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Abstract
In this paper, we present a virtual reality interactive tool for generating and manipulating visualizations for high-dimensional 
data in a natural and intuitive stereoscopic way. Our tool offers support for a diverse range of dimensionality reduction (DR) 
algorithms, enabling the transformation of complex data into insightful 2D or 3D representations within an immersive VR 
environment. The tool also allows users to include annotations with a virtual pen using hand tracking, to assign class labels 
to the data observations, and to perform simultaneous visualization with other users within the 3D environment to facilitate 
collaboration.

Keywords  Virtual reality · Information visualization · Natural interface

1  Introduction

The goal of data visualization is to graphically represent 
and communicate complex information, data, or results in 
order to provide valuable insights. This field is of paramount 
importance within data science, playing a pivotal role in 
extracting meaningful insights from data in various scenar-
ios, encompassing scientific research as well as industrial 
applications. In medicine, clinicians may need to visual-
ize many types of data, ranging from images or 3D models 
(Lawonn et al. 2018) to more challenging and complex data 
such as genomics information. In physics, it may be neces-
sary to visualize complex data from simulations or several 
statistical analyses for exploring results (Ruder et al. 2008). 

In economics, analysts may need to inspect time-series data 
such as the evolution of sales or stocks (Schwabish 2014). In 
practice, analysts are encouraged to employ different tech-
niques and to observe the data from multiple points of view, 
in order to discover properties, relations, or other insights.

The necessity to explore and visualize data is not new, but 
the study of visual perception has been becoming increas-
ingly important over time. Many data visualization tech-
niques try to benefit from the way the brain processes data 
and exploits pre-attentive uptake (Todorovic 2008) to pro-
vide effective and expressive visualizations (e.g., heatmaps 
or word clouds).

An important field of research considers the visualiza-
tion of high n-dimensional data (where n > 3 ). When the 
data are numeric, a popular approach consists in applying 
dimensionality reduction (DR) techniques, which provide 
a transformed dataset of m features, where m < n . Some 
examples of these methods are PCA (Mishra et al. 2017), 
LDA (Tharwat et al. 2017), t-SNE (van der Maaten and Hin-
ton 2008), UMAP (McInnes et al. 2018), star coordinates 
(Kandogan 2001), or parallel coordinates (Johansson and 
Forsell 2015). When m is sufficiently small, the data can be 
plotted and visualized in a 2D or 3D Cartesian coordinate 
system (if m > 3 , it may be possible to represent the remain-
ing features through graphical properties such as size, color, 
opacity, etc.).

Virtual reality (VR) has become increasingly popular in 
the past years, largely driven by the growing accessibility 
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of VR hardware and software. VR is a discipline that allows 
users to visualize a fully immersive 3D world generated by 
a computer using a head-mounted display (HMD). Most 
headsets also possess head and hand tracking functionality 
to transform user movements to movements in the virtual 
world by considering natural interactions. The recent techni-
cal advances in VR have extended its use to a large variety 
of applications. Among others, it is now possible to perform 
data analysis using stereoscopic visualization techniques in 
VR and in augmented reality (AR). In our work, we take 
advantage of this technology to represent numerical datasets 
in a real 3D space (not on a computer screen). This provides 
immersive visualizations that can be an alternative to moni-
tor viewing. In addition, the multi-user capability of this 
technology also allows analysts to collaborate through the 
use of avatars and voice chat within the visualization itself.

This work proposes the design and development of a col-
laborative tool that leverages virtual reality (VR) technol-
ogy for information visualization, specifically focusing on 
dimensionality reduction (DR) methods. The main objec-
tive is to provide analysts with a novel approach to observe 
and interact with their data in a three-dimensional (3D) vir-
tual environment, enhanced by stereoscopic effects using a 
head-mounted display (HMD). By incorporating a natural 
interface based on handheld controllers and hand track-
ing, analysts can explore and engage with the data, gaining 
deeper insights. The tool presents data that have undergone 
transformation into a low-dimensional space using popular 
DR algorithms, such as principal component analysis (PCA), 
Linear discriminant analysis (LDA), star coordinates, and 
t-distributed stochastic neighbor embedding (t-SNE). More-
over, users have the capability to annotate the scene within a 
virtual room, enhancing collaboration and knowledge shar-
ing among analysts.

The rest of the paper is organized as follows. Firstly, 
Sect. 2 reviews the state of the art and current applications in 
VR-based data visualization. Subsequently, Sect. 3 describes 
the developed application, while Sect. 4 presents its evalu-
ation through a case study. Finally, Sect. 5 draws the main 
conclusions and discusses future work.

