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Abstract
Safe autonomous landing for Unmanned Aerial Vehicles (UAVs) in populated areas is a crucial aspect for successful inte-
gration of UAVs in populated environments. Nonetheless, validating autonomous landing in real scenarios is a challenging 
task with a high risk of injuring people. In this work, we propose a framework for safe real-time and thorough evaluation 
of vision-based autonomous landing in populated scenarios, using photo-realistic virtual environments and physics-based 
simulation. The proposed evaluation pipeline includes the use of Unreal graphics engine coupled with AirSim for realistic 
drone simulation to evaluate landing strategies. Then, Software-/Hardware-In-The-Loop can be used to test beforehand the 
performance of the algorithms. The final validation stage consists in a Robot-In-The-Loop evaluation strategy where a real 
drone must perform autonomous landing maneuvers in real-time, with an avatar drone in a virtual environment mimicking its 
behavior, while the detection algorithms run in the virtual environment (virtual reality to the robot). This method determines 
the safe landing areas based on computer vision and convolutional neural networks to avoid colliding with people in static 
and dynamic scenarios. To test the robustness of the algorithms in adversary conditions, different urban-like environments 
were implemented, including moving agents and different weather conditions. We also propose different metrics to quantify 
the performance of the landing strategies, establishing a baseline for comparison with future works on this challenging task, 
and analyze them through several randomized iterations. The proposed approach allowed us to safely validate the autonomous 
landing strategies, providing an evaluation pipeline, and a benchmark for comparison. An extensive evaluation showed a 
99% success rate in static scenarios and 87% in dynamic cases, demonstrating that the use of autonomous landing algorithms 
considerably prevents accidents involving humans, facilitating the integration of drones in human-populated spaces, which 
may help to unleash the full potential of drones in urban environments. Besides, this type of development helps to increase the 
safety of drone operations, which would advance drone flight regulations and allow their use in closer proximity to humans.
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1  Introduction

The role that Unmanned Aerial Vehicles (UAVs) have 
adopted in recent years to assist humans in diverse applica-
tion fields such as precision agriculture, package delivery, 
and recreational activities, among others, has been greatly 
improved thanks to the high mobility and flexibility that this 
kind of devices provides jointly with the increasingly lower 
manufacturing cost. However, even with the enormous pro-
gress achieved with these vehicles, their true potential has 
been hindered in human-populated places, such as in urban 
scenarios, mainly due to the risk of injuring people in case 
of an accident, considerably limiting their application only 
to controlled environments and rural areas.

1.1 � Regulations

Accordingly, these vehicles are subject to several safety 
constraints and legal regulations (Administration 2021). In 
the USA, these regulations encompass pilot certification 
and operational limitations. For instance, the vehicles must 
weigh less than 55 pounds, and they cannot fly above 400 
feet above sea level, or on top of structures. Even more strin-
gent are the limitations that prohibit drones from flying over 
people, which hinders their integration into various civil-
ian applications for human assistance, Pinkam et al. (2019); 
Sanchez-Rodriguez et al. (2020); Heo et al. (2022). In the 
EU, similar regulations are in place, particularly concerning 
take-off and landing maneuvers. The legislation stipulates 
that the chosen sites must be suitable, with no risk of col-
lision with the UAV (Bassi 2019; McTegg et al. 2022). In 
the UK, the Civil Aviation Authority allows flying drones 
or model aircraft weighing less than 250 g closer to people 
than 50 ms and over them, with the condition not to fly over 
crowds. However, they emphasize the inherent risks of flying 
near people (Authority 2023).

Even with these harsh constrains, it is still not guar-
anteed the safety of people in case of emergency land-
ings caused by system failure such as signal loss, adverse 
environmental conditions, low battery, or human errors. 
In that sense, providing UAVs with emergency landing 
protocols, including autonomous landing, will help to pre-
vent accidents, considerably boosting the drones’ potential 
for assisting humans in civilian applications, especially in 
urban areas, close to people.

1.2 � Challenges in autonomous landing algorithms

Although existing commercial drones may offer autono-
mous landing capabilities, they are normally limited to 

return to the take-off position (home) and descend slowly. 
In the best case scenarios, commercial drones may be 
capable of autonomous landing in a priori known visual 
tags.

Regarding research in the domain of autonomous land-
ing algorithms, recent works have seen a proliferation of 
techniques, particularly focused on the detection of landing 
zones, obstacle avoidance, and semantic segmentation. Ear-
lier approaches were often centered around the recognition 
of predefined landing markers, tailored to various scenarios. 
For instance, Garcia-Pardo et al. (2002) harnessed classic 
vision techniques to identify open, flat regions suitable for 
landing. In contrast, Nguyen et al. (2018) leveraged hard-
ware such as UWB (Ultra-Wideband) for precision landing, 
emphasizing the importance of accurate positioning. Khazet-
dinov et al. (2021) adopted ArUco tags for precise landing 
location determination, providing a reliable visual marker-
based approach. Wang and Wei (2023), on the other hand, 
focused on identifying landing markers on mobile platforms, 
introducing flexibility into the landing process. Johnson 
et al. (2005) introduced a novel approach to identify safe 
landing sites by efficiently applying structure-from-motion 
techniques to create detailed elevation maps of the landing 
area. This elevation map allows for the detection of hazards, 
enabling the algorithm to select a safe landing site based 
on the identified terrain features. In Chatzikalymnios and 
Moustakas (2022), the authors introduced an algorithm for 
landing site detection that evaluated multiple factors, includ-
ing terrain flatness, inclination, and steepness. In another 
interesting work, Marcu et al. (2018) utilized synthetic data 
to train a system to estimate depth from in-flight images and 
segment them into “safe landing” and “obstacle” regions.

Another research area focuses on identifying safe land-
ing areas through the generation of precise point clouds. 
For example, Yang et al. (2022) utilized point clouds for 
determining safe landing areas, while Ariante et al. (2021) 
employed LiDAR technology. Furthermore, Mittal et al. 
(2019) used synthetic data to simulate collapsed buildings, 
contributing to depth estimation for ensuring safe landings 
in emergency scenarios. It is important to note that while 
these methodologies have made significant advancements 
in the field of autonomous landing, they often rely on the 
availability of predefined landing markers or well-structured 
environments. Additionally, some techniques involve spe-
cialized and often expensive hardware, which can limit their 
applicability in complex unstructured scenarios, or are use-
less for widespread use in most commercial drones.

