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Abstract
Nowadays, there is still a challenge in virtual reality to obtain an accurate displacement prediction of the user. This could 
be a future key element to apply in the so-called redirected walking methods. Meanwhile, deep learning provides us with 
new tools to reach greater achievements in this type of prediction. Specifically, long short-term memory recurrent neural 
networks obtained promising results recently. This gives us clues to continue researching in this line to predict virtual reality 
user’s displacement. This manuscript focuses on the collection of positional data and a subsequent new way to train a deep 
learning model to obtain more accurate predictions. The data were collected with 44 participants and it has been analyzed 
with different existing prediction algorithms. The best results were obtained with a new idea, the use of rotation quaternions 
and the three dimensions to train the previously existing models. The authors strongly believe that there is still much room 
for improvement in this research area by means of the usage of new deep learning models.
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1  Introduction

Virtual reality (VR) technologies are widely used, and it 
is a choice for many companies to develop virtual experi-
ences or video games. However, speaking in terms of loco-
motion, when a user walks naturally, it is only a matter of 
time before the user collides with the boundaries. This major 
constraint forces companies to look for solutions and adapt 
their designs to the limitations of the physical workspace.

Through human ingenuity, alternatives have been devel-
oped to avoid these limitations. Some examples of these new 
locomotion methods could include the use of controllers or 
the inclination of the body (Zielasko et al. 2016; Langbehn 

et al. 2018). However, the choice between locomotion meth-
ods is not trivial, as it can directly affect user perception by 
varying factors such as presence, cybersickness, or usability 
(Mayor et al. 2019).

One of the most promising solutions to workspace limi-
tations are the so-called Redirected Walking (RDW) loco-
motion methods (Razzaque et al. 2001). These methods are 
intended to preserve all the benefits of natural locomotion 
in physical space while avoiding its limitations. Taking 
advantage of the real movement of the user, RDW methods 
attempt to trick the human brain by applying subtle modifi-
cations to the virtual world. This effect is achieved through 
intelligently designed gain algorithms prepared to avoid the 
limits of the workspace (Suma et al. 2012).

In turn, different strategies are proposed to avoid the lim-
its. For example, it is called steer to center if the redirection 
is to the center of the workspace, steer to orbit if the motion 
of redirection adheres to a specific orbit (Razzaque 2005), 
and steer to multiple targets if the redirection is to multiple 
central points (Hodgson and Bachmann 2013). This idea has 
gone so far as to use deep learning (DL) for the selection of 
the most optimal redirection target (Lee et al. 2019). There 
are even solutions using reinforcement learning to avoid 
multiple simultaneous users meeting each other in the same 
workspace (Lee et al. 2020).
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To make it all work, the gain algorithms should follow 
different and well-defined strategies. However, a RDW 
method can be composed of a single algorithm (e.g., cur-
vature gain Bölling et  al. 2019) or multiple algorithms 
(Nescher et al. 2014; Grechkin et al. 2016). Four basic strat-
egies can be identified in the gain algorithms (apart from 
other more heterogeneous variants. e.g. strafing gain You 
et al. 2022): curvature gain, translation gain, rotation gain, 
or deviation gain (Mayor et al. 2021). However, it is clear 
that there is another essential side. The third pillar to make 
gain algorithms work is an accurate prediction of where the 
user is heading.

Currently, VR technologies have started to use machine 
learning methods with different proposals (Lee et al. 2019; 
Brenneis et al. 2021). To predict where the user is heading, 
there exists some research that has yielded great results, but 
more research is needed to strengthen this claim (Bremer 
et al. 2021).

In particular, Recurrent Neural Networks (RNN) are used 
to predict future user positions given a myriad of input vari-
ables (Dupond 2019). RNNs are a type of neural network 
designed to process sequential data by leveraging recurrent 
connections. Unlike feedforward neural networks, RNNs 
possess feedback connections that allow them to capture 
temporal dependencies within a sequence. They operate by 
maintaining hidden states that retain information from pre-
vious time steps, thereby enabling the network to learn and 
reason about long-term dependencies. This recurrent nature 
endows RNNs with the ability to model sequential data with 
variable-length input and output sequences.

However, RNNs have some weaknesses. One of them is 
the lack of long-term memory. To solve that, Long Short-
Term Memory (LSTM) networks were proposed (Hochreiter 
and Schmidhuber 1997). LSTM networks are a specialized 
variant of RNNs that effectively addresses the vanishing 
gradient problem associated with training deep RNN archi-
tectures. LSTMs introduce gated mechanisms, including 
input, forget, and output gates, which enable the networks to 
selectively remember or forget information at different time 
steps. These gates regulate the flow of information, allowing 
LSTMs to capture long-term dependencies while mitigating 
the vanishing or exploding gradient issues that hinder tradi-
tional RNNs. The memory cell within an LSTM unit acts as 
a key component that effectively stores and retrieves relevant 
contextual information, making it well-suited for modeling 
complex temporal dependencies.

The sequential nature of trajectory data in VR environ-
ments naturally lends itself to the application of RNNs and 
LSTMs. By processing historical trajectory data, RNNs 
and LSTMs can learn to model the inherent dynamics and 
dependencies present in the data. This learned representa-
tion can be used to predict the future trajectory of objects 
in the VR environment. The ability of RNNs and LSTMs to 

capture long-term dependencies and handle variable-length 
sequences makes them well-equipped to meet the challenges 
associated with user trajectory prediction.