2 � State of the art

It is acknowledged that interaction plays a fundamental role 
in information visualization. Not only can interaction make 
visualization processes less tedious (Betella et al. 2014), 
but many techniques require it in order to be effective for 
revealing insights. In general, graphical interfaces should 
be simple, while the mechanics should be at the perceptual 
level (van Dam et al. 2002). Thus, in visualization (not only 
VR-based), it is essential to design intuitive interfaces. One 
good example can be found in Kinetica (Rzeszotarski and 

Kittur 2014), which is a powerful data visualization tool that 
uses physical interactions (through a multi-touch screen) to 
process and manipulate the data. Thanks to these physical 
interactions, the tool is intuitive to use and easy to learn.

Instant Clue (Nolte et al. 2018) is another visualization 
tool that supports data visualization controlled through sim-
ple and intuitive gestures. It also offers statistical tools for 
interactive data manipulation and several machine learn-
ing techniques, such as support vector machines or deci-
sion trees. Again, its intuitive controls play a key role in the 
application.

Another highly interactive data visualization application 
is proposed in Mohedano-Munoz et al. (2021). It is a multi-
purpose tool that implements several dimensionality reduc-
tion techniques, such as PCA, LDA, or UMAP, to reduce the 
data to 2D. It also supports multiple plots at the same time, 
which greatly helps to obtain insights about the data.

In VR, there have also been various attempts to introduce 
realistic and intuitive data visualization tools. The work in 
Huang et al. (2001) integrated VR and geographical infor-
mation systems for exploring spatial data. The VR visuali-
zation in de Haan et al. (2002) was developed to explore 
volumetric data and molecular dynamics. This early tool pre-
sented the drawback that the position for the virtual environ-
ment needed to be fixed with respect to a physical table, so 
it could not be used anywhere. In van Dam et al. (2002), the 
authors developed a set of early VR applications for archaeo-
logical data analysis, bioflow visualization in arteries, brain 
visualization, and Mars terrain exploration. However, given 
the early nature of the tools, they presented many issues, 
such as tracking errors, extremely low frame rates, and poor 
graphical and interaction designs.

Valdes et al. conducted several research works (Valdes 
and Barton 2006; Valdés and Barton 2007; Montes et al. 
2008, 2010; Valdés et al. 2012) to couple visual data min-
ing with VR spaces for data and symbolic knowledge rep-
resentation. In short, they mapped the data, which could 
be heterogeneous, using different dimensionality reduction 
techniques into a homogeneous VR space that could be 
visualized in a VR cave. They provided promising results in 
different fields, such as microarray gene expression, cancer, 
computation performance, geophysical prospecting, earth 
sciences, or astronomy.

Nevertheless, it was not until 2014, with the emergence of 
commercial VR headsets (especially Oculus Rift), that VR 
applications started to become more powerful and beneficial 
in diverse areas. An economically more viable device with 
more advanced technology is capable of rendering more 
complete virtual worlds and natural interaction with posi-
tioning techniques. Donalek et al. developed an immersive 
and collaborative data visualization tool (Donalek et al. 
2014) using the Unity Engine. In this tool, variables in a 
dataset could be mapped to several visualization channels, 
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such as position, color, or transparency. Moreover, multiple 
users could visualize the same data simultaneously. In the 
same year, Helbig et al. developed a tool specifically for 
visualizing atmospheric data in VR (Helbig et al. 2014).

VR also provides an intuitive way to perform visualiza-
tions in biology, thanks to the ability to represent 3D geom-
etry accurately. In Ratamero et al. (2018), Ratamero et al. 
developed an application for visualizing proteins, acknowl-
edging its usefulness for understanding their 3D structures. 
Nanome (Kingsley et al. 2019) is a collaborative tool that 
enables users to manipulate biomolecules in real time. 
Researchers found the tool very useful for drug discovery, 
since it allowed them to notice details, they would have 
missed in 2D.

Dimensionality reduction techniques can facilitate data 
processing, analysis, and visualization. There are many dif-
ferent methods that have been applied in numerous applica-
tions, such as word embeddings for language models (Devlin 
et al. 2019), molecular simulation (Ferguson et al. 2011), or 
cancer study using multi-omics data (Cantini et al. 2021), 
among many others.

In this work, we have developed a collaborative and 
immersive data visualization tool that can be used for 
exploring general datasets with numerical and categorical 
attributes. This tool can be fully operated within the virtual 
world using a HMD with stereoscopic vision, without the 
need to configure the visualizations externally. The user is 
also able to interact with the data using natural actions and 
movements, and take 3D annotations through hand tracking 
techniques. Our tool also includes several DR algorithms 
for plotting data in a 3D space. The multi-user capability 
of our tool allows us to perform collaborative analyses and 
meetings within the virtual 3D analysis space.

