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Abstract
Extended reality (XR) experiences are on the verge of becoming widely adopted in diverse application domains. An essential 
part of the technology is accurate tracking and localization of the headset to create an immersive experience. A subset of 
the applications require perfect co-location between the real and the virtual world, where virtual objects are aligned with 
real-world counterparts. Current headsets support co-location for small areas, but suffer from drift when scaling up to larger 
ones such as buildings or factories. This paper proposes tools and solutions for this challenge by splitting up the simultane-
ous localization and mapping (SLAM) into separate mapping and localization stages. In the pre-processing stage, a feature 
map is built for the entire tracking area. A global optimizer is applied to correct the deformations caused by drift, guided by 
a sparse set of ground truth markers in the point cloud of a laser scan. Optionally, further refinement is applied by matching 
features between the ground truth keyframe images and their rendered-out SLAM estimates of the point cloud. In the second, 
real-time stage, the rectified feature map is used to perform localization and sensor fusion between the global tracking and 
the headset. The results show that the approach achieves robust co-location between the virtual and the real 3D environment 
for large and complex tracking environments.
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1 Introduction

Several application domains are investigating how they can 
incorporate co-located XR technology. Co-located setups 
allow users to share the physical and the virtual space simul-
taneously. Examples of application domains are entertain-
ment, art and manufacturing. For entertainment and art, 
XR promises the seamless blending of the virtual and the 
real world to craft socially engaging and immersive experi-
ences. In industry, such as the manufacturing industry, it is 
a powerful tool to create a realistic and immersive environ-
ment for operator training. Realistic XR experiences can be 
used to improve operator safety in the context of dangerous 
chemicals and nuclear waste, and promote well-being and 
inclusiveness in the search for new talent.

A big challenge for all these systems is scaling up to 
larger environments. Manufacturing environments, for 
example, range from workstations to assembly lines and all 
the way up to entire facilities. In co-located environments, 
the physical position of the user in the real world has a 
completely consistent mapping to the position in the virtual 
world. This means the user can freely navigate, turn around 
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and retrace his steps while the virtual representation remains 
in sync. This is a challenging task and a mismatch can poten-
tially lead to harmful user collisions with the physical world. 
Current XR technology relies on two common solutions: 
outside-in and inside-out tracking (Fang et al. 2023).

With outside-in tracking, the localization of the headset 
is facilitated by external devices. The extra sensors involved 
can be cameras, optical base stations or even acoustic and 
magnetic trackers. Although these approaches generally 
achieve very good accuracy, it can be costly to scale them up 
to work in large environments. This stems from the necessity 
to endow the environment with relatively expensive sensors 
and the fact that larger areas quickly require an ever larger 
amount of them to maintain full coverage.

An alternative, that has gained traction recently due to the 
resurgence of consumer VR, is inside-out tracking technol-
ogy. It tracks the ego-motion of cameras on a headset to find 
its position in the environment. Inside-out tracking gives the 
users more freedom and increases their mobility without 
requiring a rapidly growing array of sensors. However, the 
precision of these systems is impaired by small inaccuracies 
that are accumulated over time, causing drift in the localiza-
tion of the headset (McGill et al. 2020). When scaling up the 
tracking area, the drift will become too large after a while to 
achieve proper co-location. Some existing approaches have 
tried to improve this, but require an inordinate amount of 
markers (Podkosova et al. 2016) or impractical equipment, 
such as motion capturing with a set of inertial sensors posi-
tioned on the human body (Yi et al. 2023).

The main objective of this work is to tackle the drift issue 
that is inherent in current inside-out tracking systems. This 
will be a systems article, in which we describe our efforts 
to engineer an open and accessible system that achieves 
accurate global tracking and alignment, with respect to a 
reference global point cloud, for large-scale indoor environ-
ments. The system is cost-effective, easy to use and imposes 
as few restrictions on the environment as possible. In this 
article, the system is mainly designed and integrated for a 
VR environment, but we show that it is generic and could 
be integrated with other XR systems as well.

A key contribution of our approach is to decouple the 
mapping and localization stages. We work under the 
assumption that large parts of the scene do not change all 
that much. We first capture the scene with a laser scanner, 
which will act as a global ground truth reference frame. The 
global point cloud is used to calculate the transformation 
and drift deformations to align the initial SLAM map with 
it. After the registration phase, the user can be localized with 
high precision in the global coordinate frame of the scanned 
point cloud. During the VR experience, the recovered global 
poses are then fused with the interactive poses of the headset 
to mitigate the drift buildup of the headset. In contrast to 
other techniques, our approach only requires a sparse set of 

markers during the registration phase, which can be removed 
for the live localization phase. For scenarios that require 
very precise alignment, our work proposes an optional fur-
ther refinement step. This step calculates an additional drift 
compensation factor, which accounts for the difference in 
pose between the globally aligned SLAM keyframes and 
rendered-out versions of the global point cloud.

A nice side effect of the alignment process is that content 
creators can work directly in the global coordinate frame. 
With the increasing importance of digital twin creation, the 
easy authoring of content in a global reference frame will 
become increasingly important. Although one could argue 
that laser scanning is not always practical, in industries such 
as the manufacturing industry the use of laser-scanning is 
already widespread. We envision applications where content 
creators for XR can trust that the virtual objects they place 
in the world will end up in the right location, unlike current 
approaches that work by placing 3D objects in a warped 
SLAM map (e.g. spatial anchors).

2  Related work

An extensive comparison of XR-headsets and their respec-
tive tracking solutions is done by Fang et al. (2023). Many of 
the earlier systems are built with outside-in tracking, which 
means that they use external devices to track a user inside 
a physical room. Examples of these solutions use cam-
eras (Furtado et al. 2019), projective beacons (Niehorster 
et al. 2017) or even acoustic trackers (Wang and Gollakota 
2019). These systems can provide accurate tracking but are 
expensive and tedious to configure when scaling up to large 
environments.

