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Abstract
Real-time performance is critical for Augmented Reality (AR) systems as it directly affects responsiveness and enables 
the timely rendering of virtual content superimposed on real scenes. In this context, we present the DARLENE wearable 
AR system, analysing its specifications, overall architecture and core algorithmic components. DARLENE comprises AR 
glasses and a wearable computing node responsible for several time-critical computation tasks. These include computer 
vision modules developed for the real-time analysis of dynamic scenes supporting functionalities for instance segmentation, 
tracking and pose estimation. To meet real-time requirements in limited resources, concrete algorithmic adaptations and 
design choices are introduced. The proposed system further supports real-time video streaming and interconnection with 
external IoT nodes. To improve user experience, a novel approach is proposed for the adaptive rendering of AR content by 
considering the user’s stress level, the context of use and the environmental conditions for adjusting the level of presented 
information towards enhancing their situational awareness. Through extensive experiments, we evaluate the performance of 
individual components and end-to-end pipelines. As the proposed system targets time-critical security applications where it 
can be used to enhance police officers’ situational awareness, further experimental results involving end users are reported 
with respect to overall user experience, workload and evaluation of situational awareness.

Keywords Intelligent user interfaces · Augmented reality · Artificial intelligence · Situational awareness

 * Iason Karakostas 
 iason@iti.gr

 Aikaterini Valakou 
 valakou@ics.forth.gr

 Despoina Gavgiotaki 
 gavgiotaki@ics.forth.gr

 Zinovia Stefanidi 
 zinastef@ics.forth.gr

 Ioannis Pastaltzidis 
 gpastal@iti.gr

 Grigorios Tsipouridis 
 tsipurid@iti.gr

 Nikolaos Kilis 
 nikolaoskk@iti.gr

 Konstantinos C. Apostolakis 
 kapostol@ics.forth.gr

 Stavroula Ntoa 
 stant@ics.forth.gr

 Nikolaos Dimitriou 
 nikdim@iti.gr

 George Margetis 
 gmarget@ics.forth.gr

 Dimitrios Tzovaras 
 dimitrios.tzovaras@iti.gr

1 Information Technologies Institute, Centre for Research 
and Technology Hellas, GR-57001 Thessaloniki, Greece

2 Foundation for Research and Technology Hellas, Institute 
of Computer Science, GR-70013 Heraklion, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-023-00937-2&domain=pdf
http://orcid.org/0000-0002-4786-3060


 Virtual Reality (2024) 28:4444 Page 2 of 24

1 Introduction

Augmented reality (AR) is drastically reshaping everyday 
tasks in all aspects of human activity, including work, edu-
cation and entertainment. There are several contributing 
factors that have fostered this progress, e.g. advances in 
hardware miniaturizing AR devices, while improving the 
computational capabilities of embedded systems, progress 
in computer vision (CV) that permits the registration of 
virtual content to the real-world and next-generation com-
munications that enable connectivity with fog and cloud 
computation nodes. One critical requirement for all AR 
systems is real-time performance so that the rendered 
content is aligned to the real scene, with further difficul-
ties arising in the case of wearable AR devices. In such 
a case highly dynamic scenes are usual since the user’s 
viewpoint constantly changes with motion. Even minor 
latency results in a misalignment between the background 
scene and the rendered virtual content which can be quite 
problematic, particularly for time-critical use cases where 
visual artefacts can aggravate the user’s stress level and 
hinder task execution.

AR systems have a long history with the foundations 
of today’s AR technology putting emphasis on real-time 
interaction with the user. Recently, researchers have 
explored the potential of mobile edge computing and 5 G 
for AR (Siriwardhana et al. 2021), whereas a bundle of 
work focuses on artificial intelligence (AI) methodologies 
for AR that can detect particular objects of interest and 
superimpose relevant information on an AR device (Hoque 
et al. 2021; Zhang et al. 2022). There are several research 
works that study the potential of AR for specific applica-
tions in quite heterogeneous domains, including healthcare 
(Buettner et al. 2020) and education (Alvarez-Marin and 
Velazquez-Iturbide 2022; Pellas et al. 2019).

Computer vision can be of great assistance in police 
tasks, e.g. frameworks that detect specific actions such as 
petty crimes (Dimitriou et al. 2017), or security-oriented 
applications in autonomous systems that require methods 
achieving real-time performance on wearable computing 
systems (Tsiktsiris et al. 2020). In this paper, we present a 
real-time wearable AR system for law enforcement officers 
that embeds several artificial intelligence (AI) modules 
aiming to enhance officers’ perception and improve Situa-
tional Awareness (SA). The proposed system is part of the 
DARLENE framework as described by Apostolakis et al. 
(2021) and is motivated by the requirements and needs 
of the police officers in the filed, concretely, their needs 
for enhanced Situational Awareness and rapid Decision 
Making. The system aims to facilitate police operations 
through the use of a distributed computation continuum 
along the edge, fog and cloud while supporting several AI 

functionalities and using AR to visualize and communicate 
analysis results to the user. In this respect, the focus of 
our work is on minimal latency and real-time processing 
as well as improved and user adaptive visualization using 
wearable edge nodes.

In this paper, we present the architecture, design and 
functionality of the DARLENE wearable node presenting 
several novelties to support complex computational pipe-
lines while minimizing execution times and overall latency. 
In this regard, the contributions of our work can be sum-
marized as:

• an interoperable architecture for a real-time wearable AR 
system with edge computing capabilities,

• lightweight instance segmentation method that can 
achieve real-time speed performance on the embedded 
system while approximating the accuracy performance 
of more computational costly methods,

• a framework for complementary CV tasks that satis-
fies running time restrictions by reducing computation 
requirements and exploiting synergies between different 
modules,

• a methodology for adaptive AR visualization that can 
automatically adjust the rendered content according to 
user status,

• extensive experiments to evaluate both system perfor-
mance and user acceptance.

2  Related work

2.1  Real‑time computer vision methods

Instance segmentation: Methods in this field, typically 
based on deep architectures, usually follow two strategies 
to segment an image: (a) “Top–down” or “Proposal-based” 
(Bolya et al. 2019) and (b) “Bottom–up” or “Proposal-free” 
(Gao et al. 2019). We focus on the faster first category, where 
bounding boxes are initially found for every instance, fol-
lowed by an estimation of the precise shape of that instance. 
The “Top–down” approaches are divided into single-stage 
and two-stage methods, based on the underlying detection 
framework. Single-stage approaches do not require proposal 
generation or pooling operations and employ dense predic-
tions of bounding boxes and instance masks, leading to infe-
rior, but real-time performance for embedded systems. Bolya 
et al. (2019) presented a fast fully convolutional single-stage 
method (YOLACT). The method breaks up instance seg-
mentation into two parallel tasks: (1) generation of spatially 
coherent prototype masks via convolutional layers, and (2) 
prediction of mask coefficients per instance-mask, able to 
achieve real-time performance although not on embedded 
systems. Lee and Park (2020) proposed CenterMask that 
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balances segmentation speed and model accuracy being an 
anchor-free, single-stage instance segmentation method. 
Bolya et al. (2020) introduced YOLACT++ based on YOL-
ACT that in contrast to the base method employs deformable 
convolutions into the backbone network leading to perfor-
mance gains. An interesting approach for Instance Segmen-
tation was introduced by Jocher et al. (2020), incrementing 
the well-established YOLO object detection method (Red-
mon et al. 2016). This method added a variant of Spatial 
Pyramid Network (He et al. 2015) and the Path Aggrega-
tion Network (Liu et al. 2018) was modified to incorporate 
the BottleNeckCSP (Wang et al. 2020) resulting in a faster 
method than the previous versions of YOLO.

Pose estimation: The goal of pose estimation is to pre-
dict a person’s position and/or orientation. This is usu-
ally achieved by predicting specific keypoints, such as the 
wrists, ankles, head. There are two approaches to this prob-
lem, namely Bottom-Up (Cao et al. 2019), in which all the 
body parts are first predicted and then they are reorganized 
and grouped together to their corresponding persons and 
Top–Down (Fang et al. 2017). In the latter, body keypoints 
are calculated iteratively and a human detector is required 
for multi-person pose estimation. The basic pipeline is as 
follows: (1) detect the people in an image with a human 
detector, (2) crop the regions where a person was detected, 
(3) resize the cropped images to match the model’s input 
resolution and (4) predict the keypoints. He et al. (2017) 
introduced an interesting method that is performing instance 
segmentation and calculates the keypoints of the people at 
the same time. HRNet (Sun et al. 2019) contrary to most 
Top-Down pose estimation techniques maintains high-res-
olution representations during the whole process achieving 
competitive performance and more importantly; in theory, 
it achieves these results with less computational power com-
pared to Pose-ResNet (Xiao et al. 2018). In Liu et al. (2021) 
the Polarized Self-Attention (PSA) block was introduced, 
using HRNet-48 as backbone achieving promising results. 
State-of-the-art methods also employ Residual nets (Xiao 
et al. 2018) and transformers (Mao et al. 2021). Xu et al. 
(2022) introduced a method that utilizes a Vision Trans-
former (Dosovitskiy et al. 2021) as its backbone, showcasing 
the ability of transformer architectures to be used in complex 
CV tasks. This method outperforms every existing method in 
the literature in terms of accuracy; however, it is not suitable 
for real-time applications that rely on embedded processing 
units.