3 � Proposal development

We have created a collaborative virtual environment that 
allows domain experts to analyze and visualize complex data 
in a 3D scenario that is modeled as an academic and work 
environment. With this tool, we are seeking to offer new 
ways to explore data that can complement classic informa-
tion visualization techniques.

Our proposal, called VRDR (VR information visuali-
zation for Dimensionality Reduction) allows VR users to 
visualize a dataset and apply several dimensionality reduc-
tion methods over the data to get a clear visualization for 
analysis. The immersive environment we have developed 
allows multiple interactions with the data such as selecting 
or reclassifying records, taking 3D annotations or scaling the 
data by natural interaction through the HMD hand control-
lers and tracking.

For the development of VRDR, we have used the Unity 
Engine, version 2019.4.11, alongside the Oculus SDK, 
which enables easy controller binding and compilation for 
the Oculus Quest. The main advantage of Oculus Quest over 
other VR headsets is that it is a standalone platform that does 
not require a computer to work. This facilitates the analysis 
of data anywhere.

VRDR enables loading datasets and the selection of the 
parameters needed to perform the 3D scatter plot. Users can 
get an overview of the data by interacting with it and reduc-
ing occlusions thanks to stereoscopy and 3D navigation.

In accordance with visualization information seeking 
mantra (Shneiderman 2000), the user can scale the plot or 
filter out unnecessary classes to obtain an improved 2D or 
3D visualization. Additionally, the user can select records 
for additional information via a floating hover tool, which 
allows further refinement of the representation by modifying 
other display options.

3.1 � Dimensionality reduction methods

A fundamental part of VRDR is the dimensionality reduc-
tion algorithms, capable of reducing high-dimensional data 
automatically within the tool. Innitially, we have included 
the following four algorithms: 

1.	 Principal Component Analysis (PCA) (Mishra et al. 
2017). This algorithms finds the directions in the higher 
dimensional space where the variation of the data is max-
imum, orders them, and takes the first N, setting them 
as axes in the lower dimensional space and projecting 
all records into this new coordinate system. Although 
PCA works for any value of N that is less than the origi-
nal dimensionality, since we are interested in visually 
displaying the data, the values available for N are 2 or 3 
for 2D and 3D representations, respectively. Mathemati-
cally, this works as follows: The covariance matrix of 
the data can be easily computed as C = X

T
X and diago-

nalized, which gives us a new orthonormal vector basis 
ordered by eigenvalues. If we call that matrix V, project-
ing the data into that basis is as simple as computing the 
product P = XV  . If instead of multiplying by the entire 
matrix V, we take only the top N columns to create a 
matrix V ′ , we will get the projection over only the most 
important N axes P�

= XV
� . However, computing the 

covariance matrix is very expensive, so we can take a 
shortcut by computing the SVD decomposition of the 
data X = UWV

T , and plug it into the projection, which 
gives P = UW . In the same way as before, we can keep 
only the N upper rows of U to get P�

= U
�
W.

2.	 Linear Discriminant Analysis (LDA) (Tharwat et al. 
2017). This algorithm tries to maximally separate the 
data according to the unique values of a categorical 
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attribute. A way to achieve that is to first compute a 
within-class scatter matrix and a between-class scatter 
matrix of said attribute. We can then compute an overall 
matrix, extract the eigenvectors ordered by eigenvalue, 
keep the N with the highest eigenvalue, and multiply the 
resulting matrix with the data to reduce it to N dimen-
sions. The mathematical process is similar to the one 
explained for the PCA.

3.	 Star Coordinates (Kandogan 2001). This algorithm 
interprets each one of the attributes to plot as a vector in 
the lower dimensional space. The value of the attribute 
represents the length of that vector for the record. In 
short, it interprets the D attributes of the data as the 
coordinates of a vector basis in N dimensional space. 
The direction of the vectors given to each attribute can 
be created arbitrarily. Since there is no particular crite-
rion for their directions or lengths, the algorithm pre-
sents a natural way to interact with the data by manually 
manipulating the axes, which changes the position of all 
records.

4.	 t-distributed Stochastic Neighbor Embedding (t-SNE) 
(van der Maaten and Hinton 2008). t-SNE is a nonlin-
ear algorithm that tries to maintain similar distances 
between the records in the lower dimensional space as 
they have in the higher dimensional space. To do that, 
the distances in the higher dimensional space are mod-
eled using gaussian distributions over the records. In 
the lower dimensional space, the records are initially 
placed in random positions, and iteratively, they move 
until reaching a similar distribution. One classic method 
to reduce the error in each iteration is by using a gradient 
descent algorithm. For better separation of the records, 
instead of a normal distribution, in the lower dimen-
sional space, a t-distribution is used.