This manuscript aims to improve previous results in user 
movement prediction by presenting an adapted prediction 
model using neural networks. It aims to achieve this with 
a minimal hardware requirement, close to the commercial 
virtual experiences. To do so, we implemented a newly 
created dataset with three virtual experiences. They have 
been designed with different proposes to record movement. 
Thus, the datasets are generated through experiments with 
real humans using these experiences. In each experience, 
locomotion is designed to be applied in a different way by 
mimicking different common VR situations.

In this way, this manuscript raises two questions:

•	 RQ1: Are the new datasets suitable to be evaluated with 
previous locomotion prediction algorithms?

•	 RQ2: Will the adapted prediction model predict better 
than previous locomotion algorithms?

To answer these questions, we implemented some common 
algorithmic solutions used to predict user locomotion in 
VR. Furthermore, we also implemented the deep learning 
algorithm presented by Bremer et al. (2021) which will be 
detailed in the next section.

2 � State of the art

In the VR sector, we can find that user predictions have 
gained momentum in recent years. An example of this could 
be the interaction with the gaze. Some works try to predict 
the gaze of the user to achieve interactions where the gaze 
is looking at (Hu 2020). On the other hand, other papers are 
trying to predict where the user will look, concluding that 
dynamic elements are interesting elements in the scene to 
make gaze predictions (David-John et al. 2021).

The prediction of the user’s movements in other areas 
also follows the same line. For example, Corona et al. (2020) 
proposed a context-aware motion prediction architecture that 
incorporates interactions with objects and humans. With a 
motion capture suit, they use a semantic graph model with a 
graph attention layer that is fed into an RNN to predict future 
human movements. Breuer et al. (2019) used a combination 
of LSTMs and CNNs to predict the future trajectories of 
traffic participants in autonomous driving systems.

In the context of VR, an example is the work of Gamage 
et al. (2021). Who used regression models to predict the 
path of the hands in VR and real-time. On the side of deep 
learning, Strauss et al. (2020) uses reinforcement learning 
to dictate the gain algorithms of redirection when using 
RDW methods. Finally, Cho et al. (2018) implement an 
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LSTM network to predict a user’s future path based on 
their past position and facing direction data for efficient 
redirected walking in limited-sized rooms.

As mentioned above, RDW methods are highly sup-
ported by accurate user movement prediction. This predic-
tion method could be classified as scripted, predictive, or 
reactive (Hirt et al. 2022a, b).

A scripted prediction involves a fixed path for the user 
to follow, thus simplifying the prediction made to a selec-
tion of a pre-defined set of paths (Zmuda et  al. 2013; 
Nescher et al. 2014). In some cases, the prediction is used 
only to help to choose between two different corridors, as 
in the experiment presented by Nescher and Kunz (2013). 
Such is the need for these algorithms to have a pre-defined 
path that there are authors who have developed automatic 
algorithms for path extraction from a walkable mesh gen-
eration (Zank and Kunz 2017). However, in most virtual 
experiences, it is not possible to configure or pre-define 
a set of interesting positions to make these prediction 
models work. Some initiatives begin to form predictions 
from the user’s historical movement data in the scene, 
although again this does not serve as a general solution, 
as it requires prior user data to work (Fan et al. 2023). In 
addition, a user outside of an experimental environment 
can change direction spontaneously, breaking with the 
nature of this type of prediction.

On the other hand, it is called a predictive prediction if 
is based on an approach to the path of the user in real-time 
(without being previously pre-defined by the developer). 
However, predictive approaches are exotic and least inves-
tigated, as trajectory calculation is more complex and is 
also prone to errors due to user spontaneity (Zank and 
Kunz 2016, 2015). Predictive methods can be really useful 
to approximate the trajectory to another desired one, like 
in the above-mentioned steer-to-orbit method (Razzaque 
2005).

However, the most common prediction is reactive. Reac-
tive predictions operate without prior knowledge of the path 
or a future path estimate. Therefore, this type of prediction 
relies on previous information captured from the user’s 
movement to predict future positions. Therefore, it is begin-
ning to become common to create a separation of reactive 
prediction into two modalities: short-term and long-term 
(Bremer et al. 2021; Hirt et al. 2022a; Stein et al. 2022). 
Short-term predictions are those that estimate the next 
instant of a discretized time, meanwhile, long-term predic-
tions are those that estimate the future position of the user in 
a pre-defined and larger time window. These may appear to 
be very similar cases, but different heuristics are commonly 
sought to solve both.

As the prediction algorithms are numerous, we will only 
mention in-depth those used for the experiment developed 
in this manuscript and relate them to other existing methods.

2.1 � Non‑deep learning algorithms

Algorithmic solutions to motion prediction have been widely 
designed in the field of virtual reality. Their use has been 
common as an internal mechanism to avoid head-mounted 
display (HMD) tracking errors. Several of these were com-
piled and compared in the study of van Rhijn et al. (2005). 
In this study, they analyzed the Extended Kalman filter, the 
Unscented Kalman filter, the Particle filter, and the Linear 
Time-Invariant filter. The study put a lot of emphasis on the 
latency produced by the algorithms, as they are applied at a 
low level together with the device tracking.

