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Abstract
Virtual reality (VR) applications on rehabilitation a home-base exercise experiences have boomed in the last decade. This 
is mainly because their entertainment capacity creates a sense of immersion in the users, which enhances adherence to their 
use. In addition, offering body-related visual feedback is a proven approach to the physical training towards a goal. Recent 
literature showed the exercise of pedalling has the potential to provide a high number of flexion and extension repetitions 
of the lower limb in reasonable therapeutic time periods to improve muscle activity, strength and balance in elders, but 
also motor improvements in patients with neurological injuries. The objective of this work is to present a low-cost wireless 
application in virtual reality (VR) for pedalling exercises. The platform developed consists of a VR headset and an inertial 
measurement unit (IMU). The VR headset processes the kinematic information of the IMU to estimate the cadence of the 
pedalling, while the IMU sensor tracks the angle of hip flexion/extension movement of the user. In order to confirm the 
suitability of this cadence estimation system, our approach is confronted with a cycling platform developed and validated 
in a previous study. In the present study, we carried out two repeated sessions with 13 subjects at 3 set speeds: slow (30 
rpm), medium (60 rpm) and fast (90 rpm). The Spearman’s correlation (PC) between both systems for the 3 speeds and ses-
sions shows high correlation values for low and medium speeds and moderate correlation for high speed. The SEM results 
for each system show low measurement error (about 1 cycle) for both systems at every target speed, except for the virtual 
cycling platform at the highest speed (SEM of VCP at 90 rpm = 3.24 cycles). The repeatability analysis based on ICC (3, 1) 
absolute agreement shows consistency in all measurements for both systems at high speed and also reflects the irregularity 
in measurements at low and medium speeds, where participants were less stable during testing due to entertainment from 
the VR system. All in all, it is concluded the validity of the cadence estimation system for pedalling exercises with low 
intensity. This development allows us to control the virtual environment by adapting the visual stimulus to cycling cadence. 
The proposed system can generate sensitive inputs to influence the user’s pedalling cadence.
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1 Introduction

Physical exercise can help to attenuate the incidence of the 
so-called age-related conditions (Valenzuela et al. 2011). 
More effective interventions based on personalized exercises 
and designing physical training programmes can improve the 
muscle strength and balance (Larsson et al. 2019). Recent 

studies reported that cycling training has positive effects on 
muscle strength, bone density, spasticity, cardiopulmonary 
function and many other physiological and psychological 
benefits in neurological patients and in the elderly. All the 
factors are directly related to improvement of functional 
abilities in postural control and gait (Peng et al. 2011).

Therefore, the need arises to identify new tools that allow 
to encourage physical activity and to promote adherence 
to functional activity programmes. Among the emerging 
technologies applied to this area, immersive technologies 
stand out. Their potential lies in the ability to generate con-
trolled and personalized immersive environments where the 
movements made by the user can be captured and objec-
tively quantified. Thus, we want to generate a virtual reality 
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application that stimulates the user’s sense of immersion as 
a way to promote adherence to a continuous exercise routine. 
The requirements for this virtual reality application must 
be: (i) that it can be used with any stationary pedalling sys-
tem and therefore, (ii) that it does not depend on a specific 
system, (iii) that it can be used in a generic virtual reality 
helmet at an affordable price. And above all, that it is easy to 
install the pedalling system, which implies reducing possible 
sources of complications such as dependence on external 
systems and use of cables.

1.1  Immersive environments for indoor cycling 
training

The latest use of virtual reality technologies is aimed at 
providing feedback to stroke patients to improve corti-
cal activity, functional performance, muscle control and 
fatigue (Ferrante et al. 2011; Yang et al. 2014). Among the 
possible modalities of extrinsic biofeedback adopted for 
stroke patients, visual input is the most widely used (Ebra-
him 2000). Visual feedback during cycling could improve 
neuromuscular control and the overall training performance 
(Lin et al. 2012), which is generally based on cadence and 
load. The generation of cycling training home-based systems 
requires the integration of user-friendly and low-cost track-
ing systems, affordable game stations and common static 
bicycles or monocycles. To facilitate access to immersive 
environments for cycling, several mobile applications have 
been developed like Virtual Cycling World (World 2022) 
or Cycle Go (Software 2021) offer scenic roads and voice 
guided training to make indoor training more effective and 
enjoyable. These solutions do not monitor the user’s exercise 
but seek to improve the user performance through virtual-
ized environments and motivating feedback.