Another category of approaches aligns the camera images 
with a point cloud of the underlying scene for localization 
purposes (Feng et al. 2019; Li and Lee 2021; Ren et al. 
2023). These approaches use deep learning to learn descrip-
tors for matching correspondences between the images and 
the point cloud. They solve a variant of the Perspective-n-
Point (PNP) problem to estimate the pose of each image, 
combined with RANSAC to reduce the impact from outliers. 
Most of these approaches provide good accuracy, but do not 
run at real time frame rates.

Recently, there has been a migration towards solutions 
that rely solely on the integrated sensors without the need 
for an external camera setup. This push was mostly driven 
by the advent of affordable consumer VR headsets, such as 
the Oculus Quest. Other examples of devices with inside-out 
tracking are the Microsoft Hololens and the Magic Leap. 
Some further works of interest demonstrate co-location for 
SLAM-tracked VR headsets with hand tracking (Reimer 
et al. 2021) and motion capturing with a combination of 
inertial sensors and a camera (Yi et al. 2023). They obtain 
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3D positional data by implementing real-time room map-
ping and positional tracking that is based on visual-inertial 
simultaneous localization and mapping (viSLAM) tech-
niques. SLAM techniques (Durrant-Whyte et al. 1996) try to 
simultaneously find out the location of a user in an unknown 
3D space, while also trying to build up an internal map or 
representation of that environment. Constructing these inter-
nal representations inherently suffers from limited precision 
of computing devices and sensor noise. As a consequence, 
whenever the user retraces his steps to an area he has seen 
before, there can be a gap between the information recorded 
in the database and the newly observed situation in the real 
world. This problem is called drift in the literature and it 
accumulates over time (Bar-Shalom et al. 2001). This means 
that certain objects will, over time, move away from their 
true positions by a considerable amount, i.e. one or several 
meters.

Systems based on SLAM can be integrated in a cheap, 
low latency, untethered and portable device and provide suf-
ficiently accurate tracking for small environments such as 
living rooms. However, drift problems prevent them from 
scaling well to larger environments. To give an example 
demonstrating the difficulties involved, McGill et al. (2020) 
showed that in a small environment of 6m2 , the mean posi-
tional accuracy of the Oculus Quest is about ±0.04 m, with 
a considerable drift in accuracy over time. When scaling 
to larger environments this drift will accumulate consider-
ably, deteriorating the co-location with the real world. An 
additional problem for practitioners, is that tracking imple-
mentations on proprietary HMDs are closed-source black-
box solutions that make it hard to integrate them with other 
software.

Antilatency1 is an off-the-shelf tracking system that 
claims to be scalable to large environments. However, the 
setup of the tiled floor is tedious and is not straightforward 
for non-squarely shaped environments. Because the system 
is based on active technology within the tiles, the cost of the 
system drastically increases when scaling up.

The aforementioned tracking methods rely on natural 
image features to identify landmarks in the environment 
to retrieve a known calibrated position within the tracking 
area. When natural images features are not a strict require-
ment for the application at hand, a set of artificial features 
can be introduced consisting of bar codes, QR codes, 
ArUco (Garrido-Jurado et al. 2014) or alternatively designed 
custom markers (Jorissen et al. 2014). Maesen et al. (2013) 
and Podkosova et al. (2016) have laid the groundwork for 
this approach with their fundamental research on large-
area tracking, but evaluation has only been performed in 
very constrained environments. A main drawback is that 

they rely on a dense amount of markers to achieve global 
localization, which is impractical in most relevant industrial 
environments.

SLAM methods can be categorized into smoothing, fil-
tering and keyframe methods (Kazerouni et al. 2022). Key-
frame methods are the most efficient for a given computa-
tional budget (Strasdat et al. 2010). ORB-SLAM (Campos 
et al. 2021) is a keyframe-based SLAM implementation 
with support for inertial integration, making it robust even 
in situations where tracking would normally be lost. It has 
support for mono, stereo and RGBD configurations, includ-
ing fish-eye lenses. It uses natural image features to track 
corresponding points between images to build its internal 
representation of the environment.

Our work will build further on the strengths of multiple 
methods. We rely on the flexibility and efficiency of ORB-
SLAM for localization, but improve the global accuracy of 
the map building by exploiting ground truth information of 
the 3D laser scan, without the need of complex deep-learn-
ing based descriptors. This approach can drastically reduce 
or even entirely remove the amount of required markers dur-
ing tracking.

3  Motivation and overview

Our approach contains two stages, that are illustrated in 
Fig. 1. In the pre-processing stage, a feature map is con-
structed for the entire surroundings by capturing it with a 
conventional SLAM setup. One can argue that, for a subset 
of application domains, large parts of the environment do not 
often change. This motivates us to put a sparse set of ground 
truth markers in the environment, so that an optimization 
step can be performed on the feature map to globally align it 
with the real world, compensating the deformations caused 
by drift. The ground truth poses for the markers are captured 
using a laser scan of the environment. We use the Leica 
BLK360 and RTC360 scanners for this. A nice advantage 
of the laser scan is its certified accuracy, which makes its 
acceptance easier in some sectors such as industrial applica-
tions. Furthermore, laser scanning environments are already 
extensively used for XR content in the context of digital twin 
creation and authoring. Note that only a sparse number of 
markers are required and that they can be removed after the 
pre-processing stage. While we could technically do entirely 
without the markers and rely solely on the point cloud, we 
find they make it easier to obtain a first guess for the align-
ment process. Using the information from the laser scan, the 
drift error in the SLAM map is corrected and the resulting 
output is an undistorted map of the scene, which is aligned 
with global frame of the point cloud.

The second stage is the actual live VR experience, where 
the built-up feature map from the previous stage is used to 1 http:// antil atency. com.

http://antilatency.com
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obtain an accurate global position for localization. Here, the 
user wears a consumer VR headset with inside-out track-
ing and walks around in a large environment. Current VR 
headsets are plug and play, allowing them to directly start 
tracking in an unknown environment. With their integrated 
IMU, they are also quite adept at tracking rapid or abrupt 
local movements. On the other hand, they do not have prior 
knowledge about the environment and are therefore sensi-
tive to drift. We therefore constantly filter the real-time pose 
of the XR headset using a sensor fusion approach, where 
the drift is regularly corrected by the global pose obtained 
in the undistorted map of the previous stage. In the actual 
implementation we choose not to filter the pose directly, 
but instead the drift. The reason for this is that this quantity 
changes more slowly (see Sect. 5.2). The procedure results in 
a system that can achieve robust co-location for large indoor 
environments.