Object tracking: Object target tracking can be divided 
to two categories, single object tracking (SOT) methods that 
follow a single object or multiple object tracking (MOT) 
methods that aim to track all the targets in a scene. SOT 
methods can be further divided to state-of-the-art in terms 
of performance, deep convolutional methods (Fu et  al. 
2021) and less computational heavy correlation filter-based 

methods (Henriques et al. 2014) that can achieve high-speed 
performance even on embedded devices. The MOT task 
could be confronted by employing multiple SOT method 
instances, one per target, although this is not possible for 
deep convolutional methods since they usually struggle to 
perform real time for a single target on embedded systems. 
Towards addressing the problem of MOT, the most common 
approach is to employ an Object Detector and a mechanism 
that can assign and update uniquely the IDs of each detection 
per frame (Zhang et al. 2021). The main issue with the vast 
majority of these methods is that they struggle to perform 
real time on limited computational resources, rendering the 
usage of MOT methods alongside an instance segmentation 
method impossible.

Most of the described computer vision task methods can 
perform real time on the edge, albeit, this speed performance 
is usually achievable when solely one of these tasks is exe-
cuted. In Sect. 4, a unified framework for these tasks, able to 
perform real time on wearable devices, such as the Wearable 
Edge Computing Node (WECN) of DARLENE is presented, 
that does not consume all of the available computational 
resources of the system, leaving space for visualization and 
other tasks.

2.2  Context‑aware adaptation for AR assistive 
systems

Context-awareness refers to a characteristic integrated into 
a piece of software that triggers it to adapt its functionality 
in order to remain usable whenever changes are detected in 
the context of use (e.g. the functional logic dictated by the 
current state of the environment or situation under which 
the software operates) (Abowd et al. 1999). A variety of 
approaches have been proposed in the literature regarding 
context modelling and reasoning frameworks (Pradeep and 
Krishnamoorthy 2019), both of which are incorporated in 
the design of various applications, and, closely related to 
the current work, adaptation of (graphical) user interfaces 
in user-facing applications.

Relevant works in context-aware user interface (UI) adap-
tation can be distinguished into model-based (Hussain et al. 
2018) and optimisation-based approaches (Oulasvirta et al. 
2020), with various methodologies and frameworks having 
been proposed in both topics. With regard to AR systems, 
context-awareness has been a subject of study in a variety 
of application domains (e.g. entertainment, manufacturing, 
education, medical and others), but, due to the complexity 
involved, the bibliography is inherently limited in terms of 
universal implementation frameworks for such applications 
(Yigitbas et al. 2020). The kinds of ubiquitous AR inter-
faces that can deliver a continuous experience adapting to 
the user’s current situation underpin the concept of Perva-
sive AR (PAR) (Grubert et al. 2017), effectively defined as a 
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super-set of AR applications with the capacity to recognize 
and react to changes in the context of their use. Additional 
pathways towards PAR are opened when considering the 
integration of Internet of Things (IoT) sensors’ modalities 
into a common implementation architecture, hence com-
bining information from the real (vision), virtual (UI) and 
ambient (IoT) world (Kim et al. 2021). Particularly with 
respect to wearable PAR, the capacity to complement the 
visual modality afforded by AR with biosignals tracking the 
wearer’s physiological state (a) has been shown to boost 
productivity when the adaptive system is meant to operate in 
an assistive capacity (ElKomy et al. 2017). Furthermore, the 
effective orchestration of digital information superimposed 
onto the real-world environment through intelligent level-
of-detail (LOD) management (b) plays an important role in 
avoiding unwanted information overload, particularly when 
targeting “glanceable” visualization systems (Daskalogrigo-
rakis et al. 2021; Köppel et al. 2021; Lavoie et al. 2021).

Therefore, in the present work we describe a wearable 
PAR system targeted at law enforcement, and which takes 
into account best practices (a, b) with regard to being usable 
in a real Law Enforcement Agent (LEA) operational context, 
while simultaneously applying the principles of the Human-
Centered Design (HCD) framework, by facilitating the active 
participation of real end users in both the conceptualization 
and realization of the final solution. Hence, we outline the 
interplay between both AR and IoT components within a 
comprehensive architectural model that further incorporates 
machine intelligence algorithms towards elevating LEAs’ 
situational awareness through continuous re-adaptation of 
the presented visuals on the wearable device. The specifics 
are covered in the next section.

3  Methods and architectural overview

3.1  Human‑centered artificial intelligence

Technologies targeting the domain of law enforcement 
should aim to bridge the gap between understanding the 
real challenges LEAs face in their day-to-day operations, 
and systems designers’ eagerness to build ‘science-fiction’ 
systems that might favor decoration over usability, in order 
to be useful to the intended end users (Silvennoinen and 
Jokinen 2016). For intelligent user interfaces and AI-enabled 
systems, the stakes are higher, going beyond usability and 
usefulness to issues such as fairness, explainability and eth-
ics, demanding Human-Centered Design (HCD) methodo-
logical approaches which put humans actively in the loop, 
thus fostering Human-Centered AI. To this end, we fully 
involved target end users and stakeholders in the require-
ments, design and evaluation phases, so as to address real 
needs and requirements regarding the target use cases of 

police patrol and tactical units and ensure that the developed 
prototype successfully meets them, but also to guarantee that 
the decision-making algorithm is designed in an optimal way 
to support LEAs’ situational awareness and actually achieves 
this, in a way that is not ‘black-box’ for its users (Margetis 
et al. 2021).

Specifically, user requirements were elicited through co-
creation workshops, involving 30 target end users and police 
stakeholders (e.g. police officers, tacticians and trainers). 
Workshop activities included listing desired functionality, 
voting proposed functionality and analysing the top-voted 
functionality. A thematic analysis approach was used (Braun 
and Clarke 2021) for mapping workshop outcomes to 44 
functional and non-functional system requirements. The 
elicited requirements were validated and refined employ-
ing a user survey, in which 60 end users were engaged. The 
deployed survey asked participants to indicate the impor-
tance of various functionalities and propose additional desir-
able functionalities and resulted in a total of 64 functional 
and 27 non-functional requirements. Further elaboration and 
validation of requirements were carried out through system 
demonstrations and training events of the target users, result-
ing in a final list of 78 functional and 38 non-functional 
requirements.

Informed by the identified requirements, Graphical User 
Interface (GUI) design prototypes were developed in an iter-
ative approach, following well-established design principles, 
AR heuristics and research findings for enhancing GUI leg-
ibility in AR glasses (Endsley et al. 2017; Syberfeldt et al. 
2017). Furthermore, three User eXperience (UX) experts 
were iteratively involved in the process, by assessing the 
developed prototypes. Overall, 10 UI widgets were designed 
representing the core functionality of the AR glasses, as it 
was identified through the co-creation workshops as crucial 
for enhancing LEAs’ SA. Each component encompassed 
three Levels of Detail (LoD) to accommodate adaptivity 
according to user status.

End users were also involved in the design of the adap-
tation decision-maker, which is described in Sect. 5.2 and 
more specifically in identifying the priority of the compo-
nent types according to the policing task at hand. To this 
end, feedback acquired from the co-creation workshop was 
used, as well as responses to a subsequent questionnaire. The 
questionnaire, which was handed out to 10 LEAs, described 
the component types and asked respondents to order them 
in decreasing level of importance and usefulness, according 
to their relevance for two policing tasks, namely incident 
resolution and patrolling.

An expert-based evaluation of the developed prototype 
was also conducted, with the participation of 5 UX and 5 
LEA experts, aimed at acquiring feedback on the developed 
visualizations, but also at assessing the implemented deci-
sion-making with regard to which components are selected 
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to be visualized in the AR glasses, the selected LoD, as well 
as their placement in the agent’s field of view. The resulting 
quantitative and qualitative findings were analyzed, lead-
ing to valuable insights for improving the developed GUI 
widgets and the decision-making (Stefanidi et al. 2022). 
The final system developed was evaluated with end users 
following an XR simulation approach, aimed at assessing 
SA, mental workload and overall UX prior to the field trials 
(see Sect. 6.2).

3.2  Co‑creation workshops

To actively involve end users in the requirements elicitation 
phase, co-creation workshops were organized with the par-
ticipation of 30 end users. In brief, co-creation is “a creative 
process that taps into the collective potential of groups to 
generate insights and innovation. Specifically, it is a process, 
in which teams of diverse stakeholders are actively engaged 
in a mutually empowering act of collective creativity with 
experiential and practical outcomes” (Rill and Hämäläinen 
2018). One facilitator was responsible for coordinating dis-
cussions, and one more facilitator was assisting in adminis-
tering the workshop activities.

All workshops had the same structure of activities. In 
particular, each workshop was structured in five (5) main 
sections: (1) Discussion of the aims and objectives of the 
workshop, and provision of general instructions to par-
ticipants; (2) Warm-up activity, acting as an ice-breaker 
to stimulate discussions within the group. (3) Presentation 
of DARLENE and its use cases, to familiarize participants 
with its objectives; (4) Co-creation activities for each use 

case, structured in three parts, namely identification of 
functionality that participants would like the DARLENE 
technologies to have, voting on the most appealing func-
tionality, and analysis of top-voted functionality; (5) 
Workshop evaluation.

The workshop outcomes were analysed manually, fol-
lowing a combination of deductive and inductive coding, 
involving two researchers (Fereday and Muir-Cochrane 
2006). In particular, one code for each one of the func-
tionalities identified in the desired functionality activity 
was created, following the deductive coding approach. 
Then, the researchers examined the data regarding func-
tional requirements in order to assign one of the predefined 
codes. In the cases when the need for assigning a new 
code was identified, this was added to the set of codes, and 
all responses were re-examined, following the inductive 
coding approach. The examination of responses and code 
assignments was carried out by two individual researchers. 
The outcomes of the two individual analyses were com-
pared, following a consensus-building approach to address 
inconsistencies in the codes assigned.