3.2 � Virtual environment

We have designed a realistic environment. This favors the 
use of the tool as a place for different users to work and 
meet, and for collaborative data analysis and an academic 
meeting point. Specifically, we modeled a large office room, 
with enough space for several users to interact and a large 
visualization where the user has multiple tools to analyze 
the loaded data (see Fig. 1a). The design of this scenario 
is based on the use of flat colors without much contrast or 
brightness, to avoid interfering with the visualization of the 
data.

We have designed a user interface that allows the analyst 
to work and interact with datasets. Located at the front end 
of the virtual environment, we allow the user to load the 
different datasets and select the different options for visuali-
zation. In the event of an error in loading the data, the tool 
gives visual feedback to the user. All of these options are 
explained in Sect. 3.2.1.

Located at the back of the virtual environment, the tool 
displays a table with application instructions. In addition, 
the coordinate system is displayed for visualization. The 
walls surrounding the coordinate system have been colored 
white (see Fig. 1b) to minimize the impact that the back-
ground color may have on the set of marks and channels in 
the visualization (Bertin 1983; Reinhard 2008). In the virtual 
environment, interactive objects are made available to the 
user, implemented as pencils to make annotations within the 
virtual world and an eraser to allow the user to erase them. 
These tools are explained in more detail in Sect. 3.2.3

Data are loaded using a hovering file explorer in the UI. 
The user can navigate through the computer files and select 
a CSV dataset. The data in the CSV need to be separated by 
semicolons.

The dataset columns are also automatically separated in 
two different groups: numerical and categorical variables. 
This automatic detection is effective for the analyst, since the 

Fig. 1   Modeling of the collaborative virtual environment. a The floating menus that allow the loading of datasets. b The 3D and 2D visualiza-
tion area through a white or black board
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user does not have to do it manually, and the system detects 
that the two types of data should be treated very differently 
when visualized.

Once the data are loaded, the configuration menu appears 
and the user can select the different options for the plot. 
The interaction area of the menus is adapted to the user’s 
distance from the menu. Thus, the user can interact from 
different distances without requiring a high precision of the 
controller movement, facilitating the user experience.

3.2.1 � Configuration options

VRDR has two main setup menus. To enhance the user expe-
rience, all menus can be moved and positioned wherever the 
user wants via the controllers. They are not in fixed positions 
as in a 2D interface. In addition, the menus are oriented 
according to the camera’s point of view, allowing informa-
tion to always be visible to the user. The first one is a menu 
located at the front right side of the virtual environment 
(shown in black and blue in Fig. 2). This menu contains 
information about the columns of the loaded dataset and 
their type of variables. The second is a floating menu that 
the user can open and close via the headset controllers. This 
menu contains the visualization tools that can be used to 
manipulate the plot in real time. This menu is always dis-
played at a distance of 3 ms from the user to be fully visible.

On the left side of this floating menu, the user can select 
the type of plot as well as the columns (variables of the 
dataset) needed to create it. The available columns in the 
menu depend on the type of plot. There are four attributes 
to choose that are common to most of them: 

1.	 Color: select the column or variable to give color to 
the data marks. If the variable is categorical, then each 
mark is mapped to a different color tone depending on 
the unique values in the dataset, up to a maximum of 
twelve. At first, we followed Erik Reinhard’s advice to 
use at most seven different colors for categorical vari-
ables (Reinhard 2008), but as in many cases, we found 

examples with more than seven classes, we finally 
extended the number of colors to twelve. The colors 
are constructed from the RGB primaries, and the rest 
are created in the same way as the secondary and ter-
tiary colors are calculated. An interactive color legend 
is displayed and can be placed wherever the user pre-
fers. If the variable is numeric, the color of the marks 
will behave like a heat map (values are mapped to color 
brightness, following Bertin’s recommendation Bertin 
1983). Finally, if the default option “None” is chosen 
instead of selecting a variable, all marks will be gray.

2.	 Size: select the column or variable that gives sizes to the 
marks. This attribute is intended to work with numerical 
variables. It can be left as “None” to give all marks the 
same size.

3.	 Form: select the column or variable that that gives form 
to the mark. This column needs to be categorical accord-
ing to Bertin (1983). Each record will be mapped to a 
different mesh depending on the unique values of the 
selected column. The mesh mapping is also shown in 
the legend. It can be left as “None” to display all marks 
as spheres.

4.	 Type: The user can choose between 3D visualization 
or a more classic 2D layout, both stereoscopic. In the 
first case, the user can walk inside the data, obtaining 
a 360-degree view of it. In the second case, marks are 
drawn on a 2D blackboard (see Fig. 3) located on the 
wall next to the 3D view. Both visualizations can be dis-
played simultaneously, and the interaction with the data 
is the same for both types. Note that the blackboard used 
for 2D visualization can be hidden if the user prefers.