The following sections will go over the details of each 
implementation step in detail.

4  Global registration phase

The goal of this pre-processing stage is to align the SLAM 
map, required for localization, with the layout of a real 
environment. This will allow for easier content creation and 
authoring of the virtual environment, directly in the coordi-
nate system of the real world.

4.1  Acquisition of the initial map

To get an initial estimate of our environment, we step 
through it with an Intel Realsense D455 camera module and 
run a readily available SLAM algorithm. We build further 
on to the ORB-SLAM3 open-source SLAM implementation. 
Although this type of SLAM tracking is commonly used in 

commercially available XR headsets with inside-out track-
ing, these are closed-source implementations that do not 
grant access to the cameras or the internal SLAM map. We 
use it in its RGBD mode, on a Zotac VR GO 4.0 backpack 
PC. Using ORB-SLAM, both construction of the map and 
subsequent localization remained efficient for large maps.

4.2  Marker detection

To link the initial map to the real world, the detected posi-
tions of the markers should also be stored in the map. 
Unfortunately, an important drawback of ORB-SLAM3 is 
the absence of marker detection. We therefore extended 
the framework to include efficient and interactive ArUco 
marker detection. The detected marker information is stored 
alongside the standard information in the keyframe data of 
the SLAM map. Figure 2 demonstrates this integration. The 
process of marker detection only needs to be carried out 
during the pre-processing phase. Afterwards, the markers 
can be removed again.

4.3  Acquiring laser scan and global reference 
markers

We use Leica BLK360 and RTC360 laser scanners to acquire 
dense 3D point clouds. An example of a laser-scanned point 
cloud is shown in Fig. 3. The point cloud is captured from 
a set of static scans, denoted with red dots in Fig. 3, which 
are automatically registered by the scanner software using 
an iterative closest point algorithm (ICP) (Besl and McKay 
1992). The accuracy of registration is measured using bun-
dle error, a metric that quantifies the average deviation of 
all overlapping matching points of all point clouds after the 
registration process. This metric depends on the device used, 
the percentage of overlap between scans, and the distribu-
tion of scan positions. Typically, when using a calibrated 

Fig. 1  Schematic overview. 
Phase 1: Global registration and 
rectification of the SLAM track-
ing map with the point cloud 
environment based on marker 
and keyframe correspondences. 
Phase 2: Real-time localization 
within the globally aligned map 
and integration of the global 
pose with the XR headset for 
drift correction

SLAM map of the environment 

Tracking Features + markers

Distorted and skewed

3D laser scan of the environment

3D Mesh + markers

Global ground truth

Phase 1 – Registra�on (preprocess) Phase 2 – Localiza�on (live)

Undistor�ng SLAM map
Global op�miza�on based on 

-> corresponding markers
-> keyframe features

Result: Rec�fied SLAM map in 
global coordinate system

Localiza�on
In globally aligned/rec�fied SLAM map

XR integra�on
Fuse SLAM pose with XR Headset
Constant dri� correc�on
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scanner of this type and following the recommended captur-
ing procedure, this metric of registration is within the range 
of millimeters or lower. We leverage this point cloud in the 
pre-processing stage to obtain the global pose of the refer-
ence markers. The 3D laser scan of the environment is stored 
in the open E57 vendor-neutral point cloud format and is 
treated as a global ground truth in the global coordinate sys-
tem. Such global reference markers are required to be able 
to align the tracking and localization map from the previous 
section with the real-world global environment needed for 
the VR experience. These global reference markers serve as 

a point of correspondence between the acquired tracking and 
localization map coming from SLAM and the real world. 
The proposed solution is based on ArUco markers, as they 
can be tracked at real-time rates when integrated into the 
SLAM algorithm.

To acquire the global ground truth positions of the ArUco 
markers, we have integrated tools to detect them in the 3D 
scan. This is done by exporting the cube map images of 
the omnidirectional images coming from the laser scanner, 
which are also stored in the E57 point cloud format. Cube 
maps (Greene 1986) are a type of texture mapping that uses 

Fig. 2  We have integrated the ArUco marker detection directly in the ORB-SLAM3 framework. Here, the orange markers are the positions of 
the markers in the SLAM map

Fig. 3  Illustration of a large 
point cloud acquired by the 
laser scans. Top: reconstructed 
point cloud using laser scan-
ning. The red dots illustrate the 
positions of the laser scanner. 
Each acquired position contains 
a high-resolution panoramic 
image as well; Bottom: exam-
ples, in the form of cube maps, 
of the high-resolution pano-
ramic image for four different 
scanner poses. The colored dots 
show their respective poses in 
the point cloud. Our system esti-
mates the 6DOF reference poses 
of the markers, as detected in 
the various cube maps, with 
respect to the scanned point 
cloud
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six square textures to represent the surfaces of a cube, pro-
viding a way to efficiently encode omnidirectional data. In 
our implementation, each cube map image has a resolution 
of 2048 × 2048 pixels. The ArUco marker detection algo-
rithm then operates on the individual cube map images. For 
each of these images, the E57 file contains a corresponding 
global 6DOF pose (rotation and translation) in the global 
point cloud coordinate system. These poses are illustrated 
with the red dots in Fig. 3. As can be seen, the ArUco mark-
ers are visible in these cube map images and as such the pose 
of that cube map image with respect to the ArUco marker 
can be calculated. This marker pose Pm2c , in combination 
with the global pose Pg2c of the camera with respect to the 
global point cloud, can be used to extract the 3D positions of 
the marker corners. Here, m2c stands for marker to camera, 
whereas g2c stands for the camera pose with respect to the 
global point cloud coordinate system.