On the other hand, the approaches found in the literature 
in this field rely on high-cost robotic systems and complex 
and highly specialised equipment. Cardoso et al. (2019) 
developed a neurorehabilitation platform using a robotic 
monocycle instrumented with inertial sensors to meas-
ure cadence. They also customized an electronic board to 
control the virtual monocycle with user’s motor imagery 
of electroencephalography (EEG) and surface electromyo-
graphy (sEMG). Ferreira et al. (2019) developed an active-
motorized static bicycle which can be gradually adjusted 
according to the pressure exerted on pedal’s force sensors. 
This design allows to use different parameters to train each 
leg individually to compensate impairments. Chen et al. 
(2017) offered an integral solution that includes an electric 
wheelchair with lower limb training function, a multivari-
ate control module, a virtual reality training module and 
a tele-doctor-patient interaction module. Despite specific 
hardware designed for lower limb rehabilitation combined 
with virtual or non-immersive scenarios, the most widely 

used equipment are static pedalling stations such as those 
marketed under the trademark MOTOMed™. In fact, Grani 
and Bruun-Pedersen (2017) developed a VR biking sys-
tem, named Giro prototype, using a pedal-tracking device 
mounted on a MOTOMed™, which synchronizes the visual 
virtual feedback to user exercise.

1.2  Motion tracking for cycling

In the spirit of increasing the visual feedback of movement, 
approaches are emerging that seek to represent the user’s 
virtual avatar through tracking systems. But representing the 
positioning and orientation of the user’s body from a tracker 
data acquisition is still a very challenging issue. When it 
comes to full body tracking, most common VR approaches 
are limited by either high latency or insufficient accuracy. 
Regarding the features of the most advanced non-standalone 
HMDs, like HTC Vive™, PlayStation VR or Oculus Rift™, 
can detect the positions and rotations of their headsets and 
compatible controllers or trackers, since they use their own 
infrared tracking system (Farahani et al. 2016). These track-
ing solutions overcome the jittering and inconsistent track-
ing of fine movements as suffered by Kinect or Nintendo Wii 
(Friðriksson et al. 2016). But even all these motion-sensing 
models are limited by the occlusion principle to a greater or 
lesser extent, since the markers must remain within the space 
delimited by the tracking systems. Recent studies focus on 
the design of real-time gait tracking systems detecting for 
virtual reality rehabilitation training platforms. Nowadays, 
wearable sensors based on IMUs are widely used to monitor 
human gait. The list of applications of IMUs on gait analy-
sis present by Ribeiro and Santos (2017) includes several 
prototypes and commercial solutions. This review identifies 
solutions that allow the estimation of thigh movements, the 
measurement of lower limb joint angles and the study of 
physical activity and postural orientation and the estimation 
of temporal parameters of gait. In addition to the applications 
of these sensors for the study of gait, it should be noted that 
the use of virtual reality in this field of study has promoted 
the development of solutions that provide interactive and 
attractive locomotor training (Kim et al. 2019) for the user 
or the patient. Therefore, some studies have simulated walk-
ing in different virtual environments (Fung et al. 2006; Yang 
et al. 2008) promoting different tasks, such as walking on a 
slope or walking while avoiding obstacles (Mirelman et al. 
2011; Shema et al. 2014). As an example, Guo et al. (2017) 
analysed gait parameters relations to the plantar pressure 
and the lower limb joints range of motion (ROM) measured 
by inertial measurement units (IMU). The aim of this sens-
ing system is to transmit the lower limb motor parameters 
of patients via bluetooth into the virtual training game, as 
the motion control signals for character driven in games has 
proved to be valuable in rehabilitation assessment. With the 
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aim of capturing the user’s movement using hardware-based 
virtual reality trackers: Caserman et al. (2019) proposed to 
synchronize avatar’s motions with user’s motions using HTC 
Vive™ headset and Vive Trackers™. They conclude that the 
imperceptible delay of 6.71 ± 0.80 ms and the reasonable 
accuracy of the tracking, according with the results of the 
rating simulation questionnaire based on Likert scale, were 
contributing factors in the user’s perception of deep immer-
sion. Besides the use of trackers and inertial sensors for cap-
turing pedalling motion, the use of smartphone applications 
for monitoring outdoor pedalling or running has become 
widespread. APPs like Strava (2022) track the route by GPS 
and provide exercise performance information based on the 
device’s internal accelerometer and gyroscope sensors, and 
often complement it with biometric data. These applications 
implement algorithms for real-time motion detection similar 
to those used in IMU sensors. For indoor cycling, APPs like 
ICG (Group 2022), OneLapFit (OneLap 2022) or BODY 
BIKE Indoor Cycling (BIKE 2022), among others, allow 
monitoring exercise performance, but these APPs are devel-
oped to be used for specific hardware, i.e. to be paired with 
a specific commercial exercise bike.