In the blue dropdown list of the floating menu, users can 
select the type of plot. We have implemented five different 
types of graphs, four of them corresponding to the dimen-
sionality reduction algorithms shown in Sect. 3.1. The 
types of plot and their respective attributes are described 
below: 

Fig. 2   Menus for configuring the displays and the application of dimension reduction methods
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1.	 Three-dimensional scatter plot: This option has three 
attributes named “X-axis,” “Y-axis,” and “Z-axis.” The 
data are spatially distributed according to the raw values 
for the chosen columns for each attribute. Both numeri-
cal and categorical columns can be selected. If one or 
more attributes are left as “None,” the data will be dis-
played as a scatter plot or 1D plot.

2.	 PCA: This options applies the principal components 
analysis algorithm over a set of columns to reduce the 
dimensionality to three. It possesses the attributes “First 
column” and “Last column” that define the column 
interval taken for the algorithm (Mishra et al. 2017).

3.	 LDA: This options applies the linear discriminant analy-
sis algorithm over a set of columns to reduce the dimen-
sionality to three. In the same way as the PCA, it pos-
sesses the attributes “First column” and “Last column” 
that define the column interval. It also has the “Class” 
attribute that define the column used for the algorithm 
to separate the data. The selected column for the class 
needs to be categorical (Tharwat et al. 2017).

4.	 Star Coordinates: This option applies a star coordinates 
visualization (Rubio-Sánchez et al. 2016). This also pos-
sesses the attributes “First column” and “Last column.” 
It has also a initialization attribute that defines the initial 
position of the axes. High-dimensional data are repre-
sented in 3D space by constructing one 3D axis per each 
selected column and making the weighted sum over all 
of them. These axes are also displayed along with a tag 
to identify which one correspond to which column. They 
can be moved and scaled using the virtual hands of the 
user and the data marks react in real time adopting their 
corresponding position according to how the axes are 
being moved. An example is shown in Fig. 4a.

5.	 t-SNE: This option computes the nonlinear t-SNE 
dimensionality reduction algorithm (see Fig. 4b). It 
also presents the attributes “First column” and “Last 
column.” It also has a “Perplexity” attribute that controls 
the number of neighbors that will be used for the algo-
rithm. Since this algorithm is computationally expen-
sive, it runs in parallel to not block the user movement 
(van der Maaten and Hinton 2008).

3.2.2 � Data exploration

Note that not all datasets will be easily separable by classes 
(e.g., see Fig. 5). In these cases, the tool offers different 
options for processing and interacting with the data, ena-
bling interaction and manipulation of the visualized data in 
real time, to facilitate the user’s analysis. For example, it is 
possible to visualize the data in 3D in a 360-degree view, 
using VR and stereoscopy enabling different perspectives of 
the data. In this sense, it is possible to start from an overview 
of the dataset (see Fig. 6a) and move to the foreground by 
simply walking to the center of the data, as shown in Fig. 6c. 
The user can brush, select the desired data without losing 

Fig. 3   The tool allows the user to visualize the data in 2D if a more 
traditional visualization is preferred. Interaction with the data is also 
done through the HMD controller and a laser pointer

Fig. 4   Examples of different types of plots. The user’s hand can be viewed by selecting the data of interest
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the general context, or select a record and view its informa-
tion in detail.

Using the floating menu, the user can change the size of 
the coordinate system, scaling everything in it, including the 
data marks. This size change acts as a multiplicative value 
on the original change, so if a column has been selected for 

the “Size” attribute, the relative size between the marks will 
still be preserved.

Also, as mentioned above, our tool has an interactive leg-
end automatically generated following the color and shape 
attributes that were chosen in the initial configuration of the 
plot. The legend is always oriented toward the user, even 
when the user scrolls through the plots. An example of the 
legend is shown in Fig. 7. Classes can be selected or dese-
lected interactively in the legend. Records belonging to a 
selected class will have an opaque color. Records belonging 
to a deselected class will have a transparent color, allowing 
the rest of the data to be seen while providing context (see 
Fig. 6b). Stereoscopic vision reduces the occlusion of the 
projected 2D data.

A record is considered selected if its entire class 
(selected through color and shape) is selected, although it 
is also possible to highlight individual records manually 
directly through the HMD controller (see Fig. 8). Using 
the natural interaction of VR, the user can point the HMD 
controller’s laser at a record by keeping the index trigger 

Fig. 5   Example of a dataset that does not provide a clear separation

Fig. 6   Different options and steps to explore the data
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pressed for half a second to highlight it. This allows the 
user to not switch their focus to a menu or a button, as 
in a traditional 2D interface, without having to take their 
eyes off the data. The material of the marks will change 
to a much brighter one. Non-selected records can also be 
highlighted, resulting in a bright but transparent mark. A 
record can be de-emphasized by doing the same process.