LaViola (2003) compared the Kalman filter and the 
extended Kalman filter with the Double-exponential smooth-
ing algorithm (DES). His experiment showed that DES runs 
approximately 135 times faster than the other two predictors. 
The root-mean-square error in DES obtains approximately 
the same results.

This algorithm is not only used to smooth the HMD track-
ing system; it is also used at higher abstraction levels to 
predict user movement. For example, in the study conducted 
by Nescher and Kunz (2013), DES is used to select between 
two different paths that support scripted prediction methods. 
This method was also used in other experiments without pre-
define the path in a reactive way as part of a RDW method 
(Mayor et al. 2021). Thus, the DES prediction seems to be a 
really suitable method for being used in RDW methods. The 
DES method applied to a position delta vector w⃗t (between 
the previous frame and the current frame) and a prediction 
delta vector s⃗t is defined as:

This method is based on a double linear interpolation 
using b⃗t as an intermediate step for the second interpola-
tion. Nescher and Kunz (2013) defines � ∈ IR(0, 1) as the 
smoothing factor and � ∈ IR(0, 1) as the trend smoothing 
factor. As s⃗t is a predicted delta vector of position, to cal-
culate the future predicted position p⃗t+1 , we should add it to 
the current position p⃗t . Smaller values of � will make the 
prediction less affected by new input data, resulting in the 
permanence of the prediction trend. Higher values of � will 
make the prediction more reactive to new input data and 
less sensitive to the trend of the previous samples. The DES 
algorithm will be used as a comparison in this manuscript 
due to its promising results.

The above-mentioned linear interpolation could also be 
considered to be the simplest reactive prediction method 
used to extrapolate. In terms of latency or response speed, 
linear extrapolation (LE) is used as a basic algorithm in some 

s⃗0 = w⃗0 = 0

s⃗t = 𝛼w⃗t + (1 − 𝛼)(s⃗t−1 + b⃗t−1)

b⃗t = 𝛽(s⃗t − s⃗t−1) + (1 − 𝛽)b⃗t−1
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experiments as a baseline (Bremer et al. 2021). It will also be 
used as the simplest algorithmic baseline in our experiment.

However, LE should not be a good candidate, as it may have 
a large numerical error compared to other more sophisticated 
solutions. For a short explanation, this algorithm only uses 
the last frame with respect to the current frame positions. It is 
based on the idea that the user continues to do the same move-
ment without taking into account the trends of those move-
ments. Taking into account the delta vector of position w⃗t and 
the predicted delta vector of position s⃗t , it can be expressed 
as s⃗t = w⃗t . Another way to understand it is that it would be 
equivalent to using DES with the value of � = 1 , completely 
ignoring the trend.

2.2 � Deep learning prediction algorithms

Currently, deep learning techniques have been explored and 
implemented in a lot of research areas outperforming the pre-
viously achieved results. As mentioned above, reactive pre-
dictions using neural networks are beginning to emerge. The 
results are promising, but very few research papers support 
this hypothesis. To the best of the authors’ knowledge, there is 
only one DL model that has been used in two different articles 
to draw their results (Bremer et al. 2021; Stein et al. 2022). 
This article will compare the existing DL model and explain 
it in depth.

In the first paper by Bremer et al. (2021), the presented 
model includes eye tracking and a body-wearable sensor. In 
addition, this model had two different designed heuristics 
depending on whether it was prepared for short-term or long-
term predictions. These heuristics are designed so that the ini-
tial coordinates of the 3D scene do not matter and the model 
can learn correctly. However, the approach of our experiment 
will be closer to commercial use, in which no additional sen-
sors are present. Therefore, due to the complexity of the Brem-
ers model, a simplified version will be explained here, includ-
ing only HMD tracking information.

Both heuristics use a rotation matrix R(�) to transform the 
data as incoming features in a specific reference system.

As features of both models (long and short), we have 
( W⃗t+n ∈ ℝ

2 ) as the future position predicted, ( ⃗Vt ∈ ℝ
2 ) as 

the velocity using, ( Ψt ∈ ℝ ), and ( Φt ∈ ℝ ) (uppercase letters 
mean that we are using the new reference system).

R(�) =
|
|
|
|
|

cos(�) −sin(�)

sin(�) cos(�)

|
|
|
|
|

The long-term heuristic uses the arithmetic mean of the 
Yaw axis ( �l = � t−1 ∈ ℝ ) of the HMD in a specific time 
window of 2.5 s of ( n = 50 ∈ ℤ ) samples. For the authors, 
this window contains 2.5 s of samples to predict the same 
extent. Long story short, the incoming features of the model 
accumulate a mean yaw of 2.5 s to predict the same 2.5 s in 
the future.

On the other hand, the short-term heuristic, instead of 
using the mean of the HMD yaw angle, works by using the 

angle of velocity ( 𝜃s = ∠(v⃗t−2, (
0

1
)) ∈ ℝ ). As we can see, 

the angle of the velocity of two steps before was used to 
apply it as the new reference system.

Tanking into account those heuristics to aim for long 
or short-term predictions, the used LSTM architecture had 
the following characteristics:

•	 Depending on whether the model includes eye or body 
tracking, from 4 to 7 input features.

•	 Two layers of 64 hidden units each.
•	 A dropout layer with ( p = 0.3).
•	 Dense linear output with two values, giving the predic-

tion of W⃗t+n

•	 It is trained with 20 epochs, a learning rate of 0.003, 
and 50 timesteps.