It is also worth to mention computer vision (CV) and 
video-based applications for tracking and visualizing the 
posture and movement of indoor pedalling. Kaplan et al. 
(2019) presented a video-based framework for cycling to 
enable tracking of the knee. This approach allows moni-
toring the trajectory that describes this joint in real time 
with the aim to visualize cycling biomechanics and to 
avoid overuse injuries. Bini et al. (2021) presented a solu-
tion for postural analysis during pedalling motion based 
on video analysis for detection of the body segments. 
This automated tool allows the analysis of the cyclist’s 
biomechanics. With a similar approach, in automating 
real-time motion detection, Karashchuk et  al. (2021) 
created a markerless CV-based tool able to analyse 3D 
walking kinematics in humans, mice and insects. In case 
of human gait characterization, this tool extracted knee 
flexion, hip rotation and hip flexion angles from 3D joint 
positions tracked. Although the latter solution does not 
focus on pedalling, it also illustrates the potential for 
motion tracking in the field of computer vision. Yet, it 
should be acknowledged that wearable inertial sensors 
have no disadvantages compared to vision systems, which 
may have tracking problems due to illumination or occlu-
sion. Of course, inertial systems provide a direct meas-
urement of joint motion rather than an estimation from 
image or video processing techniques. For these reasons, 
it becomes more intuitive and reasonable to use inertial 
systems to address motion tracking in pedalling.

1.3  Approach

While emerging technologies are being used to promote 
physical activity, many of these new therapies based on 
video games (Dimbwadyo-Terrer et al. 2016; Bayón and 
Martínez 2010) focus on two fundamental aspects: induc-
ing as much immersion as possible and accurately tracking 
the user’s movements. The potential of aiming these aspects 
is that enabling accurate tracking is necessary to evaluate 
whether the movements have been performed correctly and 
achieving greater immersion improves the user’s engage-
ment in a physical task. Current VR devices, by their very 
nature, are capable of very accurate tracking of the user’s 
head and hand movements, but they rely on motion tracking 
systems to manage reliable and accurate data on any other 
body-segment. Nevertheless, rehabilitation solutions based 
on immersive environments are more effective than tradi-
tional (Viñas-Diz and Sobrido-Prieto 2016) because of these 
essential qualities: first of all, they have proven to improve 
individual engagement: Exergames increase user energy 
expenditure and involve both cognitively and physically 
rewarding tasks (Maillot et al. 2012). These highly motivat-
ing activities are likely to promote adherence to play. Sec-
ondly, they provide physical fidelity to a real movement: the 
user performs movements similar to what he or she would 
do in an analogous situation during daily life. And lastly, 
they provide cognitive fidelity to a real situation: The person 
must perform the activities in an environment designed to be 
similar to the real world.

With all this in mind, it is still necessary to generate an 
accurate cycling motion capture system that is universal to 
any cycling equipment and communicates with a virtual 
reality application on any standalone device. Therefore, the 
present work seeks to provide an approach that allows to 
accurately track the pedalling movement of the individual 
(i) without limitations of occlusion in the tracking and (ii) 
without defining the initial orientation of the person’s body, 
but (iii) ensuring low-latency tracking for real-time applica-
tions, and (iv) a virtual reality solution specifically design 
to be motivating to perform pedalling exercises. Hence, we 
have developed a low-cost wireless standalone platform for 
VR-based cycling exercises using an IMU paired with the 
Oculus Quest 2 headset and a common stationary bicycle, 
which is expected to promote immersion and improve indi-
vidual engagement to the PA therapy.

The overall objective of this work is to present a low-
cost wireless application in virtual reality (VR) for pedal-
ling exercises. This is addressed in the following points: 
the first is to describe our technical approach according to 
the mentioned design features to increase user motivation. 
The second one is to technically evaluate the validity and 
reliability of our cycling cadence estimation system for 
real-time exercise feedback in virtual scenarios. For this 
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technical validation, we have tested with healthy participants 
our approach by assessing the validity and reliability of the 
cadence estimation outcomes related to another cycling plat-
form set as reference.