Highlighting records is also used for another function: 
the creation of custom classes. Once users have made a 
selection, it is possible to transfer the whole selection to 
a new complete class. To do this, just click the “Create 
class from selection” button in the floating menu. This new 
class is created as a color class. These classes are also fully 
functional, appear in the legend, and are taken into account 
for algorithms that use class information, such as LDA.

Finally, we can also scan all variables contained in a 
single record. To do this, users can quickly click the index 
trigger while the laser pointer is pointing to a mark. This 
opens a Hover tool that displays the values of each of 

the columns in the dataset for that particular record (see 
Fig. 6d).

3.2.3 � Virtual annotations

Taking manual notes within of the data can be useful to 
highlight certain values for later visualization. Using VR and 
hand tracking methods, we allow the user to create annota-
tions on the data itself within VRDR (see Fig. 9). For this 
purpose, we have implemented virtual pens in three different 
colors (red, green, and blue). The user will be able to paint 
on the 3D or 2D graphic itself simply with his hand. To 
paint, the user must first pick up the desired virtual pen on 
the stage with his/her virtual hands and then press and hold 
the index finger trigger to write. You can also erase strokes 
with the virtual eraser by picking up the virtual eraser object 
on the stage and placing it over the stroke to be erased by 
pressing the index trigger.

3.2.4 � Collaborative visualization

VRDR enables work meetings within the virtual environ-
ment and immersive, collaborative visualization of data. 
This facilitates collaborative analysis between different 
users, for example, one being the data analyst and another 
the domain expert. Users can be in different physical loca-
tions. When logging into the tool, they will have three dif-
ferent options: start the tool in offline mode, create a virtual 
room, or join a room.

The offline mode option allows the user to start the app 
immediately with all the functionality explained before. The 
other two options correspond to the collaborative mode, 
which has been implemented using the Photon Engine, 
integrated in Unity. A green or red dot in the collaboration 
section will inform the user whether the connection to the 
server was successful or failed. Users will be able to upload 

Fig. 7   The user can filter data by color and shape, using the floating legend menu

Fig. 8   The user can select the desired data or group of data manually 
via the HMD controller pointer. A specular material is displayed to 
identify the selected data
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datasets, configure the plot, and interact with menus and 
data.

Position and scale are synchronized natively with Photon 
Views, while attributes (such as color) are sent via simple 
RPC messages. Virtual annotations are similarly synchro-
nized, transmitting to all viewers the positions of all points 
that are part of the drawn line. This facilitates analysis and 
learning, as data are analyzed collaboratively among users. 
Users can talk during their collaborative visualization, shar-
ing progress and interaction strategies.

For the avatars, we decided to go with a very simple 
approach and just keep the virtual hands for every user con-
nected (see Fig. 10).

3.2.5 � Controls

The application is controlled using a Oculus Quest or Ocu-
lus Rift headset and the Oculus Touch. The user can move 
around the virtual environment through the room-scale 
method of locomotion. This method enhances the immersive 
user experience as it causes little motion sickness and allows 

a natural interaction with the environment. Additionally, in 
order to extend the virtual workspace in a reduced physical 
workspace, our interface allows movement via joystick. The 
left joystick is used for basic movement. The selected type 
of movement was smooth locomotion where, similar to a 
videogame, the user moves in the direction, the joystick is 
pushed. We deemed unnecessary the use of a teleportation 
system, since in this case, the movements are simple enough 
to not cause motion sickness. The right joystick is used for 
rotations. In the same way as the movement, it was imple-
mented as a smooth turn.

The B and Y buttons open and close the floating menu. 
This menu can be interacted in the same way as the main 
menu in the front part of the room and provides the same 
functionality (choose plot options). It also has several visu-
alization tools that allow the user to, e.g., modify the size of 
the data marks or create new classes, as seen above.

The A and X buttons swap the hand model between a 
normal human hand and a laser pointer. Each of those has a 
different purpose. The human hand is used to interact with 
physical objects, such as pencils to take notes, and the laser 

Fig. 9   Annotating in VRDR

Fig. 10   Two users visualizing 
the data from different points 
of view. a A user sees his/her 
virtual hands and paints on 
the visualization. b Another 
user sees how the previous one 
paints with the virtual red pen
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pointer is used to interact and select options from the differ-
ent menus. Note that the bounding boxes for the interaction 
of the different buttons and check boxes of the menus are 
wider than their display. Thus, facilitating the interaction of 
the raycast of the controllers by extending their activation 
zone.

The lateral trigger, also known as “held” trigger, is used 
to grab objects, as it is usually the case in many different 
VR applications. Pressing it with the hand model allows the 
user to grab objects. If pressed with the laser pointer allows 
the user to grab and move the floating menu from a distance.