Instead of directly computing the results with the mean 
absolute error as a single value, the mean displacement 
error (MDE) is used. It is calculated between the label of 
W⃗t+n (with two variables or dimensions) and the predicted 
values (in previous algorithms we called them s⃗t , also with 
two variables).

Their results show that the use of extra sensors is only 
significant when predicting with a long-term heuristic 
(Bremer et al. 2021). Furthermore, in subsequent experi-
ments (Stein et al. 2022), they continued to explore this 
idea, concluding that the use of eye-tracking data achieves 
greater precision with a slight improvement with respect 
to the non-usage of this technology and their DL model.

Their latest publications focus on this line to continue 
comparing different eye-tracking devices (Stein 2021), but 
they highlight that different technologies could produce 
more or less latency. Therefore, this could modify the 
results of the pre-trained models depending on the tech-
nology used. As mentioned above, this manuscript aims to 
avoid the use of additional hardware in combination with 

W⃗t+n = R(−𝜃)w⃗t+n

V⃗t = R(−𝜃)v⃗t

Ψt = 𝜓t − 𝜃

Φt = 𝜙t − 𝜃
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HMD achieving improvements in the predictions made. In 
this way, this hardware dependency will be avoided.

3 � Methods

This article proposes to analyze different predictive algo-
rithms using real user movement data. For this reason, the 
experimentation has been carried out in two phases:

•	 Dataset acquisition: Dataset generated through a realistic 
use of different virtual experiences focused on obtaining 
a wide variety of data in different environments. The data 
obtained should be used to compare and correctly evalu-
ate different prediction algorithms.

•	 Data analysis: We will analyze the prediction algorithms 
explained in the state-of-the-art (see Sect. 2; LE, and 
DES). Furthermore, this analysis will include the LSTM 
(Bremer et al. 2021) method and our own adaptation.

3.1 � Data acquisition

In order to characterize in a complete way the users when 
performing movements in virtual environments, three differ-
ent virtual experiences have been proposed. These experi-
ences have been developed with Unity 2021.1.3f1 and they 
try to follow hard-to-track scenarios with elements found in 
commercial VR experiences (all code could be downloaded 
on Github Mayor et al. 2023). The objective pursued behind 
each experience is defined below.

•	 Scene laboratory (SL). This scene depicts a warehouse 
with boxes on the floor. The scene lacks interactions or 
defined objectives. In this way, it is impossible to define 
points of interest to script the prediction. Test subjects 
were asked to search for 3 min for a non-existent gnome 
in the warehouse. The non-existent gnome emitted a 
delocalized sound, encouraging the subjects to walk ran-
domly without a clear goal during this experimentation 
(see Fig. 1A).

•	 Shooter forest (SF). The user should walk looking for 
faraway red targets to shoot. In this example, there are 

clearly defined targets that could be tracked; however, 
the movement does not necessarily have to follow these 
targets. In this way, there is another situation where it is 
difficult to script the prediction (Fig. 1B).

•	 Escape room (ER). This is a clear example of a VR game. 
In fact, this is an adapted version of a free-to-use Unity 
demo “VR Beginner: The Escape Room” (because the 
original version allowed the user to be teleported, break-
ing our requirements). In our version, the user should 
walk to explore different elements to solve a puzzle. 
Although there is a logical sequence of actions that could 
lead the user to perform specific movements, explora-
tion may not lead the user to follow specific movements 
(Fig. 1C).

3.1.1 � Experimental setup for data acquisition

All experiments were performed in the same room, under 
the same conditions. The workspace within this room was 
8m × 8m due to physical limitations. The device used for all 
experiments was the Oculus Quest 2, which uses inside-out 
tracking and is also approximately limited to that space.

Since the three experiences were created with Unity, a 
system capable of recording the relevant data in a .csv file 
was developed. This system consisted of two scripts adapt-
ing an Observer design pattern in the Unity framework. One 
was placed on each relevant object in the scene, and the 
other was in charge of accumulating the data provided by 
each of the previous scripts. Everything worked thanks to 
the use of the Unity XR Plugin Management package with 
Oculus support and UnityEngine.XR library that allowed us 
to access the device data. All the data finally extracted are 
described in Sect. 3.1.3.

3.1.2 � Participants and procedures

The experiment had 44 participants, the mean age was 21.91 
years, with a standard deviation of 5.65 and a median age 
of 20. The sample includes 33 men and 11 women, mainly 
university students from the Universidad Politécnica de 
Madrid.

Fig. 1   General view of each VR 
experience used to capture the 
motion data
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These participants were previously asked about their 
overall use of VR technology and their weekly dedication to 
video games in general. Table 1 shows the responses divided 
into time bands in relation to this question.

Among the participants, 37 stated that they did not have 
their own HMD ( 84.09% ). Of those who did (remaining 
15.91% ), 4 had a Cardboard device and 3 had higher-end 
devices.

The experiment followed the same conditions for all 
subjects in terms of procedure, supervising person, and I/O 
devices used. A disinfecting procedure was also followed 
between experiments to ensure a COVID-free environment. 
In order to provide the same instructions to all users, they 
were previously written and read during experimentation.

To avoid that the order of virtual experiences may affect 
the results of the experiment, the experiment varied the 
order of the displayed experiences in a balanced way fol-
lowing the Latin square algorithm (Bradley 1958).