As a result, a total of 44 initial requirements were col-
lected, describing functional and non-functional aspects 
of the DARLENE system. More specifically, the identi-
fied requirements are summarised in Table 1, classified in 
high-level categories.

Non-functional requirements pertained to the security 
of the device, unobtrusiveness and user-friendliness of the 
system, accuracy of detections, as well as compliance with 
the legislation.

Table 1  Summary of functional requirements as these were elicited through co-creation workshops, organized in coarse categories

Category Details

Suspect and foe identification Suspicious persons should be highlighted as suspects, whereas persons considered to be dangerous should be 
highlighted as foes.

Allies identification The system should clearly identify allies, providing information about their health status as well
Inured persons identification Injured persons and victims of malicious acts should be clearly highlighted, providing information about their 

health status as well
Object identification The system should highlight dangerous objects (e.g. a gun) as well as suspicious objects (e.g. an abandoned 

suitcase at the airport)
Colour coding Different types of information should be displayed with different colour codes (e.g. according to threat level)
Skeleton diagrams For persons highlighted in the officer’s view, skeleton diagrams should also be provided
Location information Location information regarding identified persons (e.g. foes, allies, victims) should be provided in a map
Directions Navigation directions should be provided in addition to a map
Communication with the Com-

mand and Control (C &C)
Direct messages from the C &C should be provided when appropriate.

Summative information Summative information about the number of foes, allies, and victims should be provided.
Information prioritization The system should support information prioritization, displaying the most crucial information at the highest 

priority
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3.3  Architectural overview

The proposed system includes a real-time video process-
ing pipeline, implemented on a Wearable Edge Computing 
Node (WECN), consisting of various sub-components. The 
first one being the AR visors that is in fact a standalone sub-
system within the proposed wearable system, consisting of 
the AR visors and a microprocessor. The core processing 
unit of the wearable is a Jetson AGX Xavier.1 A camera 
that is physically located on the AR visors, is connected via 
a USB connection directly to the main processing device 
ensuring minimal latency. The information between the main 
processing unit of WECN and the AR microprocessor is 
handled by a message broker (RabbitMQ) over a local pri-
vate Wi-Fi connection. Additionally a smart band2 transmit-
ting bio-signals via Bluetooth is connected to the AR glasses 
microprocessor. Figure 1 displays the components that form 
DARLENE’s WECN and the connections between. WECN’s 
main processing unit is powered by a 4 S Li-Po battery and 
the AR glasses microprocessor and visors by a 18650 bat-
tery. The system power autonomy can exceed one hour of 
continuous usage both for the main processing unit and the 
AR glasses.

The video stream is processed by the WECN processing 
unit, and results are fed back to the AR Glasses structured in 
JavaScript Object Notation3 (JSON) data format, so as to be 
rendered, enhancing the officer’s perception. The processing 
pipeline consists of computer vision modules that run in real 
time on the wearable edge computing node. At the time of 
publishing, Instance Segmentation, 2D Pose Estimation and 
2D Target Tracking are integrated on DARLENE WECN 

device. In order to achieve a high processing frame rate, 
combined with satisfactory computer vision results, instance 
segmentation, being computationally heavier, is employed 
for 1 frame per second and the segmentation masks are 
propagated by the output of the 2D Target Tracking. The 
output of the target tracking for the human target detec-
tions, is also employed by the Pose Estimation module in the 
intermediate frames in order to calculate the desired human 
skeleton. Additionally, whenever the computational load is 
high, affecting performance, the WECN has the ability to 
forward the video data to more powerful cloud computing 
nodes, with a GStreamer service.4

DARLENE takes into account several parameters before 
presenting any information to the AR glasses. In specific, it 
considers the officer’s stress level, analysing the ECG sig-
nals gathered by a smart band, as well as other multilateral 
parameters, such as the context of use (e.g. if the LEA is 
trying to neutralize a perpetrator or just patrolling), the envi-
ronmental conditions (e.g. whether the LEA is located in 
a crowded area or not) and the agent’s experience. To that 
end, all computer vision results are filtered by an adaptation 
component before projection, to decide which information 
will eventually be displayed on the LEAs’ AR glasses, where 
and in which LoD, as described in Sect. 5.2.

4  DARLENE real‑time computer vision 
functions

In this section the computer vision modules that are incorpo-
rated in the DARLENE Computer Vision Analysis Frame-
work (CVAF), as well as the functionality of the framework 
are presented. More specifically, in the following subsec-
tions the Segmentation (S), Pose estimation (P) and Tracking 
(T) modules are analyzed. Furthermore, the way that they 

Fig. 1  Communications between the WECN components. The wear-
able computing node receives video data from the AR glasses cam-
era. The bio-signals caught by the wearable sensor are collected by 
the AR glasses processor and transmitted to the wearable computing 

node. The wearable computing node either processes the video data 
and provides results to the AR glasses processor for visualization or 
requests computational power from more powerful computing nodes

1 https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-agx-xavier/
2  h t t p s : / / p l u x . i n fo / b i o s i g n a l s p l u x - we a r a b l e s / 2 7 4 - c a r-
dioban-820202404.html.
3 https://www.json.org/json-en.html. 4 https://gstreamer.freedesktop.org/
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collaboratively produce the computer vision analysis output 
is explained.

4.1  Instance segmentation

This section analyzes the Segmentation module (S) of the 
DARLENE CVAF. The instance segmentation module is 
crucial for the system functionality since it allows for cor-
rect annotation of the object of interest in terms of position 
on the AR glasses projectors. Based on the near real-time 
method (measured on the embedded platform of DAR-
LENE) of Bolya et al. (2019), we developed a lightweight 
backbone network towards improving the inference speed 
for the instance segmentation task. The backbone network 
is inspired by the well established Residual Networks intro-
duced by He et al. (2016). The proposed lightweight fea-
ture extraction network, ResNet9, is composed by 9 con-
volutional layers with residual connections. The rest of the 
instance segmentation network is composed by the Feature 
Pyramid Network, the Protonet and the Prediction Head of 
the baseline method. The overall architecture is depicted in 
Fig. 2.

4.1.1  Training of the segmentation module

For the training procedure of the Segmentation module, we 
constructed a YOLACT-18 network utilizing a pre-trained 
ResNet185 on the ImageNet dataset (Deng et al. 2009) as 

the feature extraction backbone by removing its last 2 lay-
ers. We trained YOLACT-18 for the instance segmentation 
task by exploiting the well-established MS-COCO dataset 
introduced by Lin et al. (2014). In a similar manner, the 
YOLACT-9 network was constructed, utilizing the proposed 
feature extraction network ResNet9.

The training of the YOLACT-9 network was carried 
out in multiple steps. In the first step we focused only on 
the training of the feature extraction backbone. The aim of 
this step was to force the ResNet9 backbone, to produce 
features similar to the heavier ResNet18 architecture. The 
lightweight segmentation method was initialized with the 
trained weights of YOLACT-18 apart from the backbone 
weights. In each training step, let I be the input training 
image. The output from the feature extraction layers will be 
X9 = r9(I) and X18 = r18(I) for the ResNet-9 and ResNet-18, 
respectively. The extracted features are then passed as input 
to the rest of the segmentation network S, and for each case, 
the final output will be given by:

For each image training batch the training loss will be given 
by the mean squared error:

(1)O9 = S(r9(I)),

(2)O18 = S(r18(I)).

(3)L9 =
1

N

N∑

i=0

(O9 − O18)
2,

Fig. 2  Overall instance segmen-
tation architecture

5 https://pytorch.org/vision/stable/models.html.
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where N is the batch size. Since all of the YOLACT-9 net-
work weights were kept frozen apart from the ResNet9 
during the training, in fact L9 was only employed for the 
training of the proposed backbone. The training procedure 
is depicted in Fig. 3

As a second step, the YOLACT-9 network was fine tuned 
for the desired classes for DARLENE. Towards construct-
ing the training dataset we used the classes person, hand-
bag, suitcase, backpack and knife from the publicly avail-
able dataset MS-COCO. The knife class was augmented by 
images obtained for the DARLENE project needs, manually 
annotated images from the MGD dataset (Lim et al. 2021) 
and Open Image Dataset (Kuznetsova et al. 2020). The fire-
arm class was constructed by manually annotating firearm 
images from the MGD dataset and images obtained for the 
DARLENE project. Additionally, specific video sequences 
were recorded in CERTH premises depicting scenes of inter-
est for the DARLENE project, as suspicious/unattended 
objects, people attacking with knife/firearm, etc. The custom 
dataset (Kilis et al. 2023) is split in train and test set and is 
publicly available upon request.

As loss function, the Cross-Entropy function between the 
assembled masks and the ground truth is employed, in addi-
tion to the standard Mean Squared Error and Cross-Entropy 
losses for the regression of bounding box and classification 
for the semantic class, respectively.

4.1.2  Artificial occlusions towards robust training.

A main goal for the DARLENE WECN CVAF is to detect 
humans under occlusions. In this context, the training dataset 
was augmented by constructing artificial human-to-human 
occlusions, similar to the augmentation method proposed by 
Ghiasi et al. (2021). An occluder was picked from an image 
with a human and pasted, possibly at a later image, so that it 
occludes another picked human (occluded).