The index trigger is used to select options in the menus 
when the laser pointer is active. When the hand model is 
active and an object is grabbed, the index trigger is used to 
activate the object (for example, paint in the air when the 
pencil is grabbed).

The controls are summed up in Fig. 11.

4 � Case study

The evaluation of our virtual reality data visualization tool 
was conducted in strict adherence to ethical principles and 
guidelines. We are pleased to report that our study received 
the formal approval of the Ethics Committee of U-tad. This 
approval underscores our commitment to ensuring that all 
aspects of our research, including participant involvement 
and data handling, comply with the highest ethical standards. 
All participants were provided with clear and comprehen-
sive informed consent forms detailing the nature of their 
involvement, the purpose of the study, the procedures, and 
the handling of their data.

We have carried out two evaluations with our tool. To 
prove how easy it is to visualize data with VRDR, firstly, 
five data analysts used our tool as a case study to analyze 
the well-known WDBC dataset (Breast Cancer Wisconsin 
Data Set) (Mangasarian et al. 2022). This dataset contains 
several (+500) cancer cases, labeled as benign or malign, as 

well as many other numerical parameters characterizing each 
case, such as radius, texture, or perimeter among others. The 
VRDR users were between 20 and 30 years old, four men 
and one woman. Three had previously worked with virtual 
reality HMD and two had not.

Performed individually at different times, users had 
to tell what they were doing, and the tester could see the 
actions inside the virtual world as a second avatar. All tests 
were recorded for later analysis of the sequence of the steps 
performed.

First, the users loaded the dataset. Once loaded, the users 
inspected the column types on the right-hand menu. Some 
of them started to make a simple scatter plot. To do this, one 
user opened the floating menu, repositioning it until it fitted 
his/her needs. The users selected the desired columns and 
plotted the result, as shown in Fig. 12.

Most of the users analyzed the overview of the data by 
walking through the 3D graph. Thanks to the different views 
of the stereoscopic 3D visualization, the majority of them 
commented that could see a separation between the classes. 
That is, based solely on the observation of geometric data, 
they were able to begin to differentiate between malignant 
and benign cancer samples. Some users began to take notes 
and visually separate the data using their virtual hands.

Next, a user tried to check whether the separation of the 
samples could be seen more accurately. Up to this point, he 
had only used three columns. He used the VRDR menu to 
select all data and applied a dimensionality reduction tech-
nique. He selected LDA on the advice of the expert and 
chose the classification class to better separate the dataset. 
He was able to see a much sharper separation between the 
classes (see Fig. 13). Other users selected the PCA tech-
nique, with less interpretation success.

Users commented that the visualization achieved rein-
forced the theory of building a robust model for detecting 
malignancy in cancer from these data, as the class was 
separable. Some users tested the nonlinear t-SNE technique 
selecting different parameters. Afterwards, the separation 

Fig. 11   Controller bindings
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was even clearer. One user ran through the data to view the 
resulting plot from different perspectives (see Fig. 14).

However, some records were still mixed up in the class 
separation visualization. Another user drew a circle around 
one of the values, which he believed to be outliers, with 
the pencil tool and indicated that more information would 
be needed to correctly classify these samples (see Fig. 15).

After exploring the different options, some users tried to 
reclassify the identified outliers as a third class, change the 
perplexity value for t-SNE, or even move the axes in star 
coordinates to understand its operation.

After the task of handling VRDR with the dataset, users 
indicated that they found it easy to operate the menus and 
interact within the virtual world. Four of the five users 
indicated that they found it very useful to get into the data 
and interact with it with a natural interaction through their 
hands. One of the users indicated that they would prefer 
not to have to scroll through the virtual world to select the 
different options, being more usable to have everything 

without scrolling. Another user indicated that he found 
the 2D whiteboard option very useful to have two points 
of view to visualize the data. All users stated that the col-
laborative mode of being able to be inside the data with 
another person was very useful, especially for academic 
purposes.

Subsequently, we conducted the system usability scale 
(SUS) questionnaire (Brooke 1996) to a diverse group of 16 
participants, with an age range between 20 and 41 years, half 
of them with knowledge of VR and half of them without. 
Users who had no previous experience with virtual reality 
HMD were given an additional 5 min to adapt to the immer-
sive device.

We provided several datasets and allowed subjects to 
freely explore and interact with the tool for 10 min to pro-
vide valuable information for the VRDR usability evalu-
ation. Subjects were then asked to complete the SUS test 
questions, and, later, a conversation was held with each 
of them.