While these approaches are adequate in scenarios where 
predetermined landing locations or unobstructed landing 
zones are available, they may not be well-suited for highly 
dynamic, densely populated, unstructured environments. 
With our study, we venture into the intricate domain of 
autonomous safe landing in unstructured, densely populated, 
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and dynamic scenarios. The landscape in these environments 
is notably more complex, involving real-time obstacle detec-
tion, considerations of the human presence, and adapting to 
varying environmental conditions. This represents a complex 
open research problem, which still requires a lot of research 
effort to find robust and reliable solutions accounting for 
the different situations that may emerge in real scenarios, 
particularly in emergency landing situations.

The following research has contributed to the task of 
autonomous landing and their application in dynamic urban 
settings, by processing the UAV’s sensory data with machine 
learning techniques, to tackle the complexity of the differ-
ent scenarios. For instance, Nabavi et al. (2022) conducted 
research on automatic landing control of a UAV, and their 
work focused on developing advanced landing control 
algorithms using monocular camera data. Lee et al. (2021) 
delved into package delivery using autonomous drones using 
generative adversarial networks, and this study explored the 
challenges and possibilities of package delivery via autono-
mous drones within urban airspace. Their findings provided 
valuable insights into the intricacies of urban drone oper-
ations, including landing. In Alam and Oluoch (2021), a 
comprehensive review of taxonomy of landing scenarios is 
offered, providing a structured framework for understand-
ing the various scenarios in which autonomous landing is 
applicable. This taxonomy serves as a reference point for 
categorizing landing challenges in urban settings. Further-
more, Kakaletsis et al. (2022) introduced a computer vision-
based UAV flight safety pipeline, which laid the foundation 
for robust UAV safety in populated areas.

In addition to DNN (Deep Neural Networks)-based meth-
ods, some studies have explored the utilization of semantic 
segmentation for precise landing zone identification. Guerin 
et al. (2021) conducted research on semantic segmentation, 
developing techniques to classify image data at the pixel 
level, which allows for the clear distinction between suit-
able landing areas and those with potential obstacles or 
safety concerns. Kinahan and Smeaton (2021) also exam-
ined image segmentation to identify safe landing zones for 
unmanned aerial vehicles, where they employed semantic 
segmentation techniques to identify landing zones, address-
ing the need for accurate spatial understanding in dynamic 
urban environments. Many of these techniques rely on 
DNNs for their implementation. For example, Tzelepi and 
Tefas (2019) introduced a graph-embedded convolutional 
neural networks for crowd detection in a drone flight, lev-
eraging DNNs to detect human crowds from drone imagery 
in dynamic urban settings. Castellano et al. (2020) contrib-
uted with crowd detection through fully convolutional neural 
networks, focusing on the application of DNNs to navigate 
around human crowds during drone landing procedures 
in populated areas, addressing safety concerns in densely 
populated regions. Mitroudas et al. (2023) introduced an 

Embedded lightweight approach for safe landing in popu-
lated areas, emphasizing the development of a lightweight 
algorithm for ensuring safe landings in densely populated 
regions, addressing real-time obstacle detection and colli-
sion avoidance in dynamic environments. Abdollahzadeh 
et al. (2022) explored the safe landing zones detection for 
UAVs, which utilized deep regression techniques to iden-
tify safe landing zones in densely populated and dynamic 
environments. Additionally, Liu et al. (2019) examined geo-
metric and physical constraints for drone-based head plane 
crowd density estimation, integrating geometric and physical 
constraints into DNNs for crowd density estimation, improv-
ing our understanding of crowd dynamics during UAV oper-
ations in populated areas. However, it is important to note 
that while DNN-based methods show promise, they often 
assume the availability of predefined landing zones or lim-
ited environmental disturbances. In densely populated and 
dynamic urban scenarios, the need for real-time obstacle 
detection, collision avoidance, robust crowd tracking, and 
landing safety extends beyond the capabilities of existing 
methods.

As shown, the work in the literature presents many solu-
tions that tackle the dynamism of an urban setting for the 
safe landing of the UAV in the population below it. How-
ever, most of the claims are made through the evaluation 
of metrics in datasets, without the field tests, and for that 
reason, it is imperative to have a real-time validation tool for 
all of those techniques to rigorously evaluate the presented 
theoretical results without potentially harming people in a 
real scenario.

1.3 � Virtual reality applications in robotics

Before deployment of autonomous landing strategies in 
human-populated environments, it is absolutely necessary 
to validate them thoroughly and rigorously in order to guar-
antee their safe and correct behavior; hence, it is required to 
test them numerous times and quantify their performance 
and reliability, especially in challenging conditions as the 
ones encountered in real urban scenarios. For an algorithm 
that looks to avoid injuries and prevent accidents, it is a 
paradox to be tested in real conditions before a proper vali-
dation, since the system is likely to put in danger the same 
people that it is aiming to protect. It is also very important 
to widely test beforehand these vision-based algorithms to 
characterize its performance in the desired conditions, and 
compare different approaches to fine-tune them and select 
the best-suited ones; hence, in this work, we consider the 
use of virtual reality in robotics for safe validation of these 
autonomous landing algorithms.

Virtual reality applications in robotics have been explored 
in previous studies, revealing several advantages for test-
ing autonomous algorithms in realistic environments. For 



	 Virtual Reality (2024) 28:6666  Page 4 of 16

instance, the concept of a “digital twin” has gained promi-
nence as it facilitates broader access to robotic platforms 
for educational purposes (Orsolits et al. 2022). Moreover, 
virtual reality extends its utility to the study of human–robot 
interaction, particularly emphasizing spatial computing and 
interaction (Delmerico et al. 2022).

Furthermore, the simulation of Unmanned Aerial Vehi-
cles (UAVs) in realistic environments has been addressed in 
the literature. Notably, Guerra et al. (2019) developed Flight-
Goggles, a simulation framework replicating real-world 
scenarios and sensors, enabling Hardware-In-The-Loop 
validation. Their approach leverages Unity as a rendering 
engine and ROS as a robotic framework, providing photo-
realistic environments using photogrammetry techniques. 
This framework was originally intended for racing drones; 
hence, it focuses on indoor scenarios useful for fast-moving 
drones equipped with a frontal camera However, it is impor-
tant to note that while their work contributes significantly 
to the field of simulation, it does not specifically address the 
autonomous safe landing problem, and it confines algorithm 
testing to the ROS environment. We encourage interested 
readers to explore the FlightGoggles framework as another 
option for realistic simulations and creations on applications 
in indoor environments, primarily where the main sensor 
is a frontal camera. In contrast, our proposed validation 
framework may be useful for applications in complex out-
door urban environments, focusing on using a down-looking 
camera as the main sensor, as is the case for autonomous 
landing missions.