According to current legislation, all users gave their con-
sent to the processing of their data in anonymized form for 
the execution of this article.

3.1.3 � Dataset description

All scenes were recorded with a scale factor of 1.2 to fit 
the size of the room of the experiment. This recording took 
place approximately every 0.1 s, creating 10 records per 
second. With this procedure, the resulting dataset weighted 
around 266 MegaBytes in 275666 total samples. The dataset 
can be accessed on the Zenodo platform (Mayor et al. 2023).

Since it is recorded inside a game engine and all records 
take place inside their processing, the timestamp is written 
down for each register (Time_sice_startup field). Addition-
ally, the anonymized identification of the user is recorded 
(User field). All recorded data about the device are directly 
captured from its information in that frame.

The dataset includes the following characteristics for 
Oculus Quest 2 HMD and each controller.

•	 DevicePosition (x, y, z): Position recorded (previously 
expressed as p⃗t ∈ ℝ

3).
•	 DeviceRotation (w, x, y, z): Rotation expressed with a 

quaternion ( qt ∈ ℍ used in our new model).
•	 Forward (x, y, z): The unit vector that points to the spe-

cific device in the forward direction ( ⃗ft ∈ ℝ
3 used in our 

new model. It can also be obtained by rotating (0, 0, 1) 
with the quaternion qt).

•	 DeviceVelocity (x, y, z): Linear velocity of that device 
in that frame. It represents the rate of change in position 
(equivalent to ṗ ∈ ℝ

3).
•	 DeviceAcceleration (x, y, z): Linear acceleration of that 

device in that frame (equivalent to p̈ ∈ ℝ
3).

•	 DeviceAngularVelocity (x, y, z): The angular velocity 
vector in that frame of the device is measured in radi-
ans per second (if the rotation of each of the independ-
ent axes were Euler’s rotation defined by e ∈ ℝ

3 , this is 
equivalent to ė ∈ ℝ

3 . Euler angles can be obtained from 
qt).

•	 DeviceAngularAcceleration (x, y, z): The angular accel-
eration at that frame (equivalent to ë ∈ ℝ

3).

To enrich the dataset in order to be analyzed in future 
research has also been defined into the scenes some interest-
ing goals. In the virtual shooter experience, all targets were 
recorded as goals. In the virtual escape room experience, 
there were so many intractable elements, but only the key 
objects were defined as goals and recorded. However, in the 
scene laboratory, as does not have a real objective we could 
not define a goal. All of these goals left the following data 
in their respective recorded files.

•	 GoalName (x, y, z): Position of that goal. If the element 
is static, the same position will always be recorded.

•	 GoalName_Quat (w, x, y, z): As in the previously defined 
fields, a rotation is expressed as a quaternion.

•	 GoalName_LocalScale (x, y, z): Scale of that element 
locally related to its parent in the hierarchy. They have 
no relatives in their hierarchy, so it is the real scale.

3.2 � Data analysis

The results achieved by Bremer et al. (2021) with their DL 
model seem to be really promising. However, there are spe-
cific issues that lead us to believe that this DL model could 
be improved. For example, the usage of Euler angles to fit 
the model, since it is not continuous data. Euler angles can 
jump between 0◦ and 360◦ , which means the same thing. 
This kind of data could be tricky to learn by artificial neu-
rons to create effective learning.

Table 1   Sample subjects and 
their percentages of total VR 
use

Also, the weekly hours spent playing video games

Hours 0 0–2 2–5 5–10 +10

Total VR usage 17 ( 38.64%) 3 ( 6.82%) 15 ( 34.09%) 6 ( 13.64%) 3 ( 6.82%)
Weekly videogame 7 ( 15.91%) 19 ( 43.18%) 7 ( 15.91%) 4 ( 9.09%) 7 ( 15.91%)
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In addition, they used an arithmetic mean of the yaw 
angle as the long-term reference system. This kind of mean 
using circular values does not work well, since the average 
of two values, 0◦ and 360◦ using the last example, the result 
should not be 180◦ . This could be solved using a circular 
mean, really common in the statistics field; in this way, the 
numerical error could be mitigated.

Thus, showing the limitations of the proposed Bremer’s 
method, this section aims to improve and prepare the dataset 
for experimentation with the different prediction models.

3.2.1 � Our new quaternion‑based predictor

This manuscript tries to improve the model using a com-
pletely different approach without changing the input of 
the neural network architecture. The need to use Euler 
angles for Bremer et al. (2021) arises from the fact that they 
want to simplify the data sent to the neural network. If the 
dimensionality is reduced to the X-Z plane, with the Y axis 
(zenithal axis), the rotation angle yaw ( � ) is needed as a fea-
ture. Since the prediction is made on that plane, that sounds 
like a good solution.

Our approach takes the opposite direction. Since dimen-
sional reduction to the X-Z plane brings certain problems, 
we wanted to train the DL model in three dimensions. In this 
way, although the features sent to the model are more com-
plex, we do not deprive the neural network of some infor-
mation to find the best solution. Moreover, inside computer 
graphics and many more areas, the rotations are operated 
using quaternions to avoid numerical errors.