Fig. 12   Users performed different actions to understand the dataset. a Four users chose selection by color in 3D. b One user preferred to use the 
2D option to visualize the data

Fig. 13   The users had the free-
dom to select the best classifica-
tion technique they considered. 
In this example, LDA method 
is shown
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The SUS scores ranged from 87.65 to 100, indicating a 
high level of user satisfaction with the application’s usa-
bility. These results complement the qualitative feedback 
obtained from the subjects, confirming the effectiveness 
and user-friendliness of the proposed immersive VR data 
visualization tool.

Specifically, several subjects commented that the appli-
cation was remarkably intuitive and easy to use, even 
for those who had not previously experienced working 
with virtual reality applications. They found the three-
dimensional visualization of data particularly useful, as 
it allowed them to rotate the visual representation, cus-
tomize axes directly with hand gestures, make selections, 
and immerse themselves within the graphs. Additionally, 
the collaborative note-taking feature was regarded as an 
advantage compared to other dimension reduction and data 
visualization software.

Interestingly, none of the subjects used the option 
to switch from 3D to 2D visualization after becoming 

accustomed to the 3D graphs. However, several subjects 
mentioned that the true potential of utilizing virtual real-
ity in data visualization would be realized by incorporating 
sensory channels beyond just visual and stereoscopic cues. 
They proposed integrating other sensory dimensions, such 
as sound or touch, to complement visual cues and provide 
additional stimuli for domain experts to interpret the data-
set. This could involve using vibrations, forces, or sounds to 
convey certain values, allowing experts to engage multiple 
senses in the data exploration process.

These insights highlight the positive reception of the 
application’s usability, with subjects emphasizing its intui-
tiveness, immersive 3D visualization capabilities, and col-
laborative note-taking functionality. Furthermore, the sug-
gestions for incorporating additional sensory dimensions 
demonstrate the potential for further enhancing the applica-
tion’s effectiveness in data analysis and interpretation.

Fig. 14   Users can move through 
the virtual world to see different 
perspectives of the data and 
interact with it

Fig. 15   Example of one of the 
users selecting an outlier
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5 � Conclusions and future work

In this paper, we have presented an immersive and collabo-
rative VR data visualization tool, VRDR. The tool allows 
dimensionality reduction through different techniques as 
LDA, t-SNE, and so on. It is equipped with several interac-
tions such as data marks scaling, coloring, class highlight-
ing, or creation, among others, to facilitate the analysis 
of different datasets. The stereoscopic visualization in an 
immersive environment allows the user to perform the 
analysis collaboratively with other users, facilitating joint 
investigation. The ability to walk through the data and get 
360 degrees of perspective reduces occlusions and data 
reduction. The tool enables annotations to be made on the 
data itself, which can be viewed by all users.

Following a case study, it has been shown that the tool 
offers data analysis possibilities within a virtual reality 
world. Users have been able to obtain information from the 
data without showing problems in the use of the tool. In 
a second evaluation with the SUS usability test, the users 
have indicated a high level of satisfaction with the tool’s 
usability. It is important to indicate that our focus has been 
on improving usability rather than the sense of presence.

Note that the tool can handle datasets with a substantial 
number of dimensions, but it may not be optimized for 
large-scale datasets with a huge number of records. The 
processing and rendering capabilities required to visualize 
and interact with large-scale datasets can lead to poten-
tial performance issues and decreased user experience. 
Furthermore, it is worth noting that VRDR is primarily 
designed for information visualization (InfoVis) and is 
not specifically tailored for volumetric data with multiple 
values per voxel, such as those derived from 3D scans or 
simulations. These types of datasets, commonly encoun-
tered in scientific visualization (SciVis), require special-
ized techniques and algorithms to effectively represent and 
analyze the data.

As future work, we are considering the inclusion of 
multiple simultaneous graphs within the virtual environ-
ment, each representing different datasets. This enhance-
ment would enable analysts to compare and contrast 
various datasets simultaneously, fostering a more com-
prehensive understanding of the underlying patterns and 
relationships. Additionally, we plan to incorporate parallel 
coordinates, a powerful visualization technique, into the 
tool to further enhance its versatility and enable analysts to 
visualize high-dimensional data effectively. Furthermore, 
while the initial evaluation involved pilot groups in a case 
study setting, we recognize the value of a larger subject 
pool and a concrete real-world scenario. This broader 
evaluation would provide deeper insights into the tool’s 
usability, effectiveness, and practical application. It would 

enable us to gather more robust feedback and identify any 
potential areas for refinement and optimization. Finally, we 
intend to explore additional dimensionality reduction algo-
rithms beyond the ones already implemented to enhance 
the tool’s flexibility and applicability to various data 
types and domains. This expansion would offer analysts a 
broader range of options to transform their data into low-
dimensional spaces, catering to diverse analytical needs.
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