In this regard, the virtual environments provide a safe and 
inexpensive manner to test algorithms for autonomous vehi-
cles (see Fig. 1). The virtual environments must offer close-
to-real-world conditions to provide a useful approximation 
of the performance of the tested system. Also, the physics 
and dynamics of autonomous vehicles can be replicated 
to have close-to-real-world behavior. Nonetheless, despite 
the big efforts in generating realistic simulations, there will 
always be a domain gap between simulated and real-world 

scenarios to take into consideration (Sankaranarayanan et al. 
2018). In this sense, the use of virtual environments for test-
ing autonomous navigation cannot guarantee its complete 
success in real-world applications, but provides a powerful, 
safe, and cheap way, maybe the only available one, to test 
and compare different approaches as an intermediate valida-
tion step.

1.4 � Contributions

In previous work (Gonzalez-Trejo and Mercado-Ravell 
2021), we have proposed a lightweight DNN architecture 
for crowds detection, suitable for real-time embedded appli-
cations, and provided a first solution to detect Safe Land-
ing Zones (SLZ) in populated environments. Later on, in 
Gonzalez-Trejo et al. (2021), we considerably improved 
the SLZ detection, considering the camera movement, and 
implemented multiple-instance trackers of the SLZ along 
time. The performance of the strategy was only evaluated 
offline using two public image datasets with aerial views, 
Venice (Liu et al. 2019) and VisDrone (Zhu et al. 2020), 
as well as with data taken from a drone manually operated 
during landing missions in real populated scenarios. Nev-
ertheless, due to the harsh safety constraints involved in the 
experiments, real-time validation during fully autonomous 
landing missions is still an important open challenge before 
deployment in real missions.

Henceforth, in this work, we present a new pipeline using 
virtual environments to evaluate visual-based autonomous 
landing algorithms (see Fig. 1), study their performance 
under diverse conditions, and compare different solutions. 
The proposed solution must select in real-time a target SLZ 
according to different criteria; then, a simulated UAV has 
to move to a suitable area and perform autonomous landing 
without putting people at risk. To do so, the drone and its 
physics are simulated using the AirSim plug-in. The virtual 
environment was rendered using Unreal Engine 4, a pow-
erful graphics engine that offers photo-realistic character-
istics, providing a close representation of urban scenarios 
with people. We tested the performance of the algorithm 
for autonomous landing in several randomized and dynamic 
environments, unknown to the UAV, with people present in 
the scene. We performed a wide range of tests under differ-
ent conditions and scenarios, allowing some of the people 
to move with random walks, using diverse domain randomi-
zation such as density (people by square meter), people’s 
initial position and appearance, floor texture, and weather 
conditions. The study suggests that the use of visual-based 
autonomous landing strategies in populated environments 
considerably helps to reduce the risk of accidents involv-
ing humans, allowing for a better integration of drones to 
assist humans. Furthermore, the validation using virtual 
environments allowed us to fine-tune and evaluate different 

Fig. 1   Safe validation of UAVs autonomous landing in populated 
areas using virtual environments
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approaches, in order to find the best-suited solutions. In that 
regard, we evaluated different selection criteria to determine 
the “best” SLZ, and found that the use of the oldest SLZ 
tends to be more robust to the movement of the people in 
the scene, although the biggest SLZ seems to be safer in the 
sense of the distance to the closest person. Furthermore, 
the use of photo-realistic virtual environments and phys-
ics-based simulation proved to be a powerful tool, and an 
important validation step, to safely validate and evaluate the 
performance of autonomous landing strategies, guaranteeing 
the people’s safety. Also, other evaluation stages have been 
included in the evaluation pipeline, including Software-In-
The-Loop and Hardware-In-The Loop strategies, in order 
to test beforehand the behavior of the landing algorithms 
in the embedded autopilot. As a final evaluation stage, we 
propose the use of a Robot-In-The-Loop approach, where the 
physics gap introduced by the simulated drone is removed 
by using a real drone instead, performing the autonomous 
landing mission in real-time, in an open wide area, while 
the vision-based SLZ detection algorithms run in a realistic 
virtual environment, some sort of augmented reality to the 
robot. This strategy allows us to safely test in real-time the 
proposed strategies, in allegedly the closest-to-reality pos-
sible way, without jeopardizing any human being or material 
goods.

Our work focuses on the general and challenging prob-
lem of autonomous landing in real, complex, unstructured, 
densely populated urban environments, considering moving 
objects with unknown dynamics, and aims to offer a com-
parison benchmark and a validation pipeline using virtual 
reality tools. The goal is to prevent accidents and further 
increase the potential of drones for civilian applications, 
particularly in urban environments, and to motivate more 
people to contribute to find more robust, reliable, and resil-
ient solutions for this complicated problem. The subsequent 
sections of this paper will delve into a detailed analysis and 
comparative study.

The main contributions are summarized as follows: 

1.	 A baseline framework, using virtual reality tools, for 
safe and accurate comparison with other future works 
aiming to solve the problem of autonomous landing in 
populated environments.

2.	 A complete safe evaluation pipeline for visual-based 
autonomous landing algorithms is proposed, allowing 
to test landing algorithms without putting people at 
risk, while reducing the time and resources required for 
testing in real-world. This includes photo-realistic ran-
domized virtual environments, physics-based simulated 
drones, Software-/Hardware-In-The-Loop, and Robot-
In-The-Loop approaches.

3.	 Real-time implementation and evaluation of an auton-
omous landing strategy. This includes validation in a 

Robot-In-The-Loop approach, with a real drone autono-
mously landing in a virtual scenario.

4.	 Proposal of new evaluation metrics suitable for the 
autonomous landing task in human-populated environ-
ments.

5.	 Quantitative validation of the proposed pipeline through 
multiple iterations using domain randomization tech-
niques in key aspects such as the people characteris-
tics, people number and initial position, people’s move-
ments, texture and background of the scene, illumination 
changes, and weather conditions.

The rest of this work is organized as follows: In Sect. 2, we 
discuss the SLZ detection algorithm. In Sect. 3, we intro-
duce the safe validation framework, including the baseline 
framework, the virtual environment, and the Software-In-
The-Loop and Hardware-In-The-Loop implementations. 
Section 4 presents the main results obtained in the experi-
ments, presenting the evaluation metrics and the quantitative 
validation. Finally, in Sect. 5, we provide some conclusions.

2 � SLZ detection algorithm

The main objective of the SLZ detection algorithm is to 
propose zones free of people where the UAV can land 
without harming humans. The algorithm proposes SLZs in 
real-world coordinates during the mission, accounting for 
the camera and crowd movements (Gonzalez-Trejo et al. 
2021). For that matter, the algorithm is divided into three 
sub-modules: (1) a lightweight DNN density map genera-
tor that detects the people in the image, (2) a custom algo-
rithm to find suitable circular SLZs in real-world coordinates 
from the people-free regions, and (3) a multiple-instance 
object tracker by means of Kalman Filters (KF) that tracks 
the SLZs along frames, adding robustness for the sudden 
changes in the segmentation due to the camera and people’s 
movement (note that in real-world, people move at will with 
unknown dynamics).

