . Thus, for the subgame with

player set N ν
0 , (8.7) holds.

We now have, given t ′ ∈ {1, . . . , T ′},

(a) |{(t, q) ∈ N ν : t = t ′, q = 1, . . . , nν
t , |xtq

ν − zt
ν | > γ }|

(b) ≤ |{(t, q) ∈ N ν
0 : t = t ′, q = 1, . . . , nν(ωt ), |xtq

ν − zt
ν | >

γ
2 + ε∗

ν

2 }| + nν(ωt )−
mνnν(ωt )

(c) =|{(t, q) ∈ N ν
0 : t = t ′, q =1, . . . , nν(ωt ), |(xtq

ν − ε∗
ν

2 )−(zt
ν − ε∗

ν

2 )|> γ
2 + ε∗

ν

2 }|+ λ
2

(d) ≤ |{(t, q) ∈ N ν
0 : t = t ′, q = 1, . . . , nν(ωt ), |x∗tq

ν − zt
ν + ε∗

ν

2 | >
γ
2 + ε∗

ν

2 }| + λ
2

(e) ≤ |{(t, q) ∈ N ν
0 : |x∗tq

ν − zt
ν | >

γ
2 }| + λ

2

(f) ≤ (
λ
2 + λ

2

)
nν(ωt ) = λnν(ωt )

where (a) follows from our supposition, (b) follows from the choice of ε∗
ν ≥ γ

2 and the

fact that the constraining value γ
2 + ε∗

ν

2 is less than or equal to γ , (c) is simple algebra,

(d) follows from the definition of x∗tq
ν = xtq

ν − ε∗
ν

2 , (e) follows from the properties
of the absolute value, and (f) follows from (8.7) and the fact that |N ν | ≥ ∣

∣N ν
0

∣
∣. This

gives us the desired contradiction and completes the proof. ��
Theorem 5 (Near equal treatment of similar players.) Let � be a pregame satisfying
SGE. Then given any real numbers γ > 0 and λ > 0 there are real numbers ε∗ > 0
and δ > 0, integers T and ρ, and a partition of � into no more than T subsets,
say �1, . . . , �T , each contained in a ball of diameter less than δ, such that for each
ε ∈ [0, ε∗] and for every game (N , vα) induced by the pregame, if x ∈ R

N is in the
ε-core of the game (N , vα) and if |N | ≥ ρ, it holds that

|{i ∈ N : α(i) ∈ �t, |xi − zt | > γ }| < λ|N |,

where

zt = 1

|{i ∈ N : α(i) ∈ �t }|

⎛

⎝
∑

i∈N :α(i)∈�t

x i

⎞

⎠ ,

the average payoff received by players with attributes in the set �t .

Proof of Theorem5 From (3.1), given any ε > 0 there is a positive real number
δ(ε) such that whenever f and g are profiles satisfying dist ( f, g) < δ(ε) then∣
∣
∣
�( f )
‖ f ‖1

− �(g)
‖g‖1

∣
∣
∣ < ε. It follows that given δ(ε) we can partition � into a finite number

of subsets, say {�t }T (ε)
t=1 , each contained in a ball of diameter less than δ(ε), and in

any game induced by the pregame, players with attributes in �t are δ(ε)-substitutes
for each other. In addition, we can select a finite number of points in �, say

�(ε) := {ωt }T (ε)
t=1 ,
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with ωt ∈ �t for each t = 1, . . . , T (ε), such that for every profile f there is a profile

g with the support of g contained in �(ε) and with
∣
∣
∣
�( f )
‖ f ‖1

− �(g)
‖g‖1

∣
∣
∣ < ε. Given ε > 0

let (�(ε),�) denote the pregame determined by �(ε) and � with the domain of �

restricted to profiles with support in �(ε).
Given λ and γ let ε∗ be a positive real number, let δ(ε∗) and �(ε∗) satisfy the prop-

erties required in the preceding paragraph, and let ρ be an integer with the property
that: For any game (N , v) induced from the pregame (�(ε∗),�) with |N | > ρ, and
for any ε ∈ [

0, 2ε∗], if x is in the ε-core of the game then it holds that

|{i ∈ N : α(i) ∈ �t and |xi − ẑt | > γ }| < λ |N | ,

where ẑt = 1
|{i∈N :α(i)∈�t }|

∑
i∈N :α(i)∈�t

x i .
Now let (N , v) be a game induced by the pregame (�,�) and an attribute function

α. Let n denote the profile of N (given the attribute function α). Define a new attribute
function α′ as follows: For each �t define

α′(i) = ωt for all i ∈ N with α(i) ∈ �t .

Let n′ denote the profile of N under the attribute function α′, and let (N , v′) be the
game induced by the pregame and the attribute function α′. Given ε ∈ [0, ε∗], let
x ∈ R

N be in the ε-core of (N , v). Define the payoff vector y by yi = xi − ε∗.
Observe that y must be feasible for (N , v′), since x(N ) ≤ v(N ), dist (n, n′) < δ(ε∗)
and

∣
∣
∣
∣
�(n)

‖n‖1
− �(n′)

‖n′‖1

∣
∣
∣
∣ < ε∗

implies y(N ) = x(N ) − ε∗ |N | ≤ �(n) − ε∗ |N | ≤ �(n′) = v′(N ). Also, x(S) ≥
v(S) − ε |S| implies that y(S) ≥ v′(S) − (ε + ε∗) |S|. This implies that y is in the
(ε + ε∗)-core of (N , v′). Since ε + ε∗ ≤ 2ε∗, for each t with

∣
∣α−1(N ) ∩ �t

∣
∣ ≥ ρ it

holds that

|{i ∈ N : |yi − z′
t | > γ }| < λ|N |,

where z′
t = 1

|i∈N :α−1(N )∩�t | (
∑

i∈N : α(i)∈�t
yi ), the average payoff received by players

with attributes in the set �t , t = 1, . . . , T (ε∗). From the above inequality it follows
that

|{i ∈ N , α(i) ∈ �t : |xi − zt )| > γ }| < λ|N |
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where

zt = 1
∣
∣i ∈ N : α−1(N ) ∩ �t

∣
∣

⎛

⎝
∑

i∈N : α(i)∈�t

x i

⎞

⎠

= 1
∣
∣i ∈ N : α−1(N ) ∩ �t

∣
∣

⎛

⎝
∑

i∈N : α(i)∈�t

yi + ε

⎞

⎠

= ẑt + ε.

��

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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