In a given training set S , let Xi ∈ ℝ
H×W×C be a training 

image of S containing N targets, where H, W are the height 
and width of the image, respectively, and C the number of 
colour channels. For each target, a vector rn , n = 0,… ,N − 1 , 
N ∈ ℤ

+ , is available containing the top left and bottom right 
pixel coordinates of the groundtruth bounding box and a 
segmentation mask matrix Mn ∈ ℝ

H×W with each cell equal 
to 1 for the pixels where the target lies and 0 otherwise. By 

exploiting rn and Mn , the image Tn

i
⊂ Xi can be extracted, 

being of size equal to the bounding box of the target, Hn ×Wn.
The augmentation technique exploits two input images Xi , 

Xj , i ≠ j . When N > 0 for both images, a random rn
i
 is selected 

from the first image in order to occlude another randomly 
selected target rn

j
 . The first step towards the new image, is to 

calculate the translation vector v , required in order to translate 
the central pixel of rn

i
 on top of the central pixel of rn

j
 , altered 

by a random regularizing factor � , proportional to the pixel 
dimensions of the occluded target:

The regularization factor is applied towards creating multi-
ple levels of occlusions. The translation vector is exploited 
towards translating Tn

i
 on top of Tn

j
 and with the aid of Mn

i
 

only the pixel values that actually belong to the occluder 
object are translated.

4.1.3  Compressing instance segmentation information

In order to compress the information generated (object 
classes, bounding boxes and segmentation masks) from our 
architecture, we calculate the 2D polygon surrounding each 
detected mask, as depicted in Fig. 4. For communicating 
with the other system components only the polygons need to 
be transferred and not mask images. This abstraction allows 
for a big reduction on the data that need to be transferred 
between various system components, since each polygon 
is a simple list containing the (x, y) pixel coordinates that 
enclose a mask found.

4.2  Pose estimation

This section describes the Pose estimation module (P) of 
the DARLENE CVAF. For this task we propose a solution, 
based on Xiao et al. (2018). It has a ResNet-8 backbone and 
its input is a cropped image in accordance with the bound-
ing box predicted by the instance segmentation module, S 
or propagated by T. Compared to module S, the ResNet-8 
backbone does not have the last 512-channel convolutional 

(4)v =

[
�(tf0 − tb0 )

�(tf1 − tb1 )

]
.

Fig. 3  Training procedure 
of the proposed ResNet-9 
backbone. Red blocks indicate 
frozen layers during the training 
procedure
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basic block. Two deconvolutions are placed after the back-
bone for up-sampling purposes.

Its architecture is visualized in Fig. 5. In the training 
phase, Gaussian heatmaps are generated as the targets for 
each joint, each one having its highest value at the corre-
sponding joint location; these heatmaps have size of 64 × 48 
pixels, height and width, respectively. The Gaussian heat-
maps for the joints can be generated as in Eq. (5), where pi is 
the Gaussian heatmap, (xi, yi) is the i-th joint location, (x, y) 
is the pixel location, and � is a constant spatial variance.

Mean-squared error (MSE) is used as the loss function, and 
in this context it can be written as follows:

In the above equation p̂ represents the joint heatmap predic-
tion from the model, p is the ground truth heatmap for the 
same joint, and N is the number of joints. The pose module 
has 17 channels as their output, corresponding to the number 
of joints, and each channel is the predicted heatmap for the 
specific joint.

(5)pi(�, �) =
1

2��2
exp

−(x − xi)
2 + (y − yi)

2

2�2
.

(6)Lmse =
1

N

N∑

i=1

∥ p̂i − pi ∥
2
2

4.3  Visual object tracking

The DARLENE CVAF exploits a correlation filter-based 
single-object tracking method (T). This method expects as 
input during initialization ( t = 0 ) a Region-Of-Interest (ROI) 
containing the desired target, produced in this case by the S 
module of the framework. In order to track an object we con-
struct x , a vectorized descriptor of the ROI having length equal 
to N = Ht ×Wt . The ROI contains a slightly bigger area of the 
image with respect to the detected bounding box. The image 
descriptor can be just the grayscale pixel values, Histogram 
of Oriented Gradients (HOG) or the output of a convolutional 
architecture (e.g. ResNet-9). In order to create target tracking 
examples, all the possible permutations of x are exploited by 
utilizing a permutation matrix that shifts the descriptor vector 
one element at a time. By applying this permutation matrix N 
times, the X matrix is constructed containing all the possible 
permutations of x . The training goal is to find a tracking filter 
w that can regress the unaltered representation of the target to 
the peak of a Gaussian distribution y and the most distorted 
ones to zero. The filter is calculated by optimizing a Ridge-
Regression problem (Henriques et al. 2014):

where � is a regularization parameter. The solution to the 
above problem is given by:

(7)min
w

‖Xw − y‖2 + �‖w‖2,

(8)w = (XTX + �I)−1XTy,

Fig. 4  Generation of segmenta-
tion polygon from the pro-
duced segmentation map. This 
abstraction allows for huge data 
transfer reduction since a small 
amount of (x, y) pixel pairs are 
sufficient to describe the target 
position

Fig. 5  DARLENE Pose estima-
tion model
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where I is the identity matrix. In case of multi-channel 
descriptors then the datamatrix can be defined as the con-
catenation of per channel datamatrices Xi, i = 0, ...,C − 1 , 
where C the number of channels. It is easy to conclude that 
calculating the result of Eq. (8) in a per-frame basis would be 
a significantly heavy computational task. To overcome this 
difficulty, the circulant properties of matrix X are exploited 
according to X = F

Hdiag(Fx1)F  , where F  is the Discrete 
Fourier Transform and .H the Hermitian transpose. Applying 
this to Eq. (8), in the Fourier domain:

where ⊙ denotes element-wise operations, the division is 
element-wise, ⋅̂ and ⋅̂∗ denote the DFT transform and its 
complex-conjugate, respectively. By applying w to x the 
expected output, namely the response map R , should be the 
desired Gaussian distribution y:

Subsequently, in the following frames ( t > 0 ), the feature 
descriptors of the area that previously contained the desired 
target z are extracted and the trained filter w is applied. 
Examining the obtained response map R , the target transla-
tion can be obtained by the offset of the peak value from the 
expected center. After obtaining the updated target position, 
Eq. (9) can be recalculated, producing wt , and the track-
ing filter can be updated by a predefined learning rate l as: 
w = (1 − l)ŵ + lŵt.

The result of Eq. (10) can also be exploited in order to 
detect tracking failures, by examining the peak value, statis-
tical characteristics, or by classifying the output as success-
ful or not as in Karakostas et al. (2020); Ma et al. (2015); Li 
et al. (2016). In DARLENEs CVAF the maximum value is 
exploited as a measure of tracking quality as well as a metric 
for target re-identification, further explained in following 
Sect. 4.4.

4.4  Computer vision analysis framework

All of the previously described methods are combined in 
the Computer Vision Analysis Framework (CVAF), able to 
perform real-time on embedded devices such as the WECN 
of DARLENE. The desired goals of this framework are to 
produce a polygon containing the desired targets, the pose of 
human targets and maintain a tracking id for each detected 
object as long as it is in the camera Field-of-View (FoV). 
Towards achieving this, the segmentation (S) and tracking 
(T) modules work collaboratively alongside the pose estima-
tion module (P).

The CVAF framework takes as input a video stream set 
to 25 frames per second (FPS). For the first frame the S 

(9)ŵ
∗
=

x̂
∗
⊙ ŷ

x̂
∗
⊙ x̂ + 𝜆

,

(10)R = F
−1(ŵ⊙ x̂).

module segments the scene and produces the desired poly-
gons for visualization in the AR glasses. For the following 
frames, T is employed in order to update the polygon posi-
tion of each tracked object. S is employed again after 24 
frames, thus runs at 1 Hz. It is trivial to understand that with 
the initialization of the framework, the detected objects can 
be assigned with a unique identity (ID) number. For the sub-
sequent outputs of S although, the necessity of re-assigning 
the correct IDs to the already tracked object arises as well 
as identifying newly detected objects. To address this issue, 
after each S output, two metrics are employed for the re-
identification task. The first one is the Intersection-over-
Union (IoU) of the detected box/polygon with the propa-
gated box by T module. Given two bounding boxes A and B, 
IoU ( d1 ) will be calculated by the area of overlap of the two 
boxes over the total area defined by the boxes, d1 =

A∩B

A∪B
 . The 

second metric is derived by the output of the response map 
of T, d2 = max(R) . By setting a hard-coded threshold t1 and 
t2 for each metric, if d1 > t1 and d2 > t2 , it is assumed that 
the same ID for the detected object should be maintained. 
Otherwise a new ID is assigned. The threshold values have 
been selected after experiments on relevant video sequences. 
Alongside this procedure, P produces the pose estimation 
for the human targets (computed in a per-frame basis).

4.5  Streaming and communication

4.5.1  CVAF output and AR glasses communication

The CVAF produces instance segmentation, pose estimation 
and identity information regarding the objects of interest in 
the scene of operation. In order to visualize these results on 
the AR glasses, a JSON data structure is produced contain-
ing all of the vital information to the rest of the system mod-
ules. This file is transmitted by employing tools provided by 
the open-source message broker RabbitMQ.6

4.5.2  Video stream

In DARLENE ecosystem it is important to make the video 
stream from the AR glasses camera available for further 
analysis in cloud/edge computing nodes. The camera, is 
connected via USB cable to the wearable processing unit 
and when necessary, stream queues to specific edge or cloud 
computational nodes can be created. For the video stream-
ing task GStreamer framework is deployed, exploiting its 
encrypted Real-time Transport Protocol (SRTP) capabilities. 
For data security reasons, apart from the private network that 
the system utilizes, the video stream is encrypted and can 

6 https://www.rabbitmq.com/
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only be decrypted by the desired client if the appropriate key 
is available, as illustrated in Fig. 6.