2.1 � Crowd detection

To obtain suitable SLZ candidates, the first step of our algo-
rithm is to infer the people’s location from video streams in 
real-time. Most of the methods in the literature, and the one 
used by our algorithm, use density maps, which provide the 
number of people and their spatial location in an image, in 
the form of a heatmap. These density maps are trained to 
detect the people’s heads in the image, given that the head 
is the most visible part of the people from aerial views, pro-
viding superior performance in scenarios where the crowd 
density is high, and the visibility of the people’s bodies is 
reduced due to occlusions. In such scenarios, the landing of 
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the UAV in SLZ is crucial. In that regard, we developed a 
lightweight neural network called Bayes Loss Pruned Com-
pact Convolutional Neural Network (BL Pruned CCNN) 
to generate these density maps at low computational cost, 
which is suitable for real-time embedded implementation in 
drones (Gonzalez-Trejo and Mercado-Ravell 2021).

The DNN is composed of nine fully convolutional layers 
divided by a head and a backbone, following the Multi-Col-
umn Convolutional Neural Network (MCNN) architecture 
described in Zhang et al. (2016). The head is constituted by 
three columns of one layer, each with different kernel sizes 
that capture features of small, medium, and big-sized heads 
in the image. At the end of the first layer, the backbone pro-
cesses the features obtained by the network head to gener-
ate the density map; it is a heatmap encoding the inferred 
location and distribution of the people in the scene. The 
network was intentionally trained to overestimate the people 
in the scene, providing additional safety. We trained and 
fine-tuned the neural network using the Bayes Loss Ma et al. 
(2019), achieving a Mean Square Error (MSE) of 241.77 in 
the crowd-counting task. Finally, we reduced the original 
number of parameters from 0.075 M to 0.065 by pruning its 
channels and successfully implemented it in real-time on an 
embedded processor.

2.2 � Safe landing zone proposals

Once our density map generator infers the crowd location, 
the next step is to find the SLZ in real-world coordinates. 
From the output of the density map D, we obtain a binary 
occupancy map O, with pixel values equal to either 0 or 
255, by applying a threshold to the density map D. This 
occupancy map represents either crowded or free zones. For 
safety reasons, a dilation transformation is applied to the 
occupancy map O, to overestimate the people’s location.

From there, using the camera pose from the propriocep-
tive sensors on the drone, we project O from the image plane 
to the world frame. Henceforth, we model our projection 
transformation using the thin-lens camera model, where 
we define three reference frames: �

�
 represents the inertial 

or world reference, the UAV body frame �
�
 , located at its 

center of mass, and the camera frame �
�
 . The homogene-

ous transformation to project coordinates from �
�
 to �

�
 is 

defined as TW

B
∈ SE(3) , and it is obtained from the onboard 

UAV sensors. The homogeneous transformation from �
�
 to 

�
�
 is defined as TB

C
∈ SE(3) , which is known a priori.

An important element of our pipeline that allows us to pro-
ject from the image to the inertial frame is the assumption 
on which most of the heads are approximately located in a 
common plane known as the head’s plane P in �

�
 , which is 

parallel to the floor at the average people’s height ht . Never-
theless, we have observed good robustness to small variations 

in the head’s height assumption, due to people seated or kids 
in the scene.

After our model is defined, to perform the projection of the 
occupancy map O to the head’s plane P, denoted as OW , we 
define a grid G ∈ P , as proposed in the sampler module of the 
Spatial Transformer Network (Jaderberg et al. 2015). Each ele-
ment Gi,j stores coordinates {xW , yW} of the plane P, referred 
as (Gx

i,j
,G

y

i,j
) . For each Gi,j , we map a coordinate (xI , yI) in the 

image I as follows:

where � is a scale factor and K are the intrinsic parameters 
of the camera, defined in the Unreal Engine. Using Eq. 1, 
we query the value for each coordinate of the occupancy 
map OW.

Once the occupancy map in the head’s plane is established, 
we obtain a distance map C from where each nonzero pixel 
(people-free) contains the distance to the nearest zero pixel 
value (occupied zone). By calculating the maximum value of 
C ( max{C} ), we effectively find the radius and center of the 
biggest circular SLZ. This SLZ is filled into the occupation 
map OW , marking it as if it were occupied, and the process is 
repeated up to Np times, in order to find the Np larger zones 
free of people, which are considered as candidate SLZ.

2.3 � Multiple‑landing zone tracking

By themselves, the Np candidate SLZ previously found can be 
used to flag the location in the head’s plane where the UAV 
can land. Nevertheless, due to the constant movement of both 
the camera and the crowd through the scenario, the location 
of the SLZ may vary abruptly, potentially pointing the UAV 
to a landing zone with people on it. In that regard, we track the 
location of multiple SLZ using KFs, smoothing out the move-
ment of the SLZ between each k frame of the video stream, 
ensuring their temporal consistency and adding robustness 
against people moving. For each SLZ i, let us consider a vec-
tor state at time k equal to

where (x(i)
k
, y

(i)

k
) are the coordinates of the center of the i-th 

SLZ in the plane P, r(i)
k

 the radius, and ẋ(i)
k
, ẏ

(i)

k
, ṙ

(i)

k
 the rates of 

change of the center coordinates and the radius, respectively. 
We model the displacement of the SLZ due to the movement 
of both the camera and the people using the constant veloc-
ity model, accounting for the acceleration in the process 
noise � with normal distribution (Saho 2017); it is

(1)� ⋅ (xI , yI , 1)
T = KTC

B
TB
W
⋅ (Gx

i,j
,G

y

i,j
, hh, 1)

T .

(2)x
(i)

k
=
[
x
(i)

k
, y

(i)

k
, r

(i)

k
, ẋ

(i)

k
, ẏ

(i)

k
, ṙ

(i)

k

]T
,

(3)x
(i)

k+1
=

[
I3 ΔtI3
0 I3

]
x
(i)

k
+ � | � ∼ N(0, Q),
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where 0 is a matrix of zeros, I3 ∈ ℝ
3×3 is the identity matrix, 

and Δt is the time step. The process noise covariance, which 
models the acceleration, is defined as

where �a represents the acceleration uncertainty, obtained 
empirically. We use the SLZ measurements as they are 
inferred by the previous step. More formally, the measure-
ment model is defined as

where � is the measurement noise with covariance matrix R.
The algorithm maintains a Mp number of KF trackers 

where Mp ≤ Np . We associate a KF to a SLZ candidate 
through the Intersection over Union (IoU) between the 
area of the detected SLZ Ai and the SLZ tracked by the 
KF Aj ; it is

Having calculated the IoU for all pairs of candidates and 
KFs, we associate a candidate with the KF that overcomes 
a threshold � , using the Hungarian algorithm (Bruff 2005). 
Each time an existing KF tracker fails to match with a suit-
able SLZ candidate, a counter is increased. If the counter 
exceeds a threshold �1 , the tracker is eliminated. Finally, 
since for some frames the SLZ candidates cannot be calcu-
lated, we can use the prediction step of the KF until the next 
batch of SLZ is inferred.