The rotations expressed with quaternions, although more 
difficult for humans to understand because they belong to 
complex numbers, solve many of the problems introduced 
by the Euler angles. In this case, despite the fact that the 
quaternions express the same circular data as the Euler ver-
sion, the values do not jump to express a really close rotation 
value (like the previous example of 0◦ and 360◦).

Keeping this idea in mind, this manuscript tried to fol-
low the same long-term heuristic but in three dimensions. 
In this case, the rotation expressed by the quaternion has 
been averaged using the previous samples to work as a new 
reference system for the input data and to predict the future. 
Since quaternions are not regular vectors, an average can-
not be obtained by taking a weighted mean. To correctly 
average the quaternions, the Markley et al. (2007) algorithm 
has been used resulting in the average quaternion ( qt−1 ∈ ℍ ) 
which is applied in a certain amount of previous ( n ∈ ℤ ) 
samples prior to the current sample ( t ∈ ℤ).

Taking into account that ( Dt ∈ ℍ ) is the current rotation, 
( ⃗Ft ∈ ℝ

3 ) is the forward vector, ( ⃗Vt ∈ ℝ
3 ) is the current 

velocity, and ( ⃗Wt ∈ ℝ
3 ) positional delta are features of our 

model under the new reference system. Homonymous vari-
ables in lowercase will be those without already following 

the reference system. In this way, W⃗t + n ∈ ℝ
3 will be the 

labels, so they are three coordinates that will be predicted by 
the neural network, following the next equations.

Since the prediction outcoming from the trained neural 
network ( ⃗St ∈ ℝ

3 referring to the current prediction of the 
future W⃗t + n ∈ ℝ

3 ) is made in the new reference system, 
to evaluate this reference system, the prediction must be 
reverted by applying the opposite operation. To evaluate 
both models under the same metric, we have also used the 
MDE explained in Sect. 2.2, To evaluate all models with the 
same rules, we compared the results only in the Z-X plane 
as follows.

Contrary to the model proposed by Bremer et al. (2021), our 
model based on quaternions does not have a special heuristic 
for short-term predictions. In fact, our implementation is the 
same, but the time window is n = 1.

3.2.2 � Data preparation

From now on, and to clarify the explanations, the input data-
set created in Bremer’s style will be mentioned as LSTM_B, 
and our adapted version with quaternions will be mentioned 
as LSTM_Q. To perform the experiments, we also compared 
them with two previously explained simple algorithms: LE 
and DES.

Because we have three VR experiences, we can con-
sider that we have three sources of data. To perform the 
experiments, we followed the same data preparation process 
for each virtual experience. We also prepared a large data 
set that mixes all motion data from all virtual experiences 
together. In this way, the data preparation made from those 
main datasets to train our models is explained below.

•	 LE and DES algorithms: as both only need positional 
original data, only the X-Z positional data have been 
extracted. In the long- and short-term predictions, the 
data set is the same since we do not need to prepare the 
data.

•	 LSTM_B: In long-term predictions, this model should be 
fitted with a dataset based on an arithmetic mean follow-

W⃗t+n = q
−1

t−1
w⃗t+n qt−1

V⃗t = q
−1

t−1
v⃗t qt−1

F⃗t = q
−1

t−1
f⃗t qt−1

W⃗t = q
−1

t−1
f⃗t qt−1

Dt = qt q
−1

t−1

s⃗t = qt−1 S⃗t+n q
−1

t−1

Error = ‖st+n(x, z) − wt+n(x, z)‖
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ing a pre-defined time window size of ( n ∈ ℤ ) previous 
samples to predict the same number of future samples. In 
this way, the data was prepared following the equations 
defined in Sect. 2.2, resulting in a new data set with two 
variables that refer to velocity in the X-Z plane, and two 
variables that refer to pitch and yaw rotation angles; all 
under the new reference system explained previously. In 
the case of the short-term, the data preparation consisted 
of the same features, but only using the previous sample 
velocity as a reference system.

•	 LSTM_Q: The long-term dataset preparation for this 
model adaptation follows the same rules as the previ-
ous one. It accumulates (n) samples as an average rota-
tion, in this case using quaternions, to predict future (n) 
samples. Following the algorithm mentioned above, this 
extracted dataset includes the rotational data with four 
variables, the forward vector with three variables, the 
velocity vector with three other variables, and the cur-
rent delta position. All these variables are preprocessed 
in the new reference system and calculated with the (n) 
samples collected before the current one. In the case of 
short-term predictions, this model is exactly the same but 
using ( n = 1 ), then using only the previous quaternion as 
a reference system.

In the original work, the sample rate was 20Hz, using a 
n = 50 to predict movement in 2.5 s. Because the sample rate 
in our dataset was recorded at 10Hz, we used only ( n = 25 ) 
to achieve closer results than the original work and make 
predictions with 2.5 s in the future. For a better understand-
ing, in Fig. 2 is a summary of how this whole experimental 
process was carried out.

It is worth mentioning that there has not been a normali-
zation process, since all positional data are related to each 
other. If normalization is applied, the information could be 
modified in a way that is not predictable. In addition, most 
of the data follow the same scale in all of the models used.

3.2.3 � Experimental setup for locomotion prediction

Taking into account the datasets generated to be used on 
each method, those have been compared under those con-
ditions. Because LE and DES are simply algorithms, the 
results are produced directly only by applying the respective 
equations.