2  Materials and methods

2.1  Description of the cycling platform used 
as reference

The reference cycling platform was composed of a magnetic 
encoder (AS5048, AMS AG) attached to the rotation axis 
of the MOTOMed™Viva2 with an analogue potentiometer 
(modelled as a linear transducer between 0 ◦ and 360◦ ) plus 
a microprocessor (STM32F302K8, STMicroprocessors) that 
reads each 20 ms the encoder and sends the pedalling angle 
value via CAN communication protocols to a microcon-
troller (Arduino Uno) for the real-time reading of the crank 
angle position loop. To enable the Arduino UNO to receive 
CAN messages, a CAN shield (SparkFun Electronics, Boul-
der) was installed on the Arduino, taking advantage of the 
capability of modular extensions of this microcontroller. 
When Arduino UNO microcontroller receives the pedalling 
angle via CAN communication, it sends it simultaneously 
to the PC interface via USB (see Fig. 1).

2.2  Development of virtual reality pedalling 
platform

The virtual reality pedalling platform consists of two parts: 
the ENLAZA™ sensor (Werium Assistive Solutions) as the 
main sensing system which integrates microcontroller unit 

(MCU), inertial measurement unit (IMU) and a Bluetooth 
module, and a virtual rehabilitation training scene built for 
Oculus Quest 2™(Facebook Technologies, LLC), as shown 
in Fig. 2. In order to meet the portable requirements, the 
Oculus Quest 2 has been selected as a low-cost, portable, 
commercial standalone VR device that allows the pairing of 
peripherals via Bluetooth. The sensing system used was the 
ENLAZA™ sensor from Werium Assistive Solutions, due 
to its proven reliability of their ROM measurements in wrist 
and elbow joints (Costa et al. 2020).

The ENLAZA™ sensor module contains an IMU with 9 
degrees of freedom; which integrates a 3-axis accelerometer, 
a 3-axis gyroscope and a 3-axis magnetometer. The sensor 
module also includes a microcontroller unit (MCU) (8-bit 
AVR, 8 MHz, 32 KBytes of flash memory) to acquire the 
raw data of all three sensors via I2C protocol and to com-
pute the angular orientation (yaw, pitch and roll) and the 
Direction Cosine Matrix (DCM) at 50 Hz before forward-
ing it via UART at 57,600 Kbps to the Bluetooth module 
(2.4 GHz, class 2 radio, 20 m range, slave mode and on-
chip antenna). Additionally, the transmission settings of 
the ENLAZA™ sensor were adapted to implement a serial 
transmission protocol of binary data packages to feed the 
estimation algorithm. The modification consisted on sending 
data over a single byte-by-byte communication path from the 
built-in Bluetooth module of the sensing system to he VR 
headset. The rotation data are transmitted in binary format 
in 48-byte buffers to the VR HMD and, once all received on 
VR application, first 12-bytes are parsed into (single type) 
3 × 1 Vector, to save the angular velocities, and last 36-bytes 
are parsed into a (single type) 3 × 3 matrix to construct the 
rotation matrix. From this rotation matrix, the hip flexion-
extension angle is calculated, allowing to analyse the ped-
alling motion in the sagittal plane. The following sections 
detail how this angle is calculated and how all the input 
signal is processed for the estimation of the cadence.

2.2.1  Definition of coordinate system

To describe the orientation of a body-fixed coordinate frame 
many possible sets of generalized coordinates can be used. 
For our purpose, we based the cadence estimation on the 
kinematic model of the hip. To describe the orientation of 
the tight according to the convention recommended by the 
International Society of Biomechanics (ISB) for the femur, 
we adopted the standard coordinate system (Wu et al. 2002), 
where the Y axis is defined along the line joining the hip cen-
tre and the midpoint of the medial and lateral femoral epi-
condyles, pointing proximally. The Z axis is perpendicular to 
the Y axis, located in the plane defined by the hip centre and 
both femoral epicondyles, pointing laterally to the right side 
of the body. The X axis is then perpendicular to both, point-
ing ventrally (anteriorly). Flexion would therefore be defined 

Fig. 1  Diagram of the cycling platform system set as reference for the 
comparison study
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around the Pelvic Z axis, axial rotation around the Femoral 
Y axis, and adduction/abduction around the “floating” axis 
mutually perpendicular to the Pelvic Z and Femoral Y axes. 
Relating the ISB coordinate system to the own reference 
coordinate system of the IMU sensor as shown in Fig. 3, it 
is obtained that YISB = XIMU , ZISB = YIMU and XISB = ZIMU.