5  Pervasive AR WECN Visualisation

In this section the rendering and visualisation pipeline 
implemented on the WECN, with integrated support for 
on-the-fly context-aware UI adaptation is discussed. Spe-
cifically, the PAR assistive system is presented, which uti-
lises inputs from the wearable biometrics sensors (IoT) and 
the information relayed by the CVAF, toward compositing 
a Heads-Up Display (HUD) comprised of dynamic glance-
able graphical UI elements (widgets) designed to elevate 
the wearer’s SA. An overview of the visualisation pipeline 
is presented in Fig. 7. Individual rendering components are 
described in detail in the following sub-chapters.

5.1  Data‑pipeline handler

This component implements an aggregator of external 
information generated by the various inter-communicat-
ing functional blocks of the DARLENE architecture and 
then organises and broadcasts it in the form of a unified 
message structure that can be consumed by the render-
ing and interaction pipeline components. Its purpose is to 
obtain, associate and synchronize data containing various 

information such as stress predictions from the biometrics 
sensors, the CVAF JSON output, information regarding 
the detected people and objects existing in the scene, com-
piling it into a JSON data block representing a ‘snapshot’ 
of the current situational context in which the WECN is 
operating. This message is relayed to the adaptation deci-
sion-maker component for triggering the context-aware 
reasoning routines that will further regulate how the con-
tained information (e.g. segmentation, pose estimation and 
annotation data) should best be displayed given the current 
physiological state of the WECN user. The communication 
supports an asynchronous, message-oriented protocol (e.g. 
AMQP) which is implemented using the RabbitMQ. The 
Data-Pipeline handler component is executed on the main 
processing unit of the wearable device (i.e. Jetson AGX).

5.2  Adaptation decision‑maker

The adaptation decision-maker aims at providing context-
aware adaptation of the GUI components that are being visu-
alized on the LEAs’ AR glasses, considering the parameters 
that affect their SA, such as the current context of use, their 
physical state (e.g. stressed or not) and expertise. By com-
bining Ontology modeling and reasoning with Combinato-
rial Optimization, this module decides what information to 
present, when to present it, where to visualize it in the dis-
play - and how, taking into consideration contextual factors 
as well as placement constraints. The main objective of the 

Fig. 6  Visualization of the 
encrypted stream a without 
decryption and b using the 
predefined decryption key. In 
the left case the video stream is 
distorted and unusable

Fig. 7  High-level overview of 
the DARLENE rendering and 
visualisation pipeline
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proposed approach is to optimize the SA associated with 
the displayed UI at run-time, while avoiding information 
overload and induced stress.

The adaptation decision-maker module consists of three 
inter-connected units:

• the Ontology model, which implements an Ontology that 
specifies the entities and relationships of the supported 
GUI components, including accompanying metadata 
(e.g. their dimensions), as well as relevant context infor-
mation. It dynamically receives the current context from 
the messages of the Data-Pipeline handler and stores it 
in the Ontology.

• the SA reasoner provides an on-the-fly inference of the 
suitability of each GUI component, with respect to how 
much it enhances the user’s SA, by calculating an SA 
score. The calculation of each component’s score is based 
on information from the Ontology Model, in particular, 
the current context and modeled domain knowledge in 
the form of Ontology rules.

• the UI optimizer, which computes the optimal adap-
tation of the UI, given the modeling of the application 
domain. In particular, it determines the GUI components, 
their presentation and their position, for display by the 
Rendering Engine. This is based on information about 
(a) their SA score provided by the SA Reasoner, and (b) 
visualization and placement constraints, based on the 
current context and their size and shape, provided by the 
Ontology model.

In specific, in the Ontology Model of the decision-maker 
module, an ontological model has been defined, based on 
the user requirements obtained from the co-creation work-
shops, as described in 3.1. For the definition of the Ontology, 
relevant context factors are pertaining to the user’s profile, 
state, activity and environment, following a similar approach 
to Margetis et al. (2019). Specifically, for the DARLENE 
case study, the activity is the current LEA operation (task), 
the environment includes information regarding its crowd-
edness, the profile includes the user expertise and the state 
captures the user’s stress level. Furthermore, all the sup-
ported GUI components, their type of provided information 
and their LoDs, along with relevant metadata, such as their 
dimensions and their SA score, are also represented.

Regarding the SA Reasoner, a SA score for each GUI 
component in the Ontology is dynamically computed, 
depending on the current context. More specifically, based 
on the user’s profile, state, activity and environment, mod-
eled in the aforementioned Ontology, an Ontology Rea-
soner infers the SA score to assign to each GUI component, 

depending on its LoD and the type of information it pro-
vides. For this implementation, the Pellet reasoner was 
used.7 Each time the context changes, the SA Reasoner 
recalculates the SA scores and propagates them to the UI 
Optimizer.

The UI Optimizer implements a Combinatorial Optimiza-
tion problem, with the purpose of computing the optimal UI 
for the display of the user at run-time. This optimal UI is the 
one that maximizes the SA associated with the UI, based on 
the modeling of the application domain, while satisfying at 
the same time visualization and placement constraints. In 
particular, the UI Optimizer solves two distinct but inter-
related problems at once, one of GUI component selection 
(content, design) and one of GUI component placement 
(layout). More specifically, on the one hand, it determines 
what information to present to the end user and how, which 
translates to the problem of selecting the appropriate GUI 
components and their LoD. On the other hand, it determines 
where to visualize them, and more specifically in which of 
the dynamically defined possible positions in the display. 
The solution of the optimization problem is sent to the Ren-
dering Engine, responsible for visualizing the selected GUI 
components, instantiated with up-to-date content originating 
from the Data-Pipeline manager. The Adaptation decision-
maker component is executed on the main processing unit 
of the wearable device (i.e. Jetson AGX).

A detailed analysis of the adaptation decision-maker 
module is provided in Stefanidi et al. (2022).

5.3  Rendering engine components

As previously mentioned in Sect. 3.2 Co-creation work-
shops, the DARLENE WECN utilises a pair of smart glasses 
as the main visual output terminal, based on an ARM mobile 
platform architecture running an Android-based operating 
system. The rendering engine is built in the Unity 3D graph-
ics engine and implements the HUD functionality by means 
of a collection of dynamic widgets and UI components 
displaying the algorithmic outputs, that are automatically 
and selectively triggered and placed in view, so that they 
are composited to render the final augmented image. This 
image is then transparently layered on top of the real world 
by means of the smart glasses lenses display. Orchestration 
of the widgets and GUI elements is triggered internally by 
means of the GUI adaptation toolkit (GUIT) component. 
The rendering engine components are presented in more 
detail in the following paragraphs.

5.3.1  Graphical user interface components widgets

Overall, a total of 10 UI widgets have been designed and 
developed aimed to accommodate the key system functional-
ities, as these have been identified through the requirements 7 https://github.com/stardog-union/pellet.
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elicitation process. Each component featured three LoDs, 
exhibiting variance according to the information type 
accommodated. The supported widgets were as follows:

• Person identification. This category contains all widg-
ets that can be associated with a detection that has been 
classified as a human. These widgets impart information 
about a person of interest, including their name if avail-
able, and information about their criminal record activi-
ties (if any) provided by the C &C centre. In the case of 
person identification pertaining to an affiliate member of 
the LEA squad/patrol team, information about their field 
expertise and the current physical state by means of bio-
signals is provided. The component diversifies according 
to the hostility of the identified individual, annotating 
hostile individuals are annotated in red colour, civilians 
in yellow, allies in blue, and suspects of criminal behav-
iour in orange colour.

• Object identification. The specific category contains all 
widgets that can be associated with a detection that has 
been classified as an object. For the purposes of LEA 
operational frameworks, such detections may trigger 
warnings because of their status (e.g. being unattended, 
or potentially dangerous) or because of their identifica-
tion as various kinds of weapons or explosives. Annota-
tions feature orange colour for suspicious objects and 
red for dangerous ones. Currently, the following object 
types (and corresponding icons) have been accommo-
dated: unidentified object, marked by a question mark, 
suitcase and weapon, including guns and knifes.

• Health status information. The health widgets cat-
egory contains all widgets that can be associated with 
the detection and classification of wounded individuals 
in the scene, along with a prioritisation of the injuries’ 
treatment needs. This widget is subject to information 
provided by paramedics on-site and communicated to the 
C &C Centre.

• Abnormal behaviour indication. In the DARLENE 
context, this component is associated with behaviours 
that are irregular for the current context of situation as 
they are recognized by the Computer Vision module, and 
namely punch, kick, hit with object.

• Alert. This widget has been designed to facilitate on-
screen information regarding the LEA’s current objec-
tive, directly communicated by the operations control 
centre.

• Directions. Directions widgets are intended as way-
points to provide on-screen assistance for navigation in 
the patrol environment. In addition, a crosshair widget 
has been developed to function as a precision pointer, 
drawing the attention of a LEA to a particular point of 
interest.

• Map. The Map widget aims to assist the LEA in orient-
ing themselves through a map-based visualisation of the 
patrolling area, also providing useful information about 
other points of interest in the area. It requires that a map 
of the area or building is available.

• Step-by-step guidance. Information widgets are 
intended to provision short and comprehensive tutorial-
ised material for performing specific tasks (e.g. provide 
first-aid assistance). These can be sent by the operations 
command centre whenever a situation is encountered and 
on-screen guidance is warranted.