(4)Q = �a

[
Δt4

4
I3

Δt3

2
I3

Δt3

2
I3 Δt2I3

]
,

(5)z
(i)

k
=
[
I3 0

]
x
(i)

k
+ � | � ∼ N(0, R),

(6)IoU =
Ai ∩ Aj

Ai ∪ Aj

.

3 � Safe validation framework

3.1 � Virtual environment

For the virtual environment and the simulated drone, it was 
employed a PC with an I7 6700 processor, 32 GBs RAM 
memory, and due to the heavy computational burden of run-
ning both the virtual environment and the autonomous land-
ing algorithm in real-time, a RTX 2080 graphics card from 
NVIDIA was also used.

As presented in Shah et al. (2018), the AirSim plug-
in provides a high-fidelity simulation for UAVs, with full 
integration between a flight controller, a physics engine, 
inertial sensors, video cameras, and depth sensors, among 
other capabilities. AirSim can be integrated with the Unreal 
Engine and Unity, two of the most used engines for 3D rec-
reation. In this work, the selected engine is Unreal Engine 4 
due to its photo-realistic rendering capabilities.

In order to recreate realistic urban scenarios, the open-
source package City Park Environment collection Lite was 
used (SilverTm 2021); it contains high quality assets ideal 
for recreating city parks. The scenarios present in this envi-
ronment are suitable to test our algorithms, providing a 
realistic quality with rich textures, in a wide variety of chal-
lenging urban-like environments. Figure 2 presents some 
samples of the selected scenarios for this work, including 
a soccer field, a parking lot, basketball courts, and a field 
with trees.

To represent people crowds in the virtual environment, the 
Twinmotion-posed Human pack was selected, and this pack 
contains 142 different 3D-scanned human characters with 
high-resolution textures, considering diverse characteris-
tics such as age, gender, racial diversity, and a wide range of 
clothes, head accessories, and poses. These “actors" (in Unreal 
4 context) could be identified as humans by the SLZ detection 

Fig. 2   Sample scenarios from 
the City Park Environment 
SilverTm (2021), containing 
a soccer field, a parking lot, 
basketball courts, and a field 
with trees
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algorithm, allowing the cross-domain application of a model 
trained with real-world data and deployed in a virtual environ-
ment, allowing us to test the visual-based autonomous landing 
algorithms without putting people at any risk.

3.2 � Domain randomization

The main purpose of domain randomization, during the vali-
dation stage of an algorithm, is to provide enough simulated 
variability to represent real-world conditions. We randomized 
from uniform distributions various important aspects at each 
trial, for instance, the test scenario (parks, sports courts, park-
ing lots, streets, etc.); people characteristics (gender, racial 
group, hairstyle, clothes, accessories, etc.); number of people, 
initial position and pose; actors movement; texture of the floor; 
scene illumination; weather condition; and drone’s initial pose.

3.2.1 � Actors placement

To create several scenarios from a larger scene in the City 
Park Environment, first a Region Of Interest (ROI) is randomly 
selected for each autonomous landing mission in the form of 
a square of 30m2 . Then, the number of actors na ∈ [80, 120] 
within the ROI is randomly generated, as well as the initial 
position of the actors in the ROI, avoiding overlap between 
actors, all of these using uniform distributions. Also, the kind 
of actor and their characteristics are randomly generated. The 
initial position of the drone in the ROI is also randomized.

3.2.2 � Actors movement

After the initial position of every actor is set, an algorithm 
randomly selects some of the actors to move during the experi-
ment, in order to emulate the dynamic nature of scenes con-
taining people, where the people are constantly moving at 
will, with dynamics unknown to the vision algorithm. In this 
work, we introduce a two-dimensional random walk algorithm 
implemented on a lattice. The lattice, represented as ℤd , is 
the discrete space in which the actor moves. Let (xa

k
, ya

k
) ∈ ℤ

d 
denote the actor’s position in the lattice at time step k. The ran-
dom walk algorithm updates the actor’s position in the lattice 
by adjusting its horizontal and vertical coordinates.

Specifically, the update process is described by Eq. (7), 
where xa

k
 represents the actor’s horizontal position at time k. 

xa
k−1

 is the actor’s previous horizontal position. �x represents 
the increment in the horizontal direction, and it can take one 
of the values from the set {−�, 0, �} . This value is randomly 

generated at each time step. Similarly, ya
k
 and ya

k−1
 represent 

the actor’s vertical positions. �y represents the increment 
in the vertical direction, with the same set of possible val-
ues as �x . � is a constant scalar that ensures that the actor’s 
movement remains bounded within the lattice. The actor’s 
position is updated 10 times per second according to this 
random walk algorithm. This equation governs the actor’s 
movements on the lattice, allowing for exploration of its 
spatial behavior.

3.3 � Autonomous landing implementation

As previously stated, AirSim is used to simulate the physics of a 
virtual UAV, and it provides useful information of the emulated 
most common sensors in a drone, such as an Inertial Measure-
ment Unit (IMU), altimeter, and different cameras. This way, 
integration with the virtual drone in AirSim is analogous to 
integration with a real drone and allows us to test different 
movement policies and landing strategies. Figure 3 represents 
the algorithm used for the autonomous landing task. In the first 
stage, the drone’s pose from the simulated IMU and a frame 
from a virtual down-looking camera attached to the drone are 
sent to the SLZ algorithm described in Sect. 2. Then, a set of 
candidate landing areas is provided in real-time by the SLZ 
vision algorithm, parameterized by the center of the circular 
SLZ in real-world �

�
 coordinates, the radius and an object 

identifier (ID) for each SLZ. The detected SLZ is updated at 
each iteration, and being this a mobile platform in a possibly 
dynamic environment (people moving), the available landing 
regions may be changing dynamically, resulting in one of the 
main challenges for this problem. Hence, it is necessary to 
define adequate criteria to select a landing zone. Indeed, one 
of the advantages of the proposed virtual framework is the abil-
ity to study different criteria for selecting “the best” SLZ, for 
instance, considering the size (biggest SLZ), the distance to 
the drone, or the time consistency (oldest SLZ). After select-
ing a target landing zone, a 3D coordinate in �

�
 is parsed as 

a waypoint command to the drone, 2m above the center of the 
selected SLZ in the head’s plane P. If the altitude of the drone 
is less than or equal to 2m and a valid SLZ is underneath the 
UAV, a landing command is sent to the drone and the mission 
is over, otherwise, the drone must move toward the target 
SLZ and iterate the algorithm updating the image frame and 
the UAV pose. 