The four 3D positions [X, Y , Z] of the corners in the 
marker coordinate system are related to the 2D projection 
of the corners [x, y] in the image of the cube map by the fol-
lowing formula:

Here, P contains the intrinsic parameters of the camera, 
which in this case is the projection matrix of the cube map 
image that contains the focal length and the center of projec-
tion. This projection matrix P represents the transformation 
of 3D points in the camera coordinate system to projected 
2D points in the image of the camera. � is the arbitrary scal-
ing after perspective transformation. The 2D corner posi-
tions are obtained by the ArUco marker detection algorithm. 
The 3D corners (also called object points) are defined in 
the local coordinate system of the object. The object points 
are in this case the 3D corners of the marker and for clarity 
reasons this will be denoted as the marker frame or marker 
coordinate system. As the dimensions of the real markers are 
known, the marker object points are known as well. In our 
case, the marker size is 16.75 cm. The four 3D corners in 
the marker frame are [0, 0, 0], [16.75, 0, 0], [16.75, 16.75, 0] 
and [0, 16.75, 0] . Pm2g is the unknown 4 × 4 transformation 
matrix that needs to be calculated. It represents the transfor-
mation of 3D points in the marker frame to 3D points in the 
global frame. The set of four 3D-2D correspondences of the 
corners is used to solve a Perspective-n-Point problem and 
to retrieve the Pm2c pose of the marker with respect to the 
camera. The reprojection error is used to evaluate the qual-
ity of the recovered pose and filter out bad poses, typically 
expected to be below one pixel.

To retrieve the actual global 3D positions of the mark-
ers in the point cloud, an additional transformation of the 
camera to the global coordinate system is required. Now, all 
parameters except the global 3D positions of the four marker 

(1)� ⋅ [x, y, 1] = K × Pm2c × [X, Y , Z, 1]marker

corners are unknown. These can be calculated by inverting 
the equation above and deprojecting the 2D corners to 3D. 
Or more straightforward, by transforming the local marker 
3D positions first to the camera frame and then subsequently 
into the global frame:

Here, the pose of the camera in the global coordinate system 
is defined by Pc2g , which is the pose of each individual cube 
map of the scanner. By applying this to all the cube map 
images of the scanner for all the different ArUco markers, 
the outputs are the 3D positions of each marker aligned with 
the global point cloud. These will serve as ground truth for 
the next steps of the global tracking system. The accuracy 
of the acquired 3D marker positions depends on the regis-
tered pose of scans, the resolution of the cube map images, 
and the 2D detections of the ArUco markers. The first two 
factors are defined by the laser scan device software, as dis-
cussed above. The latter is determined by the ArUco detec-
tion algorithm, which is generally pixel precise, provided the 
marker is sufficiently close to the scan positions, typically 
not more than 3 ms away. Furthermore, we filter out markers 
that are too far away. Assuming that the detection does not 
deviate by more than one pixel, we can calculate the maxi-
mum displacement of the reconstructed 3D marker corner 
between two pixels at a range of 3 ms. The offset between 
the deprojected 3D points of two neighboring pixels, given 
a resolution of 2048 × 2048 for a cube map tile at a range of 
3 ms, is approximately 2.3 mms.

4.4  Global registration

This step will use the acquired global reference markers of 
the previous section and apply a full global optimization to 
mitigate the drift. First, an initial registration step is applied 
to the SLAM map to roughly align the SLAM feature map 
with the global point cloud. This step is necessary to provide 
a guess to the optimization algorithm, to ensure convergence 
to a decent solution. Second, the global registration is further 
refined using a global optimization step. Both steps will be 
detailed further in the next two paragraphs.

Because the ArUco markers are detected in both the 
global point cloud and the SLAM map, a sparse set of 3D 
correspondences are known. Hence, using the known 3D 
correspondences, their respective rotation and translation 
can be derived. Suppose that these two point sets {pi} and 
{p�

i
} ; i = 1, 2,… ,N are related by

where R is a rotation matrix, T a translation vector and 
Ni a noise vector. This transformation can be calculated 
using least-squares fitting by applying singular value 

(2)[X, Y , Z]global = Pc2g × Pm2c × [X, Y , Z]marker

(3)p�
i
= R × pi + T + N�

i
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decomposition (SVD) as shown by Arun et al. (1987). The 
idea is to first center both point clouds around the mass by 
calculating the mean and minimize their relation above. This 
can be done by calculating the 3 × 3 covariance matrix and 
decomposing it into a rotation matrix using SVD. The result 
is a roughly aligned SLAM map. However, a key aspect here 
is that they are only roughly aligned, as the inherent drift in 
the SLAM map keeps it from aligning perfectly.

Next, the registration is refined by fully optimizing the 
entire set of SLAM map properties. Fortunately, the rough 
alignment of the previous paragraph is sufficient to start a full 
global optimization process based on Sparse Bundle Adjust-
ment (SBA) (Triggs et al. 2000), where all parameters are 
refined based on known ground truth markers. SBA is a global 
optimization technique that is already used in SLAM algo-
rithms to take into account loop closing. Its goal is to minimize 
a global error in the SLAM map. Typically it optimizes for the 
keyframe poses and the 3D feature map points, based on 2D 
observations of the features in the 2D images. In addition, we 
have extended the regular approach by integrating the ground 
truth markers in the process. To this end, the 2D detections of 
the markers are also integrated into the keyframes of SLAM. 
Thus, for each keyframe we know its relative marker posi-
tions. On the other hand, their corresponding 3D ground truth 
marker positions in the global map are known as well. Finally, 
we incorporate all this information by inserting an extra cost 
to the global optimization algorithm. To calculate this cost, we 
use the ground truth Pm2c transformations (transformation of 
the 3D marker positions to the 2D keyframe image positions) 
for each known marker, as extracted in Sect. 4.3. These are 
used as a fixed parameter in the system. The reprojection error 
of the known 3D marker corners onto the 2D images is added 
to the cost function that needs to be minimized. Integrating this 
extra reprojection error and running sparse bundle adjustment 
will result in a refined SLAM tracking map that aligns with the 
global point cloud map. Concretely the cost function of SBA 
is extended with a second term as follows:

where L(C,X,M) is the cost function, representing the total 
reprojection error over all keyframe poses C, 3D map points 
X and ground truth 3D marker points M acquired by the 
laser scan, with K, N and O respectively the number of key-
frames, map points and marker points. Each keyframe pose 
Ci includes the position and orientation of the ith camera in 
the world coordinate system. Traditionally a robust kernel 
� is applied to the squared reprojection error to mitigate the 
influence of outliers. It ensures that the cost function is not 