• Summative information. This widget is a comprehen-
sive indicator of all detections on screen, meant to act 
as a permanent reminder of the current situation at all 
times. It includes information on all detected people and 
objects in the scene, with a counter indicating the number 
of detections in each category.

• Live feed. The live feed widget enables a LEA smart 
glasses wearer to visualise real-time camera feeds from 
various locations of the patrolling area, creating a sec-
ond-screen experience for monitoring movements and 
areas remotely.

Each graphical element in the point-of-view HUD interface 
is an independent entity designed to convey context-relevant 
information directly in front of the wearers view for as long 
as that information stays relevant to the context, encapsulat-
ing knowledge received through the CVAF following the 
performant “Eye-Glance interface” paradigm described in 
Lu et al. (2020). Isolation between all GUI components (e.g. 
annotation widgets and algorithmic detection components) 
ensures that each element displayed on the HUD can regu-
late its own independent LOD regardless of the LOD set-
ting applied to the other components currently in view. An 
example of this functionality is summarized in Fig. 8. As can 
be seen, various HUD annotation widgets can be displayed 
simultaneously alongside algorithmic detection GUI com-
ponents, where the adaptation decision-maker can determine 
the proper LOD for each one individually.

8 The annotation widgets specifically implement con-
text-adaptive features. Each widget stems from a prefab-
ricated (prefab) Unity GameObject hierarchy, attachable 
to the built-in Canvas UI system. In this way, adaptation 
functionality is shared among all widget objects, with each 
regulating its own adaptation elements (e.g. functionality, 
aesthetics, information granularity, etc.) through individu-
ally added user-written code. The prefab hierarchy imple-
ments a multi-LOD architecture with support for up to 3 

8 Video by Anton V., "Greece, Athens, Metro ride from Syngrou Fix 
to Omonia" - https:// www. youtu be. com/ watch?v= dE1cX BmL1NA

https://www.youtube.com/watch?v=dE1cXBmL1NA
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layers of informational depth (Fig. 8), similar to Daska-
logrigorakis et al. (2021), i.e.:

• The Base Layer corresponds to a GameObject “con-
tainer” used for determining the widget’s placement on 
the final rendered image. The Layer does not implement 
any rendering routines whatsoever.

• The LOD-1 is a child GameObject to the Base Layer. 
It implements the most basic GUI elements that aim at 
communicating the bare-bones version of the informa-
tion that the widget supports.

• The LOD-2 Layer is a second child GameObject to the 
Base Layer. It increases granularity of the presented 
information with additional graphical elements, enlarg-
ing the size of the widget as a result. In some cases, 
LOD-2 represents the highest LOD attainable (having 
similar characteristics to LOD-3).

• The LOD-3 Layer GameObject is a third, optional (in 
many cases) child of the Base Layer. It presents the 
most unabbreviated version of the information, which 
might take up a significant part of (or in some cases, 
the entirety) of the screen.

Every widget component hierarchy can be instantiated at 
run-time. Only the Base Layer should always remain active 
at all times. LOD-1, LOD-2 and LOD-3 can be selectively 
enabled at the behest of the adaptation decision-maker.

In addition to widgets, algorithmic detection GUI compo-
nents follow a similar instantiation paradigm, with prefabs 
being associated to the type of detection supported by the 
application use case (e.g. 2D skeleton rendering, outline ren-
dering). In contrast to widgets however, these components 
do not support LOD-based adaptive features.

The process of selecting the LOD for each annotation is 
an integral part of the decision-making process carried out 
by the Adaptation decision-maker. This is done to ensure 
that the system presents relevant information at the right 
time, in the right location on the display, and in the appropri-
ate manner, taking into account contextual factors and place-
ment constraints. The decision-making process involves a 
combination of ontology modeling and reasoning with Com-
binatorial Optimization. This approach helps to improve the 
Situation Awareness of the Law Enforcement Agency (LEA) 
by conveying the necessary information while avoiding cog-
nitive overload Stefanidi et al. (2022).

5.3.2  GUI adaptation toolkit

The GUIT is a rendering engine entity entrusted with 
orchestrating the final rendered image through the selection 
and adaptation of renderable components (as described in 
Section 5.3.1), which it does by decoding the binary infor-
mation received from the adaptation decision-maker. Con-
nectivity is implemented in Unity through the MIT-licenced 

Fig. 8  Composite image of 
annotation widgets and algorith-
mic detection GUI components 
rendered on top of a pre-
recorded video frame8 . Differ-
ent LODs apply in the person 
(ally, in blue) and weapon 
identification (in red) widgets
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Unity3D.Amqp third-party package (Everett 2017), which 
implements an AMQP protocol client for Unity supporting 
RabbitMQ as a message broker. Each received message is 
then translated into actions, such as:

• Instantiating a new renderable (widget, or detection GUI 
component) derived from its respective prefab.

• Associating each renderable with a unique tracking ID 
stored in an internally kept tracking dictionary (to persist 
display in consequent rendering frames).

• Determining placement of each element to the optimal 
screen “cell”, by treating the final rendered image as a 
grid, and keeping track of the cells occupied by exist-
ing renderables (widget width and height correspond to 
dimensions that are multiples of the cell size). In this 
way, we avoid rendering widgets on top of one another, 
and keep the visualisation sleek and clean to avoid infor-
mation overload.

To support real-time rendering performance, messages 
received by the adaptation decision-maker can either con-
tain full annotation data, or shortened tracking information. 
Full data messages are received every 25 rendering frames 
and include data on the algorithmic detections, annotation 
data on the detected entities, subject segmentation points, 
proper LOD for each annotation object and grid placement 
information. Tracking messages are received in between full 
data updates, and enable segmentation, or skeleton points 
on detected subjects to be updated (by means of their track-
ing IDs), which in turn allows for the calculation of a new 
center of gravity point based on the bounding box computed 
for each updated segmentation/skeleton points collection. 
Hence, a widget associated to the detected object’s tracking 
ID can remain “anchored” to it and follow its movement 
on the screen seamlessly for the entirety in which the sub-
ject remains on screen. It should be mentioned that full data 
messages are sent every 25 rendering frames, so as to avoid 
increasing computation latency and create an unnecessary 
bottleneck for the system. However, the system keeps send-
ing for each rendering frame the position and the outline 
mask of the detected objects; thus, real-time visualization 
on the AR glasses is not compromised.

6  Experimental evaluation

In this section the results of the experimental evaluation 
are presented. In the following subsections, the different 
submodules are evaluated individually as well as the whole 
system. For the whole system, an end user based evaluation 
was carried out as well, examining aspects as Situational 
Awarness, Workload and User Experience.

6.1  Evaluation of the CVAF

In order to evaluate the performance of the deployed algo-
rithms in our proposed CVAF framework, several experi-
ments have been carried out. The first set of experiments 
evaluates the performance of the two core modules of 
CVAF, namely the segmentation (S) and the pose estimation 
module (P). In the second set, the performance of the overall 
framework is evaluated. All of the presented experiments 
were conducted on the embedded platform that the proposed 
system exploits, an Nvidia Xavier AGX.

6.1.1  Instance segmentation experimental evaluation

The instance segmentation module was evaluated both in 
terms of performance speed and accuracy. For evaluation 
the well-established MS-COCO dataset was exploited, as 
well as the test set of the DARLENE dataset as described 
in Sect. 4.1.1. The experimental results indicate that the 
employed training technique and data augmentation method 
allowed for a lightweight instance segmentation method, 
able to perform real-time while maintaining a similar accu-
racy compared to much computational costly architectures.

Table 2 showcases a comparison for the well-established 
MS-COCO dataset among YOLACT variations utiliz-
ing different backbone feature extraction networks. YOL-
ACT ResNet50 is provided by its respective authors9 and 
ResNet18 variation is trained on the MS-COCO dataset. 
Examining the results, the synthetic occlusion augmenta-
tion for the person class allowed the proposed architecture 
to achieve better results for the person class than the much 
heavier ResNet50 architecture. Additionally, the perfor-
mance is on par for the rest of the classes. However, the 
speed performance of the proposed ResNet9 is 7 times better 
compared to ResNet50 and +15 FPS on average compared to 
ResNet18 that cannot achieve real-time performance. Com-
paring the proposed method with YOLOv5, it is noticeable 
that on the one hand they have a similar performance in 
terms of mAP; however, the slightly worse performance in 
terms of speed of YOLOv5 would compromise the real-time 
need of the DARLENE system. Figures 10 and 9 depict the 
mask and bounding box output of S for objects of interest. 
In Fig. 10 the system is able to detect the objects of interest 
even when intra-class occlusions occur. In Fig. 9 resulting 
masks on images from the MS-COCO dataset containing 
objects of interest are depicted.

9 https://github.com/dbolya/yolact.
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6.1.2  Pose estimation

This subsection covers the evaluation of the Pose Estimation 
module, described in Sect. 4.2. We compare the model with 
other architectures, in specific a method with ResNet-18 as 
its backbone, in terms of accuracy and inference speed. Both 
these methods were trained and evaluated on MS-COCO. 
The object keypoint similarity (OKS) as defined in Lin et al. 
(2014) is exploited for evaluation, which serves the same 
purpose as IoU in Object Detection. The accuracy metric is 
the mean Average Precision (mAP) over 10 OKS thresholds.

The inference test was conducted on a Jetson AGX Xavier 
with TensorRT inference engine at Floating Point 16(FP16) 

Fig. 9  Qualitative results of segmentation method on MS-COCO validation set images

Fig. 10  Qualitative results of the Segmentation module for the DARLENE use cases

Table 2  Quantitative results of segmentation methods. 