In the case of the DL models based on LSTMs, it is 
necessary to manage a training procedure. This training 
procedure will change the inputs and outputs of Bremer’s 
model. In the original model, there are 4 inputs and 2 

Data of VR experience
Short 

prediction
Linear 

extrapolation (LE)

Double-exponential 
smoothing (DES)

Breme’s 
architecture 

(LSTM)

short-term euler 
(H: velocity)

Models for the ExperimentPreparation

Long 
prediction

Data preparation 
process 

Time Series 
generation

long-term euler
(H: arith. mean [n=25])

long-term quaternions
(H: Markley’s mean [n=25])

short-term quaternions 
(H: last quaternion [n=1])

Short 
prediction

Long 
prediction

Short prediction 
euler

Long prediction 
euler

Short prediction 
quaternions

Long prediction 
quaternions

Fig. 2   Overview of the data preparation process and the connection with the different models used in the experiments. The data preparation pro-
cess has been performed for all experiences and the combination of all of them
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outputs when you are not using eye tracking or body sen-
sors. In our adaptation with quaternions, 13 inputs, and 
3 outputs are used. Both versions follow the same neural 
network architecture described in Table 2.

Due to the number of users achieved in our new dataset, 
and to avoid overfitting, we have reduced the number of 
epochs with respect to the original experiments made by 
Bremer et al. (2021). Instead of using 20 as defined in the 
original paper, only 10 epochs have been used. In each 
epoch, the training data of the 44 participants are passed 
to the DL model. With this number of epochs, the error 
was not further reduced in all experiments.

4 � Evaluation

Before starting any evaluation, it is worth remembering 
that in the DES algorithm, we have two configurable vari-
ables ( � and � ). Because of this, it was necessary to start 
a grid search process with the DES algorithm and those 
variables. In this case, the process was applied for both 
alpha and beta values: 0.1, 0.2, 0.4, 0.6, 0.8, and 1. It 
should be noted that the value 0 was avoided because if the 
( � ) is equal to 0 it means that no external data are taken 
into account, making the prediction always the origin of 
the coordinate system. Since this does not make sense as 
a prediction method, we avoided that value.

This grid search process was performed to minimize 
the error in applying these variables. However, the result 
of this process showed that for both the long-term and 
short-term, the best value of alpha was equal to 1. Surpris-
ingly, this means that, regardless of the ( � ) value, the best 
prediction of DES is equivalent to the prediction of the LE 
algorithm. In other words, the results are the same but with 
the addition of unnecessary processing steps.

This is why in the following evaluations, we will see 
that both algorithms are evaluated together when measur-
ing their MDE.

4.1 � Short‑term predictions

After data pre-processing, we fitted the models and algo-
rithms with their own datasets. We can see in Table 3 the 
results displayed in centimeters of this evaluation in terms 
of short-term predictions.

As we can see, the quaternions dataset displayed greater 
results in most of the cases. It is worth mentioning that in 
the SL virtual scene, this is not true. In this case, the best is 
the LE algorithm.

Surprisingly, the original dataset which used the velocity 
of the previous frame as a reference system displayed worse 
results than the LE algorithm in all scenes. The improve-
ments provided by our quaternion-trained version of the 
model imply on average 0.52 centimeters more accuracy in 
terms of error, which is a 27.98% improvement over the pre-
vious model. In any case, it should be remembered that the 
simplest version of Bremer’s model, which does not include 
any additional tracking device, has been used.

4.2 � Long‑term predictions

Long-term predictions would be different in terms of good 
prediction achievement. After the training phase, we evalu-
ated all algorithms and DL models with their respective 
datasets. Results are displayed in Table 4 in the same way 
as the previous short-term predictions.

The evaluation process displayed completely different 
results. Here is where the DL models bright more than the 
algorithmic solutions. In all cases, both the original model 
and the quaternion adaptation showed much better results. 

Table 2   Definition of LSTM architecture used by both RRNs

It explains the architecture of this model, where the timestep is 50

Layer Type Size Neurons Dropout

Layer_1 Input embedding Input-size x 50 – –
Layer_2 LSTM 50 x 64 64 –
Layer_3 LSTM 50 x 64 64 –
Layer_4 Dropout 50 x 64 – 0.3
Layer_5 Dense 50 x Output-size Output-size –

Table 3   Evaluation results of Short-term datasets measured in cen-
timeters in terms of two dimensions Mean displacement Error (MDE)

Lower values mean better results (SL = Scene Lab, ER = Escape 
Room, SF = Shooter Forest, and All = Mixed data sets)

Method Dataset type SL ER SF All

LE &DES original 2.105 1.281 1.330 1.497
LSTM LSTM-B (vel.) 2.852 1.461 1.562 1.874
LSTM LSTM-Q ( n = 1) 2.213 0.992 1.058 1.403

Table 4   Evaluation results of Long-term datasets measured in meters 
in terms of two dimensions Mean Displacement Error (MDE)

Lower values mean better results (SL = Scene Lab, ER = Escape 
Room, SF = Shooter Forest, and All = All mixed datasets)

Method Dataset type SL ER SF All

LE &DES original 1.617 0.943 0.875 1.105
LSTM LSTM-B ( n = 25) 1.070 0.512 0.453 0.713
LSTM LSTM-Q ( n = 25) 0.831 0.361 0.313 0.507
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Moreover, the quaternion adaptation reduces the error by at 
least half in all experiences concerning LE. In relation to 
Bremer’s model, the improvements provided by our quater-
nion-trained version imply on average 0.184 meters more 
accuracy in terms of error, which is a 27.91% improvement 
over the previous model.