(4)

L(C,X,M) =

K�
k=1

N�
i=1

�
�‖pki − Π(Ck,Xi)‖2

�

+

K�
k=1

O�
j=1

�
�‖mkj − Π(Ck,Mj)‖2

�

overly sensitive to large errors, which are likely caused by 
incorrect correspondences. Here we use the Huber kernel 
with a delta parameter of 

√
7.815 for both terms, similar to 

ORBSLAM-3. On top of the existing reprojection error of 
the 3D map points and the 2D keyframe observations, we 
add a second term to the cost function that calculates the 
reprojection error of the ground truth 3D markers corner 
positions Mj with respect to the 2D marker corner obser-
vations mkj of each keyframe k. Π(Ck,Mj) is the projected 
ground truth marker position Mj onto keyframe with pose 
Ck . This term is similar to Π(Ck,Xi) , which projects the 3D 
map points Xi onto the keyframe with pose Ck , and is com-
pared with the 2D map point observation Pki for that specific 
keypoint. The weight of the marker pose error is equally 
contributing to the cost function with respect to the 3D map 
points, however the total number of marker corners is less 
than the total number of map points per keyframe.

4.5  Further keyframe refinement

The use of markers, as explained in the previous section, 
already achieves a good alignment between the SLAM frame 
and the point cloud frame. When moving further away from 
the markers, however, small displacements can still occur. 
Optionally, if the downstream task requires more precise 
2D–3D alignment, further refinement can be achieved by 
matching the images of the acquired SLAM keyframes and 
their respective poses, coming from the SLAM detections 
of the registered map, to the global point cloud. This is fea-
sible by rendering out the dense point cloud to the respec-
tive keyframe poses. An example of ground truth keyframe 
and rendered keyframe is shown in Fig. 4. When overlaying 
the set of ground truth keyframes and their rendered-out 
counterparts, additional displacements and inaccuracies can 
be observed, as shown in Fig. 5 in the middle column. The 
image shows the keyframe image blended with the rendered 
equivalent. One can clearly observe ghosting artifacts due 
to misalignments.

Then, to quantify the misalignment, features matching 
is applied to both the ground truth keyframe image and 
the rendered counterpart, allowing us to obtain 3D-cor-
respondences between the 2D ground truth keyframe and 
the 3D point cloud. For this we need the 3D point cloud 
positions of the rendered pixels as well, as shown in Fig. 4 
to the right. The difference in terms of rotation and trans-
lation between the current keyframe pose obtained with 
the global registration from the previous section and the 
expected counterpart is estimated using Efficient Perspec-
tive-n-Point (EPnP) (Lepetit et al. 2009), in combination 
with RANSAC (Fischler and Bolles 1981), to get the actual 
ground truth global pose with respect to the point cloud. 
The EPnP algoritm is capable of extracting the pose of a 
keyframe based on the observed 3D-2D correspondences, 
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in our case observed correspondences between the global 
point cloud and the real target camera image:

were [Xscsan, Yscsan, Zscsan] is the set of 3D positions of the 
detected features acquired by rendering the reference 3D 
scan to the 2D feature points. [xcam, ycam] is the set of pro-
jected pixels in the tracking camera. In this case we set 
the detected pixels as the corresponding pixels in the real 

(5)
⎡⎢⎢⎣

xcam
ycam
1

⎤⎥⎥⎦
= PcamCk

⎡⎢⎢⎢⎣

Xscsan

Yscsan
Zscsan
1

⎤⎥⎥⎥⎦

camera view, as this is the expected ground truth projected 
position. Pcam is the intrinsic projection matrix of the camera 
and Ck is the unknown camera pose that will be extracted.

Figure 5 shows the ground truth keyframe image as cap-
tured by the camera on the left. An overlay of the ground 
truth image on top of the rendered image of the estimated 
SLAM keyframe pose is shown in the middle. Here, the 
detected features and their respective offset is illustrated. On 
the right a similar overlay is shown, but now with a render 
of the corrected ground truth pose for the keyframe. One 
can clearly see that both are correctly aligned and there are 
no longer ghosting artifacts or displacements between the 
features.

Fig. 4  Keyframe rendering. 
An example of a ground truth 
keyframe (left) and a rendered 
keyframe from the point of 
view of an estimated keyframe 
pose of SLAM (middle) and his 
accompanying 3D point cloud 
positions (right)

Fig. 5  Left: ground truth key-
frame images as captured by the 
camera. Middle: overlay of the 
ground truth keyframe images 
with the rendered keyframe as 
estimated by SLAM. Misalign-
ments are visible in the form 
of ghosting. The matched 
2D features are visualized, 
which are used to quantify the 
displacement and to extract a 
ground truth keyframe pose. 
Right: similar overlay, but now 
rendered with the extracted 
ground truth keyframe pose, 
resulting in better alignment 
of the keyframe. Notice that 
the impact of moved objects 
between the acquisition of the 
3D scan and the SLAM map 
keyframe is limited, as sufficient 
other features can be found. 
This is for example the case in 
the second example where the 
table has been moved
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The estimated ground truth poses of the keyframes are fed 
into the SBA global optimization algorithm of the previous 
section as an additional ground truth transformation in the 
system. Concretely, for each newly acquired ground truth 
keyframe pose, we have fixed the camera pose Ck of its cor-
responding keyframe k in both terms of the cost function 
as given in Eq. (4). As such, the global error and drift from 
the real world is further reduced. In the future, this type 
of image-to-pointcloud refinement will make it possible to 
remove the need for markers entirely.