The reported values per experiment correspond to mean Average Pre-
cision of the generated mask, when evaluated on MS COCO valida-
tion and custom DARLENE test sets and the Frame Per Second (FPS) 
performance on Jetson AXG Xavier

YOLACT YOLACT YOLOv5 Proposed
ResNet50 ResNet18

Person 27.6% 25.9% ��.� % 30.0%

Backpack 8.6% 4.5% 6.3 % �.�%

Handbag �.��% 4.3% 4.4 % 5.8%

Suitcase ��.�% 14.8% 12.1 % 13.4%

Knife �.�% 1.4% 5.5 % 2.9%

Mean ��.�% 10.2 % 12.3 % 12.26 %
Firearm − - 31.1 % ��.� %
AVG FPS 5.6 20.4 33.2 ��.�
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and Integer 8(INT8) accuracy, and the results are presented 
in Table 3. ResNet-18 has higher mAP at 67.5% , while 
ResNet-8 stands at 44.8% , and their single target inference, 
meaning their inference on a cropped part of the image con-
taining a person, was 1.7 and 0.7 ms, respectively, at fp16. 
ResNet-8 is 2.4 times faster than ResNet-18, but at the same 
time its AP is 22.7 percentage points lower. At integer 8 
accuracy the ResNet-18 stands at 1.3 ms, while the ResNet-8 
does not have any performance gain.

Both these methods can be deployed on the system. When 
there is high system load and the device is low in resources, 
we prefer to use ResNet-8 since it has lower latency and it 
scales better with the number of persons, while when there 
are not many people in a scene, the ResNet-18 architecture 
is preferred for its higher accuracy.

6.1.3  Evalutation of CVAF and AR visualization

The complete Computer Vision Analysis Framework was 
evaluated in terms of speed performance on data that was 
collected for the needs of the DARLENE Project. The data-
set contains footage of people performing simulated/staged 
illegal actions (threatening other people, holding weapons, 
etc.) as well as scenes with people, where no illegal activ-
ity is taking place. In Table 4 the various computer vision 
components are evaluated on these video sequences towards 
measuring their respective speed performance. We report the 
results for segmentation, segmentation and pose, segmenta-
tion, pose estimation and tracking and finally the whole sys-
tem speed performance including the communication with 
the rest of the components (AR glasses, etc.). The system 
was evaluated for the case when only one object is tracked 
and for the case when up to 20 objects are simultaneously 
tracked. The first two rows employ the ResNet-8-based pose 
estimation method, while the last two the ResNet-18 variant. 
When only the segmentation module is exploited, the system 
can achieve real-time performance. The speed difference of 
S compared to Table 2 is due to the evaluation on videos 
and not on single images as well as the polygon computation 
of each mask detection. When the pose module is enabled 

alongside S, the system drops below the real-time threshold 
of 25 FPS for the 20 objects case. However by employing the 
tracking propagation the system is able to perform real-time 
achieving on average 30 or 34 FPS regarding the selected 
pose estimation method. Finally, the overall system speed 
performance reported in the last column, is comfortably 
above 25 FPS. It should be noted here that even if, there is a 
speed performance drop by the polygon calculation for each 
detection, this trade-off is necessary since the transferring of 
image mask would have resulted in bigger delays during data 
transfer for visualization (8–10 pixel coordinates per object 
compared to image masks).

Figure 11 depicts the system visualization for three dif-
ferent scenarios. In the first one depicted in Fig. 11a the 
system has detected possible suspects that appear to per-
form odd movements. In the third frame, the white color 
annotation indicates that although the target is detected, 
the visualization optimization of the system decides to hide 
the visualization on the glasses towards reducing the visual 
clutter for the user. The same holds for the rest of the sce-
narios. In Fig. 11b a foe holding a firearm attacks a group of 
LEAs. The system is able to detect the firearm and provide 
a helpful LoD for the user. Similarly, in Fig. 11c the system 
detects the attacking foe and annotates the person with red 
color, while the victim is annotated with yellow color with 
additional information about its current status in the floating 
widget. In the first frame although the person is detected, it 
is not visualized in the AR glasses since it is of no interest 
yet. From all of the aforementioned examples, the effect of 
sparsely employing the segmentation module can be seen. 
Examining the last frame of Fig. 11a, it is noticeable that the 
blue polygon is not perfectly aligned with the person, due to 
the fact that the polygon is propagated and not re-calculated. 
However, since it is correctly centered on the tracked person 
and with the aid of the pose estimation module, the result is 
acceptable in terms of quality.

6.1.4  Latency analysis and overall execution time

In this set of experiments, the overall execution time of the 
system was measured towards obtaining the time needed 
from image acquisition until the AR information is rendered 
on the glasses. The evaluation was carried out by measuring 
the time performance of the CVAF, Data Handler, Adapta-
tion Decision-Maker and the actual rendering on the AR 
glasses. In the first experiment, apart from the rendering 
that is always carried by the Android device that handles the 
AR glasses projectors, all of the components of the DAR-
LENE system were executed on the wearable device. The 
experiment was carried out for 15000 frames, for which the 
CVAF was able to detect object of interest. Figure 12 depicts 
the per frame latency for the aforementioned frames, and 
in Table 5, the average values are reported. By examining 

Table 3  Evaluation of the pose estimation models in terms of accu-
racy (Average Precision) and inference speed on Jetson AGX Xavier

 The evaluation was carried out exploiting the MS-COCO dataset for 
pose estition

Model AP % Single Target Single Target
Inference(ms) Inference(ms)

FP16 INT8

ResNet-18 67.5 1.7 1.3
ResNet-8 44.8 0.7 0.7
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the results, when all of the system components are executed 
on the wearable device the latency induced by the analysis 
performed by CVAF is 31 ms which translated to 32 FPS 

processing speed. Additionally, the Data Pipeline Handler 
induces on average 6.6 ms and the Decision-Maker 3 ms. 
The rendering on the glasses requires an average of 1.4 ms, 
leading to an average latency from the image acquisition to 
annotation rendering of 41.9 ms.

In the second experiment, the system latency for the case 
of executing CVAF on a cloud service was measured. As 
a cloud computing device, a personal computer with an 
Nvidia 3060 was exploited. For this experiment, apart from 
the components measured in the previous experiment, the 
latency induced by the video streaming service needs to be 
evaluated. The performance for each frame is illustrated in 
Fig. 13, and the average values are reported in Table 5. It 
should be mentioned that Data Handler and Decision-Maker 
are still executed on the wearable device and the rendering 
is performed by the standalone Android device handling 
the AR projectors. Thus, the rendering latency remains the 

Fig. 11  System output on 
video frames. Blue annotation 
indicates LEAs, orange possible 
suspects and red color foes. 
White annotation indicates 
annotation that is produced by 
the system but is not actually 
visualized in the glasses towards 
reducing the visual clutter

Table 4  FPS performance of computer vision modules on WECN

S  segmentation, P Pose estimation, T: tracking, C connection to Rab-
bitMQ. For the last two results, S module is executed every 24 frames 
and P every frame. First two rows pose ResNet-8, the last two with 
pose ResNet-18

Max Modules

Detections S S + P S + P + T S + P+T + C

20 25 21 34 32
1 33 30 54 51
20 25 19 30 29
1 33 29 50 50
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same as well as the average latency induced by the Decision-
Maker. However, Data Pipeline Handler needs more time for 
each frame since it communicates with the cloud server to 
receive the annotation of each frame, leading to an increased 
latency by +3 ms when compared to the first experiment. 
The latency of the streaming service adds on average 16.1 
ms of latency and the CVAF analysis on the cloud requires 
12 ms. For this experiment, the average latency was meas-
ured at 42 ms.

6.2  End user evaluation

The system and the SA it achieves has been assessed through 
a user-based evaluation10 involving 20 LEAs. In specific, 
the goal of this evaluation was to validate that the system 
achieves its overall goal by enhancing agents’ SA during 
policing tasks without imposing mental workload, ensuring 
at the same time a high-quality UX. Users experienced the 
system through viewing videos of staged terrorist attacks. 
The study was set up as a within-subjects experiment, 
involving two variables, namely stress and system usage, 
resulting in four experimental conditions, delivered in a ran-
domized order through a 4 × 4 Latin square design: (a) the 
agent is not stressed and is not using the DARLENE system, 
(b) the agent is not stressed and is using the DARLENE sys-
tem, (c) the agent is stressed and is not using the DARLENE 

system, and (d) the agent is stressed and is using the DAR-
LENE system. In the conditions where the participant should 
not be using the DARLENE system, the videos shown did 
not feature the AR WECN visualization, as opposed to the 
conditions featuring the system. Participants’ stress was 
manipulated through a mental arithmetic task for inducing 
stress (Tombaugh 2006) and relaxing videos for achieving 
a calm state.

The experiment encompassed three distinct phases, 
namely introduction phase, the main study segment and a 
debriefing phase. Initially, participants were welcomed and 
explained the study’s objectives and purpose. Following this, 
they provided their informed consent by signing a consent 
form and completed a demographic information question-
naire. Subsequently, a brief presentation introduced them 
to the DARLENE User Interface widgets and their LoDs to 
familiarize them with the system. A calibration of the HMD 
followed. During the main part of the experiment, each 
experimental condition commenced with a stress manipula-
tion task for the stressed and unstressed conditions accord-
ingly. Questionnaires were administered at the end of each 
experimental condition.

A detailed analysis of the evaluation results is provided 
in Stefanidi et al. (2022); however, a summary of findings is 
provided in this paper for enhancing readers’ comprehension 
on the evaluation outcomes.