(7)
xa
k
= xa

k−1
+ �x;

ya
k
= ya

k−1
+ �y

Fig. 3   Flowchart of the autono-
mous landing algorithm based 
in the visual-based SLZ detec-
tion algorithm
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Algorithm 1   Algorithm of the validation process for the autonomous landing algorithm using virtual environments

3.4 � Software‑/Hardware‑In‑The‑Loop

To enhance the evaluation of the proposed algorithm, a 
Software-In-The-Loop (SITL) approach was employed. 
During this stage, the algorithm was integrated with a 
simulated drone using the PX4 stack as the flight control-
ler firmware. The simulation environment, AirSim, facili-
tated the replacement of its built-in controller with SITL. 
The communication flow between the algorithm and the 
simulated drone is illustrated in Fig. 4.

In the proposed SITL validation, the PX4 SITL stack 
is connected to MAVProxy, creating multiple connection 
points. One of these points is connected to the proposed 
safe landing algorithm through the MAVSDK library. The 
connection to AirSim is achieved through some parameters 

modification; then, the video feed from the simulated envi-
ronment in Airsim is used by the algorithm to compute the 
target landing zone and send it as a waypoint to the SITL, 
which is continuously updated in the AirSim simulation. 
Finally, QGroundControl connects to MAVProxy for moni-
toring the drone’s state.

On the other hand, Hardware-In-The-Loop evaluation is 
also enabled, in order to test the autonomous landing algo-
rithms implemented in the embedded autopilot to be used 
in the real drone. To achieve our objective, we utilized an 
approach that is akin to the flowchart proposed in the Soft-
ware-In-The-Loop (SITL) stage. However, we made modi-
fications to the SITL PX4 block by substituting it with our 
own autopilot, which is the NXP FMUK66FMU running 
the PX4 firmware. This substitution enabled us to connect 
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to the real hardware, thereby adding another layer of safety, 
and to test the control output of our SZL algorithm within 
the context of a simulated environment.

3.5 � Robot‑InThe‑Loop

The “Robot-In-The-Loop” approach is a testing methodol-
ogy that involves the integration of a physical robot and a 
simulation environment in real-time. In this scenario, a real 
drone connects to a virtual avatar drone in the simulated 
environment and receives input from the SLZ algorithm, 
which is fed by the simulated video streaming from the vir-
tual avatar drone. This setup allows for the evaluation of 
the performance of the real drone in a controlled, virtual 
environment. In the following sub-sections, we will detail 
the platform specifications and our implementation.

3.5.1 � Experimental platform

Regarding the experimental drone, a high-strength carbon 
fiber frame was utilized with a diagonal measurement of 
500 mm and a central plate measuring 150 mm by 150 mm 
to mount electronic components securely. To manage flight 

operations, the NXP FMUK66FMU autopilot was selected 
due to its advanced features, including a barometric pres-
sure sensor, 3-axis accelerometer, 3-axis magnetometer, and 
multiple communication connectors such as UART, PPM, 
CAN, SPI, and GPIO for precise motor control. To meet lift-
ing power requirements, four 920-KV brushless DC (BLDC) 
motors were integrated with 40A OPTO ESC motor speed 
drivers, and a 4 S 5000-mAh LiPo battery was selected to 
ensure long-lasting flight capabilities. Figure 5 illustrates the 
experimental platform used in this work.

3.5.2 � External components

To achieve precise positioning of the agent, a combination 
of sensors was employed. The primary source of the drone’s 
position was obtained using a pair of Holybro’s H-RTK F9P 
units, one mounted on the drone and the other on the ground 
station. A M8N GPS was utilized as a secondary source of 
data, and an optical flow camera was also employed. The 
height of the agent is critical for the algorithm, and the 
height data were redundantly acquired using a single-point 
LiDAR. The data from all of these sources were seamlessly 
integrated using an extended Kalman Filter, which was 
implemented in the PX4 firmware.

As a companion-embedded computer, a Jetson Nano was 
utilized, which was connected to the flight controller through 
a serial interface. The MAVProxy library was employed to 
transmit the pose information of the drone to the ground 
station in real-time. This setup enabled efficient communi-
cation and accurate positioning of the drone during flight 
operations.

3.5.3 � Proposed Robot‑In‑The‑Loop communication flow

The validation of the safe landing algorithm using real hard-
ware provides a more realistic evaluation of the results. As 
a preliminary step before testing the algorithm with real 
people, we propose the Robot-In-The-Loop validation. In 
this approach, the real drone moves within its environment 
according to the safe landing algorithm, but instead of using 
the real camera of the drone, the video feedback from the 
virtual avatar drone in the simulator is utilized. This ava-
tar drone mimics the movements of the real drone, but in a 
virtual environment full of people, where the vision-based 
algorithms provide the safe landing zone from the video 
stream of the virtual avatar. This way, autonomous landing 
is accomplished in a real drone, but without jeopardizing 
any human being.

Figure 6 illustrates the communication between the drone 
and the ground station through radio frequency telemetry 
and Wi-Fi. On the ground station, a Ubuntu 20 distribution 
running as a Windows subsystem Linux allows for commu-
nication between the MAVProxy and a Python library called 

Fig. 5   Experimental platform components: 1.- Flight controller. 2.- 
RTK. 3.- GPS. 4.- Companion computer (Jetson Nano + Wi-Fi). 5.- 
Optical flow. 6.- TfMini LiDAR. 7.- RF telemetry. 8.- ESC controller. 
9.- Carbon fiber frame. 10.- Brushless motors. 11.- LiPo battery

Fig. 4   Software-In-The-Loop flowchart
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MAVSDK. On the outer layer, within the Windows operat-
ing system, the simulated drone mimics the pose of the real 
drone and provides video feedback in the AirSim environ-
ment. For safety and visualization purposes, QGroundCon-
trol is utilized.

This approach offers a safe test-bed for the validation of 
the algorithm under real flight conditions, ensuring that the 
results are as close to reality as possible.