5  Live global localization phase and XR 
integration

At this point, the SLAM map is registered and aligned with 
the global 3D scan of the environment, and can be used to 
localize the camera. When performing SLAM in localization 
mode only, the system returns the pose of the camera with 
respect to the global frame, and thus aligned with the real 
environment. However, although the localization is done in 
real time, it does not suffice for smooth tracking in a XR 
experience. On the one hand, there is a VR headset that 
achieves position updates at a rate of 90 Hz but is closed-
source, proprietary and prone to drift. On the other hand, our 
global alignment algorithm does correct drift but can only 
do this at a rate of about 15–20 Hz. To get the best of both 
worlds, an additional sensor fusion is required. This fusion 
continuously applies a drift correction based on the global 
position updates to the VR rendering system, allowing it to 
achieve optimal interactive frame rates with as little drift as 
possible.

5.1  Camera calibration

To achieve this, an external global localization camera used 
for SLAM is mounted on the VR headset. Initial tests were 
done using an RGB Ximea sensor, which we later replaced 
with the Realsense RGBD sensor. The Meta Quest 2 headset 
was used for the VR integration. Figure 6 shows the cam-
era mounted on the VR headset, with the help of a custom-
designed 3D printed bracket. The relative transformation 
between the external camera and the VR headset is needed 
to compensate for the difference between the viewpoint of 
the VR user and that of the tracking camera. This calibration 
is achieved by exploiting the known 3D positions of the VR 
controllers. By capturing a set of correspondences between 
the 3D positions of the VR controllers and the 2D projec-
tions of the controllers onto the Realsense camera, we can 
solve the following system and extract the transformation 
matrix cam2XR:

This process is illustrated in Fig. 7.

5.2  Sensor fusion with VR headset

After calibration, the poses of the tracking camera are inte-
grated with the VR headset for continual drift correction. 
The key insight is to rely on the headset pose for the sensitive 
head movements and on the globally aligned poses to correct 
drift periodically. Both poses are combined using Kalman 
filtering (Kalman 1960) in which the drift is assumed to be 
constant.

The integration and visualization of this sensor fusion 
are done in a native plugin for Unity. The plugin connects 
to the external tracking camera and runs the adapted ORB-
SLAM3 algorithm in combination with the globally aligned 
and rectified map. As explained in Sect. 4, the ORBSLAM-3 
SLAM map is acquired and globally aligned with the real 
environment in a preprocessing step. In this live stage, ORB-
SLAM-3 is tracking in the preprocessed and globally aligned 
feature map in localization-only mode. The plugin will 
return the pose of the camera in this globally aligned coor-
dinate system. Two approaches for communicating with the 
SLAM plugin have been realized. The first one lets the Unity 
render instance request a global pose on demand, as illus-
trated in Fig. 8a on the right. The other one runs in broadcast 
mode, where the global pose is sent to any client that might 
need it, as illustrated in Fig. 8b. In broadcast mode the exter-
nal SLAM tracking instance can also broadcast its global 
poses over the network. We have implemented this over the 
Open Sound Control (OSC) protocol (Wright and Freed 
1997). For example, in broadcast mode, the Unity VR expe-
rience receives new global poses at a regular pace. For each 
new global pose, it keeps track of the changes compared to 
the previously received one. This change of global pose, in 
combination with the change in VR headset movement, is 
used to measure drift between the two systems. This problem 
of headset drift is shown in Fig. 9. The measured drift is 
then filtered using Kalman filtering, to reduce the visually 
displeasing effects of sudden instantaneous drift corrections. 

(6)[x, y] = Pcam × cam2XR−1 × [X,Y ,Z]controller

Fig. 6  Our XR camera setup with a Realsense D455 strapped to an 
Oculus Quest 2 HMD by a custom 3D-printed mounting bracket
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Instead of Kalman filtering the global pose directly, which 
is by nature non-linear, we opt to filter the measured drift 
between the two systems. This quantity evolves more slowly 
over time and is therefore more amenable to prediction. The 
drift D is calculated as follows:

If there is no drift, the drift matrix D will stay constant. 
Given that the drift exhibits linear behavior over time, we 
apply standard Kalman filtering techniques. However, to 
effectively filter the drift matrix D, it must first be decom-
posed into a 3D translation vector and a 4D quaternion rep-
resenting the rotation. Both translation and rotation meas-
urements are filtered using Kalman filtering. To smoothly 
filter the evolution of the drifted rotation and translation 
over time, we configure both the transition and measurement 

(7)D = poseglobal × pose−1
XR

matrices as identity matrices. Optimal results were achieved 
by setting the process noise covariance to 0.001 and the 
measurement noise covariance to 0.9. The resulting filtered 
drift is combined with the XR headset pose to compensate 
for the drift and to get the final camera pose for rendering:

Because the XR pose is updated at a high frame rate of more 
than 90Hz, the newly compensated posecompensated will be 
updated at the same high frequency. On the other hand, D 
will be updated only when a new global tracking position 
is received.

(8)posecompensated = D × poseXR

Fig. 7  Using the VR controllers 
to calculate the transformation 
between the Realsense camera 
and the HMD

x

z
y

XR origin

( , )

( , , )

Fig. 8  Two different approaches 
for headset integration. a On-
demand-mode where the head-
set is responsible for requesting 
poses from the SLAM tracking 
instance. b Broadcast mode 
where the SLAM tracking 
instance broadcasts the camera 
pose when ready
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5.3  Sensor fusion with standalone IMU system

In this approach we use the IMU sensor data of the Realsense 
D455 camera. The IMU data is acquired at 100 Hz, where 
the RGBD data together with the global pose processing 
runs at about 20 Hz. Based on the IMU readings, we extract 
a 6DOF pose, inspired by the approach of Lang et al. (2002). 
The IMU pose is not aligned with to global environment 
and is inherently susceptible to drift build-up. The key idea 
of this approach is very similar to the previous section. The 
high-frequency IMU pose is used for subtle and sensitive 
movements, while the lower-frequency global pose is used to 
align with the real world and perform a smooth drift correc-
tion. Provided that the drift buildup is constant, corrections 
should be imperceptible. This approach allows the adoption 
and integration of the tracking system for other use cases, 
such as augmented reality applications.