2.2.2  Estimation of the hip flexo‑extension

The first step of our approach is to calculate the Direc-
tion Cosine Matrix (DCM) at the IMU sensor. We obtain 
the DCM fusing the accelerometer and gyroscope signals 
following the method proposed by Premerlani and Bizard 
(2009).

Then, we send the DCM data to de virtual cycling plat-
form (VCP) via WiFi. To estimate the neutral position of 
the sensor in virtual world coordinates, we first determine 
a calibration matrix to set this new reference frame. To 
calculate the transformation matrix for each movement, 
we multiply the transposed calibration matrix ( RT

cal
 ) with 

the DCM ( Rraw ∈ ℝ
3×3 ), transmitted from the IMU sensor, 

at time step t to obtain the transformation matrix ( Rtrans ), 
which describes in Unity’s local coordinate system the rota-
tions performed by the sensor. This is applied according the 
following equation: Rtrans[t] = Rraw[t] × RT

cal
 , where Rcal is 

the calibration matrix, Rraw is the DCM matrix obtained by 
the IMU sensor, and Rtrans is the final matrix after applying 

the calibration. After calculating Rtrans , we normalize it, 
so that the system is orthonormal. The Rtrans normalized is 
described as a 3 × 3 matrix whose elements represent the 
angles of the 3 axes for each of the planes of rotation:

Reconciling the rotations of the Rtrans[t] calibrated rotation 
matrix with Euler angles, it would correspond as follows: 
rotation in Y-coordinate axis represents flexion/extension 
movement, rotation in Z-coordinate axis represents the 
adduction/abduction movement, and the rotation in X rep-
resents the axial rotation movement around the femoral axis, 
satisfying the relations described in (1):

• hip adduction/abduction angle: � = arcsin(−r01)

• hip rotation angle: � = arctan 2(r21, r11)

• hip flexion/extension angle: � = arctan 2(r02, r00)

2.2.3  Cadence estimation algorithm

Relying on the timed interpretation of rotation, data 
describes the cycling motion curve, where cycling-phase 
angle could be known from processing hip flexion-extension 
angles. Taking the sequence of rotation angles over time as 

(1)Rtrans[t] =

⎡
⎢⎢⎣

r00 r01 r02
r10 r11 r12
r20 r21 r22

⎤
⎥⎥⎦
∈ ℝ

3×3

Fig. 2  Overall scheme diagram 
of the developed virtual cycling 
platform to be validated
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the samples of a motion function, the number of cycles can 
be counted as number of peaks detected along the signal.

Cycling phase analysis is here formulated as a peak 
detection problem using the mountaineer’s method for peak 

detection (MMPD) (Argüello-Prada 2019). Our MMPD-
based method consists of considering all cycles as moun-
tains, and then the peaks of the mountain will be the crests 
of the curve. Thus, each detected peak will represent the 
starting session of a cycle. The pseudo-code of this method 
is shown in Fig. 4, in which all flexion-extension angles are 
added to an N × 1 array (alfa array at Fig. 4) each batch of 3 
samples data are analysed. At each batch, samples are clas-
sify as maxima or minima, and the maximum local value is 
set with the highest value among those. Once a local maxi-
mum is reached, the cycle-counter is incremented by one 
and the value of the maximum is reset to the value of the 
symmetry axis. This way, when the curve starts its positive 
phase again, the local maximum is searched for again by 
analysing the values of its segment neighbours. To avoid 
peak detection failures due to baseline changes, the symme-
try axis threshold is adjusted from the average of the ampli-
tude values of the last 1000 ms with a 20 ms refresh rate.

2.2.4  Virtual platform

Virtual rehabilitation training scenes are programmed 
with Unity3D software platform for Android 25 API 
Level for Oculus Quest 2 HMD. The user actives the 
ENLAZA™sensor to provide motion control signals for 
the game scenarios. Meanwhile, the user acquires the visual 
feedback information, so as to maintain or adjust the cycling 
cadence in order to achieve the best training effect. The user 
is able to be aware of the cycling assessment results pro-
moted by the rehabilitation evaluation module in real time.

In this game, the user is in the steer cab of a vehicle which 
moves forward at user’s cycling speed. The user has to pedal 
at a fixed target speed. Therefore, derived from cadence esti-
mation (see Sect. 2.2.3), the following information about 
cycling performance is displayed on a panel in text format 
to strength engagement experience:

Fig. 3  Coordinate system relation between ISB and own reference 
coordinate system of IMU sensor

Fig. 4  Pseudo code of discrete 
sample’s method peak detection



9Virtual Reality (2023) 27:3–17 

1 3

• Number of crawl cycles cycle-counter of peak detection 
(see Fig. 4).