4 � Experimental results

To validate the autonomous landing algorithm for UAVs 
in populated areas, several tests have been carried out in 
the virtual environment, evaluating the algorithm under a 
wide variety of scenarios with different conditions. For each 
scenario condition, 100 iterations of autonomous landing 
missions have been performed. We consider four different 
scenario conditions: static actors, 10% of the actors moving, 
20% of the actors moving, and dynamic weather conditions, 
including dust, rain, snow, and fog. At each landing itera-
tion, random initial conditions are generated as described 
in the previous section. Furthermore, two different criteria 
have been studied for the SLZ selection, considering the 
biggest SLZ available and the oldest SLZ. Bigger landing 

zones provide increased safety and are robust against move-
ments in the boundary of the SLZ; meanwhile, older SLZ 
tends to be the more consistent areas over time, aiming for 
larger robustness against people movements. Algorithm 1 
describes the steps of each autonomous landing iteration; 
first, the random environment is initialized, setting initial 
positions for each actor and the weather conditions; then, the 
UAV takes off and moves toward a random initial position; 
afterward, the autonomous landing algorithm is started, and 
a target landing zone is selected at each time step based on 
the selected criteria, checking for collisions with the human 
actors, note that the detection algorithm may fail to detect 
some of the people, or the people movement may cause some 
actors to trespass the selected SLZ. Finally, different metrics 
are obtained, as described in the following Sub-section. At 
the end of the 100 runs, some statistics are obtained and a 
quantitative comparison is possible. A video demonstrating 
the autonomous landing evaluation is available at https://​
youtu.​be/​AwQzN​dVE0ZU

4.1 � Evaluation metrics

In order to measure the performance of the landing algo-
rithm in real-time, we propose a set of evaluation metrics. 
The “successful landing rate” is defined as the number of 

Fig. 6   Robot-In-The-Loop 
diagram. A real drone performs 
autonomous landing based on 
the SLZ detected by an avatar 
drone in a virtual environments, 
which mimics the movements 
of the real drone. The virtual 
environment, the avatar drone, 
and the vision-based SLZ detec-
tion algorithms run in a ground 
station computer, which send 
the selected LSZ to the embed-
ded computer on the real drone 
via Wi-Fi

Table 1   Performance 
comparison for autonomous 
landing under different 
conditions

Scenario conditions / Strategy Success (%) Warning 
1 m/1.5 m (%)

SLZ area (m2) Avg. Near-
est (m)

IoU

Static / Random landing 59 2.7 / 10 * 1.15 *
Static / Oldest SLZ 97 0.0 / 0.4 6.15 2.21 0.48
Static / Biggest SLZ 99 0.0 / 0.3 9.62 2.45 0.59
Moving actors 10% / Oldest SLZ 87 0.06 / 0.16 4.59 1.97 0.39
Moving actors 10% / Biggest SLZ 80 0.01 / 0.1 9.07 1.70 0.60
Moving actors 20% / Oldest SLZ 84 0.06 / 0.14 4.37 1.58 0.42
Moving actors 20% / Biggest SLZ 76 0.09 / 0.2 8.04 1.51 0.54
Dynamic weather / Oldest SLZ 86 0.08 / 0.16 4.49 1.84 0.52
Dynamic weather / Biggest SLZ 80 0.06 / 0.1 6.95 2.07 0.54

https://youtu.be/AwQzNdVE0ZU
https://youtu.be/AwQzNdVE0ZU
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missions in which the virtual UAV was able to land without 
colliding with any human actor. This is the most important 
metric in our study, providing a direct measure of the num-
ber of accidents prevented by the algorithm.

However, just considering the rate of successful landings 
does not provide a complete picture of the performance of 
the SLZ algorithm and the selection criteria; hence, other 
metrics are proposed. The “Warning score” represents the 
percentage of times some actor ended within a safety radius, 
either 1m or 1.5m, around the landing point, and provides an 
idea of the risk of accident, that is, how many times certain 
approach ended up close to produce an accident. Moreover, 
the “SLZ Area” is an important metric on its own, given 
that larger landing zones offer increased safety to the people 
around, in case of errors, and allows aware people to move 
apart to avoid collision. The “Nearest person” measures the 
average Euclidean distance between the drone and the clos-
est person during landing, where larger values are preferred. 
Finally, the “IoU” provides a measure of the accuracy of 
the proposed algorithm to detect the real available SLZ; it 
is computed for the target landing zone against the closest 
ground truth people-free region.

4.2 � Results

Table 1 presents the obtained results over 100 iterations for 
each case of study. To establish a comparison baseline, 100 
uniform random landings were also included in this experi-
ment, considering only static actors, emulating the scenario 
where a drone must perform a blind emergency landing. 
Given that not all the ROI was occupied by people, there 
is a possibility that some of the landings were successful. 
In this case, the random landings reached a 59% of success. 
Then, we evaluated two different criteria of interest to select 
a landing area, the biggest SLZ and the oldest SLZ, first for 
a static environment. The biggest SLZ is expected to add 
safety to the landing mission providing extra space, it also 
should increase the robustness with respect to people miss-
detections, and give more margin for aware people to step 
aside. On the other hand, the oldest SLZ is expected to be 
more consistent over time, adding robustness against moving 
people; effectively, in real scenarios, the oldest SLZ would 
tend to stay in regions where people do not circulate often. 
As expected, for the case of a static scenario, both criteria 
performed fairly well, reaching 97% and 99% , respectively, 
which results in an improvement of almost 40% when com-
pared with the blind random landings, demonstrating that 
the use of autonomous emergency landing can considerably 
reduce the risk of accidents involving people.

Afterward, the performance of the proposed strategy 
was tested in an environment with moving actors, which 
is one of the main challenges of autonomous landing in 
human-populated environments, where people move with 

unknown dynamics. Due to computational limitations, we 
only tested the strategies for movement in the 10% and 20% 
of the actors in the scene. Nevertheless, this is enough to 
analyze the behavior of the landing algorithm under dynamic 
conditions and evaluate the robustness of different strategies 
against people movement. Adding mobile actors in the scene 
considerably increases the difficulty of the task, resulting in 
a decrease in the performance of the strategies. Furthermore, 
the proposed pipeline was tested under dynamic weather 
conditions, such as dust; mist; rain; snow; and illumination 
changes, casting similar results, proving that the algorithm 
generalizes well to adverse scenarios and is robust to noisy 
conditions.

Figure 7 depicts the success rate between the random 
strategy and the SLZ algorithms in the four considered cases 
of study: it is static, 10% moving actors, 20% moving actors, 
and dynamic weather. Furthermore, the size of the color-
filled circle represents the average size of the SLZ proposed 
by each algorithm, along the 100 iterations, while the empty 
circle shows the average distance to the nearest person. Red 
circles stand for the oldest SLZ, blue for the biggest, and 
green for the random bling landing with uniform distribu-
tion. Contrary to the autonomous landing solutions, the size 
of the green-filled circle corresponding to the random land-
ing is of unitary radius (1m) and provides the scale for com-
parison. Bigger circles (filled and empty) and further to the 
right solutions are to be preferred, since they correspond to 
solutions with larger landing areas and with higher success 
rate, respectively. 