6  Results and evaluation

The global registration and localization are implemented 
as an extension to the open source ORBSLAM-3 (Campos 
et al. 2021) framework. Mapping and localization are done in 
RGBD mode using a Realsense D455 camera, on a Lenovo 
Legion 5 Pro laptop (AMD Ryzen 7 5800 H and GeForce 
RTX 3070). We use a resolution of 640 × 480 pixels. For 
the localization phase, we implemented the sensor fusion 
on a Meta Quest 2 headset, tethered to a Zotac VR GO 4.0 

backpack PC. The reference point clouds are obtained using 
Leica BLK360 and Leica RTC360 laser scanners.

To evaluate the global registration and alignment, we 
have captured three different environments: xrhuis, crew 
and makerspace. An overview of the details and properties 
of these are given in Table 1. An essential objective for the 
downstream task is proper alignment of the 3D point cloud, 
or any other augmented 3D object in the coordinate system 
of the 3D point cloud, to the 2D view of the camera, and by 
extension to the point of view of the XR device. As such, a 
key evaluation is measuring how well the 3D world aligns 
with the SLAM tracking camera.

For each of the three datasets, we have registered the 
SLAM map to the point cloud with three types of registra-
tion which we denote ‘aligned’, ‘markers’ and ‘pointcloud’. 
Each of them corresponds with a different level of accuracy 
as detailled in Sect. 4.4. The first uses the rough alignment 

Fig. 9  Sensor fusion and drift correction. In our approach, two sys-
tems are running in parallel. First there is our proposed global locali-
zation, based on the registered SLAM map, running on the images of 
the RGBD camera at relatively low framerates of about 20 fps. Sec-
ond, there is the headset, tracking at a framerate of about 90 fps. The 
former is globally accurate and aligned with the point cloud, the latter 

is more interactive but does not align with the point cloud and drifts 
over time. At t = 0 , an initial alignment O is performed. At t = t + 1 , 
when a new global pose is retrieved by SLAM, the initial offset O 
does not longer suffice, as the headset could have been drifted by a 
factor of D. This factor is estimated, filtered and compensated for

Table 1  Properties of the three datasets used for evaluation

xrhuis crew makerspace

Approximate tracking area ( m2) 160 250 312
Number of rooms/corridors 5 9 4
Laser scanner RTC360 BLK360 BLK360
Number of points (millions) 497 205 1058
Number of keyframes 800 800 800
Number of test frames 2425 7211 4833
Cloud-to-cloud bundle error (mm) 0.8 6.8 2.5
Cloud-to-cloud overlap (%) 70 56 64
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of Eq. (3). The second is the main registration based on the 
ground truth reference markers, as discussed in Sect. 4.4. 
The last one is an additional refinement on the map based on 
the keyframe-to-pointcloud matching approach of Sect. 4.5.

The first type of evaluation is done empirically. We have 
captured a test sequence for each dataset and estimated 
the 6DOF poses by running our adapted SLAM algorithm 
using the maps of the three types of registration. Next, we 

implemented a renderer to project the dense point cloud onto 
the image planes of the estimated poses. If successful, we 
expect these to align and coincide to the best achievable 
extent. The results for a selection of these tracked frames 
are shown in Figs. 10, 11 and 12 for respectively the xrhuis, 
crew and makerspace datasets. They show the captured 
image on the left. Columns two to four show an overlay of 
the captured image with a rendered equivalent as seen from 

Table 2  Quantitative results of the alignment precision for three categories of alignment: rough alignment (aligned), marker-based alignment 
(markers) and refined alignment based on pointcloud-keyframe matching (point cloud)

For each metric the table shows the mean, standard deviation, 50th percentile and 90th percentile
Underline denotes the best performing score per measurement per dataset
Bolt denotes the best performing score per datasetfor the 2D distance error measurements, which has the has the most significant impact for the 
end-user

Measurement Type of registration

Aligned Markers Point cloud

� � P50 P90 � � P50 P90 � � P50 P90

Xrhuis Pose angle error (degrees) 0.65 0.61 0.53 1.18 0.51 0.70 0.36 1.04 0.62 0.54 0.46 1.20
Pose distance error (cm) 11.80 5.12 12.12 17.41 5.18 3.76 4.69 8.95 5.03 4.19 4.16 9.35
2D distance error (pixels) 18.17 10.73 14.84 32.68 5.68 7.11 3.60 10.54 3.47 2.40 2.63 6.52

Crew Pose angle error (degrees) 3.08 9.35 2.03 2.91 1.63 6.40 0.93 2.56 0.92 3.50 0.55 1.80
Pose distance error (cm) 55.60 57.13 39.52 104.17 18.93 30.13 10.61 53.55 7.45 23.51 5.59 12.28
2D distance error (pixels) 65.52 54.61 51.84 112.51 26.91 38.95 17.42 56.99 5.88 11.43 4.58 9.15

Makerspace Pose angle error (degrees) 0.49 2.02 0.32 0.81 0.39 0.52 0.26 0.74 0.62 0.78 0.43 1.26
Pose distance error (cm) 6.23 10.85 5.45 9.92 5.64 3.83 5.09 9.56 5.34 4.33 4.15 10.97
2D distance error (pixels) 8.82 7.18 7.76 14.60 7.31 5.88 5.20 15.14 6.52 6.43 5.40 11.56

Fig. 10  Example results on 
a test sequence of the xrhuis 
dataset. For the columns from 
left to right: (first) ground truth 
keyframe image; (second) over-
lay of the roughly aligned frame 
with the ground truth; (third) 
overlay of the marker-based 
aligned frame with the ground 
truth; (fourth) overlay of the 
keyframe-refined frame with the 
ground truth. For each blended 
pair, the figure shows feature 
matches and their respective 
distances
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Fig. 11  Example results on 
a test sequence of the crew 
dataset. For the columns from 
left to right: (first) ground truth 
keyframe image; (second) over-
lay of the roughly aligned frame 
with the ground truth; (third) 
overlay of the marker-based 
aligned frame with the ground 
truth; (fourth) overlay of the 
keyframe-refined frame with the 
ground truth. For each blended 
pair, the figure shows feature 
matches and their respective 
distances