6.2.1  Situational awareness

SA was measured as a perceived and observed phenom-
enon, through the SART questionnaire and the SAGAT 

Table 5  Average latency 
induced by each component of 
the DARLENE AR system

All reported values are in milliseconds

Mode Streaming CVAF Data Decison Rendering Total
Handler Maker

Wearable – 31 6.6 3 1.4 41.9
Cloud 16.1 12 9.6 3 1.4 42

Fig. 12  System execution and 
latency time analysis on the 
wearable device. For each 
component the measured time 
includes the execution and 
transmission of results (e.g. 
JSON files) to the next com-
ponent

10 The study has been conducted following approval by the Social 
and Societal Ethics Committee of the Katholieke Universiteit Leuven 
(KUL approval number G-2021 09 2072).



 Virtual Reality (2024) 28:4444 Page 20 of 24

query technique (Salmon et al. 2009) correspondingly. 
More specifically, SART entails SA questions with respect 
to ten dimensions, which are classified into three main 
subscales: Attentional Demand(AD), Attentional Supply 
(AS) and Understanding (U). The score for each subscale 
is calculated as the sum of the participant’s rating in each 
of the subscale’s questions, which range from 1 to 7. The 
final SART score is calculated as per Eq. (11).

(11)SARTscore = U − (AD − AS).

Scoring for the SAGAT questionnaire entails awarding a 
single score point for each accurate answer to a question 
and no points for incorrect responses. The total score for 
each participant is then summed up and divided by the total 
number of questions presented to them, in order to calculate 
their final SAGAT score, which signifies the percentage of 
correct responses provided.

It is evident that both perceived (Table 6) and observed 
(Table 7) SA was in all cases higher when participants 
were using the system. In particular, the observed SA was 

Fig. 13  System execution and 
latency time analysis exploiting 
cloud server. For each compo-
nent the measured time includes 
the execution and transmission 
of results (e.g. JSON files) to 
the next component

Table 6  Situational awareness 
SART results across the four 
studied conditions in terms of 
stress and system usage

 For each condition, the mean score, minimum, maximum, score range, standard deviation and 95% confi-
dence interval is reported

Stressed Not Stressed

With the system Without the system With the system Without the system

Mean 23.6 17.89 21.00 18.16
Min 16 -1 7 9
Max 38 29 32 28
Range 22.00 30.00 25 19
SD 5.08 6.87 6.19 4.14
95%CI [20.82. 25.71] [14.58. 21.21] [18.02. 23.98] [16.16. 20.15]

Table 7  Situational Awareness 
SAGAT results across the four 
studied conditions in terms of 
stress and system usage

For each condition, the mean score, minimum, maximum, score range, standard deviation and 95% confi-
dence interval is reported

Stressed Not Stressed

With the system Without the system With the system Without the system

Mean 69.52 66.88 70.86 61.62
Min 42.86 46.67 40.00 28.57
Max 93.33 80.00 93.33 86.67
Range 50.48 33.33 53.33 58.10
SD 12.66 8.96 14.62 14.49
95%CI [63.60 75.44] [62.69 71.07] [64.01 77.70] [54.84 68.40]
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increased with the system by 3.95% in the stress condition 
and by 15% in the no stress condition. Perceived SA was 
increased by 30% in the stress condition and by 15.65% in 
the no stress condition.

6.2.2  Workload

Workload was measured using the NASA-TLX ques-
tionnaire (Hart and Staveland 1988). Results indicate 
(Table 8) that from the studied constructs, mental and 
temporal workload and effort were the higher ones, as 
opposed to physical workload and frustration. At the same 
time, perceived performance was also high, highlighting 
that participants felt that they were able to successfully 
achieve the tasks they were undertaking. In order to inves-
tigate if the imposed workload is acceptable in the context 
of policing tasks, results were compared to findings from 
a study with police officers in a field shooting exercise 
(Oron-Gilad et al. 2008), yielding the conclusion that the 

perceived workload when using the DARLENE system 
for policing tasks is in general aligned with the workload 
observed in actual policing tasks.

6.2.3  User experience

The overall UX with the system was assessed through the 
UMUX-Lite questionnaire (Lewis et al. 2013). This is a 
standardized, two-items questionnaire, asking respondents 
to indicate on a scale from 1 to 7, how satisfied they are 
with the system regarding how it addresses their require-
ments and how easy it is to use. Overall, results indicate 
that the system is positively appraised with regard to meet-
ing users’ requirements and being easy to use when agents 
are not stressed, but also when they are stressed (Table 9). 
Qualitative feedback received through post-test interviews 
with participants indicated that participants would like to 
use it in their daily operations and identified issues to be 
addressed in future improvements.

Table 8  Workload results 
based on the NASA-TLX 
Questionnaire, across two 
conditions studied with 
the system (stressed and 
not stressed), as well as in 
comparison with standard 
policing tasks, namely warm up, 
flashlight, barrel, and metal

Results for each condition are reported as mean and standard deviation scores, across the following work-
load dimensions: mental, physical, temporal, performance, effort, and frustration

Stress
cond.

No stress cond. Warmup  
policing task

Flashlight 
policing task

Barrel polic-
ing task

Metal 
policing 
task

Mental
(M.SD)

65.79
25.89

64
28.45

52
26

59
23

68
21

65
24

Physical
(M.SD)

20.00
27.69

22.5
29.13

28
23

40
26

62
24

53
25

Temporal
(M.SD)

53.16
28.97

54.5
31.12

38
26

45
26

67
22

62
25

Perform.
(M.SD)

62.89
17.74

60.5
20.45

63
24

61
23

55
23

52
22

Effort
(M.SD)

58.68
17.70

47.25
24.14

48
23

53
24

65
20

62
20

Frustrat.
(M.SD)

35.53
23.86

33.5
26.01

29
23

38
23

47
27

49
25

Table 9  UX results as collected 
through the UMUX-Lite 
questionnaire responses

Results are reported across the two studied conditions when using the system, namely stressed and not 
stressed, as well as across the various UX dimensions supported by the employed instrument, namely if the 
system meets user requirements, if it is easy to use, as well as overall UX score. For each dimension the 
mean, minumum, maximum, value range, standard deviation, and 95% confidence interval is reported

Stressed Not Stressed

Meets reqs Easy to use Overall score Meets reqs Easy to use Overall score

Mean 4.95 5.11 5.03 4.85 5.25 5.05
Min 2.00 1.00 2.50 2.00 2.00 2.00
Max 7.00 7.00 7.00 7.00 7.00 7.00
Range 5.00 6.00 4.50 5.00 5.00 5.00
SD 1.35 1.94 1.50 1.31 1.37 1.23
95%CI [4.30, 5.60] [4.17, 6.04] [4.31, 5.75] [4.24, 5.46] [4.61, 5.89] [4.47, 5.63]
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6.3  Limitations

The limitations of the conducted user study pertain to the 
relatively small number of participants, the lack of proper 
training in the system, as well as the in vitro setup of the 
study employing policing videos. The current study was car-
ried out as an initial user-based study on a working prototype 
of the system, aiming to acquire insights on the usability of 
the system, as well as its impact on situational awareness and 
workload, before proceeding with a large-scale study involv-
ing more participants. Nevertheless, follow-up studies have 
already been planned, involving a larger number of LEAs, 
who will use the actual system in simulated policing tasks, 
after having been trained on its usage.

7  Conclusion

Advancements in machine learning, visualisation technolo-
gies and hardware are gradually enabling their combined use 
in real-time performing applications. In this paper we elabo-
rated on the design, architecture, main novelties and individ-
ual components integrated into such an application, intended 
for various police use cases, such as patrolling and tactical 
threat neutralisation. Due to the highly critical nature of its 
use cases, our system places emphasis on achieving real-
time performance of the various computer vision algorithms, 
which combine for AI-assisted, rapid visual scene analysis 
towards heightening user awareness of potentially dangerous 
situations. As soon as information becomes available, an 
efficient and intelligently driven rendering pipeline for wear-
able AR smart glasses enables an effective, glanceable and 
usable visualisation of the detected information, taking also 
into account the user’s current physiological state, by means 
of wearable IoT biosignals sensors, and current context of 
use. We attested to the system’s real-time performance by 
conducting a thorough comparative experimental evaluation, 
which further explored our solution’s performance as per-
ceived by the intended end users.

Future work will focus on the integration of the presented 
technologies with additional disruptive innovations, particu-
larly in the networking domain (e.g. osmotic computing, 5 G 
networks, etc.), while the eventual final system will be exten-
sively evaluated by end users. The present system could also 
be improved in several aspects as hardware advancements 
occur. More powerful wearable devices can allow for heavier 
architectures for the existing CVAF modules, as well as the 
addition of other CV methods that could improve the SA of 
the end users (e.g. action/activity recognition). Addition-
ally, the AR glasses could benefit from visors with larger 
FoV and while being overall smaller and lighter making the 
everyday use of the DARLENE system easier for the police 

forces. Furthermore, future work will focus on additional 
user-based studies, involving a larger number of participants, 
carrying out policing tasks.

8  Data and resources

The MS-COCO dataset that supports the findings of this 
study is available in https:// cocod ataset. org/, Open Images 
Dataset is available in https:// stora ge. googl eapis. com/ openi 
mages/ web/ index. html and Monash Guns Dataset available 
in https:// github. com/ Marcu sLimJ unYi/ Monash- Guns- 
Datas et. The custom DARLENE dataset that was created 
and exploited for evaluation will be publicly available upon 
paper acceptance.
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