We can appreciate that, although there is still room for 
improvement, both autonomous landing strategies, oldest 

Fig. 7   Performance analysis by success rate, in static, dynamic actors, 
and dynamic weather conditions. The color-filled circles denote the 
average size of the SLZ proposed by the detection algorithm, while 
the empty circles represent the average distance to the nearest person 
at landing. Green circles stand for the uniformly random strategy, red 
denotes the oldest SLZ strategy, and blue represents the biggest SLZ 
strategy. The radius of the green circle represents 1m and provides the 
scale for the other circles. The oldest SLZ shows better performance 
in terms of success rate, while the biggest SLZ provides a larger 
clearance
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and biggest, obtained good results even in harsher circum-
stances, when compared with the random landing in the easi-
est static scenario. More in particular, the obtained results 
suggest that the use of the oldest SLZ is better suited to 
account for people moving with unknown dynamics, given 
that the oldest SLZ tends to be in regions where people are 
less likely to be found. Another important metric is the SLZ 
area, represented as colored circles, considering that bigger 
areas are to be preferred, the oldest SLZ strategy tended 
to decrease around 30% compared with the area obtained 
by the biggest SLZ strategy, in each of the scenarios and 
strategy combinations, suggesting that there is a trade-off 
between being robust against people moving, and providing 
additional safety by choosing a larger SLZ. Similarly, we 
measure the average distance over iterations, from the land-
ing spot to the nearest person in the scene, as presented in 
Fig. 7, denoted in empty circles, where larger circles indicate 
a larger clearance distance. As expected, the biggest SLZ 
outperformed the oldest also in this criteria.

It can also be noted that the average distance between the 
landing spot and the nearest person, in all of the proposed 
scenarios, provides a larger distance than the radius of the 
proposed landing zone, presenting bigger black circles than 
the colored circles for both strategies. This is expected since 
the SLZ detection algorithms were intentionally designed to 
overestimate the people detection and their location (false 
positives are preferred over false negatives), as an additional 
safety measure, due to the delicate nature of the task. Also, 
in all the cases, the use of autonomous landing algorithms 
increased the average distance to the nearest person, even in 
harsher scenarios, when compared to the random landings 
in the easiest static scenario. On the other hand, in Table 1, 
we also evaluate the similarity of the found SLZ against the 
closest available ground truth landing zone, which provides 

a measurement on the capacity of the algorithm to accurately 
find a good SLZ. In this sense, the biggest SLZ strategy 
outperforms the oldest one.

4.2.1 � Robot‑In‑The‑Loop results

In the context of the real drone experiment, preliminary 
results have been obtained. The real drone successfully 
performed an autonomous mission; Fig. 8 shows the real 
drone performing a mission, taking as input the command 
results from the SLZ algorithm and using video feed from 
the simulated AirSim environment. As depicted in Fig. 9, the 
path followed by the drone (represented in the NED frame) 
is shown in the context of virtual people on the scene. It can 
be observed that the selected landing zone, indicated by a 
dashed green circle, is in a clear area, leading to a success-
ful landing.

5 � Conclusions and future work

Autonomous landing of UAVs in populated environments is 
a new and exciting research area, with a lot of challenges and 
great potential for integrating drones with humans in real-
world applications. In fact, providing UAVs with these capa-
bilities is a key aspect to explode the full potential of drones 

Fig. 8   Robot-In-The-Loop test. A real robot performs autonomous 
landing without putting any human at risk, based on the safe landing 
zones detected in real-time by a vision algorithm running in an avatar 
drone in a virtual environment. The bottom left figure shows the vir-
tual avatar, while the bottom right depicts a snapshot from the down-
looking camera on the real drone

Fig. 9   Experimental autonomous landing mission using the Robot-In-
The-Loop validation approach. The blue dots mark the virtual peo-
ple on the scene, the green dashed circle depicts the selected land-
ing zone, while the solid red line and the dashed black line represent, 
respectively, the paths followed by the real drone and its virtual avatar
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in assisting humans in urban environments, particularly for 
preventing accidents in emergency landing situations. How-
ever, due to the risk involved, it is of crucial importance to 
fail-proof such autonomous landing algorithms beforehand, 
in order to fine-tune the algorithms and select the best-suited 
ones, and more importantly, to guarantee the safety of the 
people around, which turns out to be a very difficult task.

In this work, we have proposed an evaluation framework 
using virtual environments for safely and thoroughly test-
ing the autonomous landing algorithms in populated areas. 
The virtual environments were generated with the Unreal 
graphics engine, whereas a virtual drone is simulated using 
AirSim. This framework allows us to iterate the autonomous 
landing experiment more than 900 times, under different 
randomized conditions, reducing the time and resources 
needed for evaluation, tuning, and testing. Moreover, the 
evaluation pipeline further includes Software-/Hardware-In-
The-Loop validation, along with Robot-In-The-Loop tests. 
This allows us to test the proposed landing strategies at dif-
ferent stages and assure their good performance without put-
ting any human or material goods at risk.

Also, two variations of a vision-based safe landing zones 
detector were evaluated in real-time, selecting either the big-
gest available landing zone or the oldest available one. Dif-
ferent metrics were computed, and a quantitative compari-
son study was provided. The study suggests that the use of 
autonomous landing algorithms in populated environments 
considerably reduces the risk of injuring people. Further-
more, it was found that the oldest safe landing zone tends to 
be more robust in the case of a dynamic environment where 
people is moving in the scene, obtaining up to 86% of suc-
cess rate in the most difficult case of study, with a 20% of 
the actors moving. Nevertheless, the biggest SLZ offers an 
additional degree of safety for the landing, given that it is 
more robust to false positive people detections, and provides 
more space for aware people to react and move apart, hence 
becoming a good alternative approach. In conclusion, the 
best solution would probably be a combination of both cri-
teria in the form of a multi-objective cost function.

The use of virtual environments coupled either with vir-
tual or with real drones (Robot-In-The-Loop) has proven 
to be a powerful tool for safe validation and quantitative 
evaluation of autonomous landing strategies in human-
populated environments, and an absolutely necessary step 
before deployment in real scenarios, without jeopardizing 
people’s safety. Although there is still room for improve-
ment, the obtained results are fairly promising, especially 
when taking into account the level of difficulty and the safety 
constraints involved in the task, and they may really help to 
reduce the risk of injuring people during drone’s deploy-
ment in urban areas, hence potentiating the use of drones in 
civilian applications.
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