Fig. 12  Example results on a 
test sequence of the makerspace 
dataset. For the columns from 
left to right: (first) ground truth 
keyframe image; (second) over-
lay of the roughly aligned frame 
with the ground truth; (third) 
overlay of the marker-based 
aligned frame with the ground 
truth; (fourth) overlay of the 
keyframe-refined frame with the 
ground truth. For each blended 
pair, the figure shows feature 
matches and their respective 
distances
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the estimated SLAM pose for respectively the ‘aligned’, 
‘markers’ and ‘pointcloud’ registration types. In these exam-
ples, one can clearly see an apparent offset, in the form of 
ghosting, between the target RGB image and the estimated 
pose for the ‘aligned’ version. For the ‘marker’ version the 
misalignment is reduced. Note that this is primarily the case 
for poses close to markers or where markers are clearly vis-
ible (this can for example be seen in the second and fifth 
result of Fig. 11). The ‘pointcloud’ version, which uses the 
additional keyframe refinement approach shows an even 
further improvement. One can see that the estimated pose 
almost entirely coincides with the target image. However, 
even though the latter performs best in most cases, we have 
observed that, similar to the markers, the alignment is better 
in the neigborhood of keyframes that were used for refine-
ment. Moving further away from these keyframes positions 
decreases the alignment precision. An important conclu-
sion is that the performance is best in the neighborhood of 
keyframes and markers. We believe that finding better ways 
to balance the keyframes compared to the point cloud and 
improving keyframe management, in contrast to the default 
behaviour of the SLAM framework, will be key for improve-
ments in the future.

To quantify the difference in 2D alignment, we have 
used feature detection and matching between the target 
image and the rendered poses for each of the three reg-
istration levels. Inspired by the keyframe refinement of 
Sect. 4.5, we have estimated a ground truth pose for each 
of the estimated poses, based on the 2D-3D correspond-
ences of the feature matching using Efficient Perspective-n-
Point (EPnP) (Lepetit et al. 2009). We use SURF (Bay et al. 
2006) features for matching. RANSAC (Fischler and Bolles 
1981), is used to get a good set of inliers for each estimated 
ground truth pose. The inliers of the features are shown in 
Figs. 10, 11 and 12 as well, where we show the 2D distance 
between the various matches. For this, one can observe that 
the difference in distances is also lower for the markers and 
point cloud results. If we quantify the mean distance of the 
matched 2D features for all the test images in the sequence, 
we get results as shown in Table 2. The table shows, for each 
dataset, the mean, standard deviation, 50th percentile and 
90th percentile, for three different metrics. The downstream 
tasks mainly require accurate projection and alignment of 
3D to 2D images, which is the key objective of this work. 
We argue that for this, a 2D metric is the most relevant met-
ric. However, to give an idea of the 3D accuracy of the poses 
we have added two other 3D metrics. The three metrics are: 
the 3D difference in angle in degrees between the ground 
truth pose and the estimated pose with the registered SLAM 
(pose angle error); the 3D Euclidean distance between the 
ground truth pose and the estimated SLAM pose in centim-
eters (pose distance error); and the 2D distance in pixels 
between matched features between the ground truth image 

as captured by the camera and the rendered point cloud ren-
dered towards the estimated viewpoint (2D distance error). 
The first two metrics rely on the EPnP solutions which can 
also introduce some inaccuracies. The latter 2D distance 
error only relies on EPnP for identifying inliers. A couple 
of observations can be made. In general it can be observed 
that the rough alignment performs worst, and the marker-
based and keyframe-based alignment improves the result for 
the xrhuis and crew datasets. For all three datasets, the key-
frame alignment based on the point cloud outperforms the 
other registrations in types of 2D alignment. The improve-
ment is the most apparent for the crew dataset, going from 
a misalignment of more than 51 pixels towards 5 pixels for 
half of the datasamples. The least pronounced improvement 
is for the makerspace dataset. Here we see only a marginal 
improvement of about 3 pixels and even no improvement 
for the other metrics. For this dataset, we have observed 
that the initial SLAM map is already acceptable and that 
few drift deformations are present. We believe that this can 
be due to the fact that during map building, a large num-
ber of loops were detected and, as such, the SLAM system 
itself was capable of removing a considerable amount of the 
drift. Unfortunately, this type of behavior is unpredictable 
and does not scale well to large environments where it is 
harder or even unfeasible to apply extensive loop closing.

7  Conclusion

In this article, we have presented a VR system that sup-
ports co-location with the real world for large environments. 
The proposed method works by splitting up the process in a 
separate mapping and localization phase, using the fact that 
most parts of the environment are not expected to change 
drastically between sessions. During the pre-processing 
phase, ArUco markers are detected and used to globally 
align a complete feature map of the environment. A further 
refinement step is proposed by matching the ground truth 
keyframes to the point cloud and using this as extra guid-
ance for the registration. At run time, the global poses are 
combined with the poses of the XR headset using a sensor 
fusion approach. The system is initially designed for VR 
environments, but we have shown that it is generic and could 
be used for other XR systems as well. Keyframe manage-
ment is an avenue for future research as more evenly distrib-
uted keyframes will help the registration effort, minimizing 
the likelihood of tracking in areas where the map is still 
distorted. Using laser scans as a ground truth reference is 
not practical or cost-effective for all applications. The con-
tinuous improvement of state-of-the-art techniques in large-
area 3D scanning, such as photogrammetry (Mortezapoor 
et al. 2022), which is becoming increasingly accurate, could 
reduce the need for laser scans in the future. Future research 
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in the form of user studies is required to assess the impact of 
the sensor fusion and drift correction in the VR headset. The 
proposed system can achieve proper co-location between 
virtual and physical worlds in the context of large tracking 
environments.
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