5 � Discussion

Achieving good redirections with RDW methods requires 
good predictions of where users want to go in the future. 
Here, we presented a new way to fit deep learning mod-
els to achieve better results with this task. To do this, we 
performed an experiment carried out with 44 participants 
collecting positional data through three virtual experiences 
representing common hard-to-track scenarios.

In this way, we obtained a completely new dataset pre-
pared to be used to train DL models. In this way, we tested 
the data obtained with four different existing prediction algo-
rithms. Those were LE, DES, and the LSTM model pre-
sented by Bremer et al. (2021). We adapted Bremer’s model 
using different incoming data pre-preprocessed from our 
new dataset to obtain greater results than the original work.

Interesting results have also been found during this 
research process. It is worth mentioning the disappointing 
results of the DES algorithm. Although it shows itself to 
be a good algorithmic solution to state-of-the-art motion 
prediction, its best results have been equivalent to a con-
ventional LE after a grid search procedure. This leads us to 
believe that the good results of this algorithm in previous 
work, far from being accurate, are smooth and unchanging. 
This property can be useful when this algorithm is applied 
with RDW methods, but they are not good at predicting 
exactly where the user is going. In other words, we believe 
that perceptually they are better, but numerically they have 
worse results when it comes to predicting user locomotion. 
These findings may be useful for future applications in RDW 
methods, as they give us clues on how to separate prediction 
from smoothing (as a perceptual improvement). Being two 
independent parts within an RDW algorithm.

In terms of the results obtained by the original model 
presented by Bremer et al. (2021), certain things should be 
mentioned. First, we avoided using external devices, forc-
ing us to use the simplest form of this model. Second, the 
sample ratio is slightly slower in our work, consequently 
doubling the results of the short-term predictions, since 
they are predicted in 0.1 s and not in 0.05 as in the origi-
nal work. However, these changes were necessary to com-
pare the algorithm under the new dataset. Despite this, the 
results for short-term predictions have been shown to be 
worse than those of the LE algorithm. However, the original 
work has been quite useful in terms of results and long-term 

predictions. This must be one of the reasons why the authors 
continued the work only by analyzing long-term predictions 
(Stein et al. 2022).

Because favorable results have been achieved by imple-
menting the original LSTM, LE, and DES; we can consider 
RQ1 answered. This research question was to test whether 
it would be possible to use the dataset with previous predic-
tion models. From the results obtained, which imply up to 
a 27% improvement in the predictions, we can confirm that 
this dataset is suitable for this purpose.

To improve the understanding of how this improved pre-
diction helps RDW methods, we can give an example. The 
equation describing a curvature gain method in a steer-to-
center setup (Razzaque 2005) is shown below. It has been 
extracted from the development by Azmandian et al. (2016) 
(in the shared Unity project).

•	 w⃗t is the delta position vector.
•	 Cc is a perceptible constant value pre-defined (see Lang-

behn et al. survey to understand perceptible limits of this 
constant Langbehn and Steinicke 2018)

•	 p⃗t is the vector between the user and the center.
•	 s⃗t is the prediction.
•	 CGt+1 is the resulting curvature gain to be applied in the 

next frame.

As can be seen in this example, the prediction is a small part 
of the equation, so future studies are needed to see the true 
extent of this improved prediction. However, as can be seen 
in terms of prediction, our model fitting using rotational qua-
ternions and three dimensions has been very favorable for 
the model. This confirms that it is not necessary to use exter-
nal devices to improve the results obtained by the original 
Bremer’s model. The results shown appear to be promising 
both in the long-term and in the short-term. In some cases, 
it even halves the error compared to the predictions obtained 
by LE, especially in long-term predictions.

Thanks to the results obtained by this adaptation using 
quaternions, we can confirm RQ2. This one wanted to test 
whether our proposed adaptation could obtain better results 
than previous models or algorithms. This has been affirma-
tive for most of the experiences, both short-term and long-
term predictions.

It is interesting to mention the results obtained in general 
in the SL virtual experience. In all cases and with all models, 
these have shown the worst results by far. We believe that it 
is due to the nature of this experience. As explained above, 
this experience did not have a clear objective. Users simply 
had to search for a non-existent gnome for a limited time. 

CGt+1 =
||w⃗t||

Cc

⋅ sin(∠(p⃗t, s⃗t))
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We believe that what explains these results is that the nature 
of this experience caused users to run in order to achieve the 
objective in time in many cases.

6 � Conclusions and future work

Despite the good results obtained, the authors strongly 
believe that better results could be obtained by changing the 
model architecture presented by Bremer. We believe there 
is much room for improvement; for example, using atten-
tion modules to identify patterns related to old frames and 
not just from the immediate before ones. Future work could 
explore the use of new DL architectures for motion predic-
tion in terms of layers, number of neurons, and input data. 
Furthermore, the use of eye-tracking devices could be tested 
in conjunction with quaternions to support claims made in 
other work with the original model.

Definitely, the results obtained have been promising, and 
we believe that further research is needed. DL models, in 
particular, LSTMs, may in the future become part of the 
RDW methods as an integral part of their operation.
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