• Distance travel led  the  est imat ion of  for-
ward displacement depends on the number of 
cycles and vir tual wheel radius (27 cm) as: 
distance (km) =

[
(2.0f × � × 0.27 (m)) × Ncycles

]
∕1000

• P e d a l l i n g  s p e e d  K n o w i n g  t h a t 
� (rad/s) = v (◦∕s) × 2�∕360 ; the formula applied to cal-
culate pedalling speed for each time lapse between cycles 
is: Δv (km/h) =

[
(2.0f × � × 0.27) (m)∕Δt (s)

]
× 3.6 ; set-

ting an average wheel radius of 27 cm.
• pedalling Pace feedback compares each frame whether 

average pedalling speed is equals to ( ±10% ) target speed; 
higher than ( +10% ) target speed; or lower than ( −10% ) 
target speed; according to this classification, either one 
feedback message is displayed to user’s to keep, reduce 
or increase cycling pace.

• Also elapsed time and target speed are displayed to 
remind the game objectives to the user.

In addition, the speed information is mapped to those ele-
ments of the virtual environment that are moved to generate 
a perception of displacement. Also, shader-based procedural 
terrains have been used to optimise the graphics rendering of 
the experience. This has made it possible to keep the static 
virtual camera embedded within the vehicle model and to 
simulate the displacement of the environments by varying 
the exposed variables of the texture displacement velocity 
shaders on the forward axis. Lastly, the whole experience is 
designed for Hand-Tracking enabling a soft user-interface 
based on touch panels.

2.2.5  Software strategy design

Visual feedback is extremely important to any VR expe-
rience, even more so in extrinsic feedback where process-
ing latency and rendering times must be optimized to the 
maximum in order not to compromise the feeling of immer-
sion. The CPU and GPU performance of the HMD must 
be considered in the design of the VR experience develop-
ment to ensure its functionality. The Oculus Quest 2 was 
launched with the Qualcomm Snapdragon XR2 platform, 
expanding the overall AI processing power and improving 
the engine of visual analytics (EVA) to reduce latency and 
support stronger connectivity. Exploiting these technical 
improvements, our application design involves the follow-
ing features: (i) modulate the whole virtual environment 
based on cycling speed and (ii) enable interaction via hand-
tracking. In order not to compromise visual results, the 
threads-tasks for communication and processing data have 
to be optimized.

Regarding our cadence estimation algorithm, it has to be 
executed, at least, every 10 ms to grant accurate feedback 

in real-time. To meet this requirement, our MMPD-method 
has been implemented with timer events because it was 
tested that including the call to the MMPD-method in the 
’Update’ function of Unity’s MonoBehaviour classes com-
promised the rendering frequency of the application. Worse 
results were obtained with the use of background threads. 
This strategy does not compromise the performance of the 
CPU and optimizes the execution of the MMPD every 10 
ms without affecting the performance of the VR application 
with an average rendering rate of 70–75 FPS. The signal 
analysis optimization strategy has been an important issue, 
as it must compensate for the sampling rate of the IMU. It 
should be recalled that the data acquisition times by the IMU 
sensors and the composition of the DCM for the transmis-
sion of information via Bluetooth takes 20 ms. In addition, 
the latency in the Bluetooth reception and processing of 
the message for the flexo-extension angle calculation adds 
10 ms, resulting in a 30 Hz data capture rate. Due to this 
limitation in frequency of the setup, it has been necessary 
to achieve an optimal cadence analysis algorithm that does 
not saturate the performance of the device so as not to affect 
the rendering frequency.

On the other hand, a virtual reality environment has been 
generated in which the aeroplane velocity and flight alti-
tude are directly influenced by the user’s speed and cadence 
stability. With these interrelations of effects, the user can 
observe how the conditions of his flight vary depending on 
his pedalling performance. This approach of using proprio-
ceptive stimulation in VR as a strategy to involve the user in 
the physical activity has been previously explored by Grani 
and Bruun-Pedersen (2017) and Guo et al. (2017). All in 
all, these studies have shown that this strategy achieves a 
high sense of presence in the user and enhances engage-
ment in the physical activity promoted. Bringing it to this 
context, our application is not only a 3D digital environment 
in which user’s pedalling parameters are shown in real time, 
but it is also an experience that allows the user to modulate 
how the vehicle behaves within the game. Therefore, the 
user is expected to be involved in achieving and maintaining 
the target speed during the session and also to control the 
behaviour of the vehicle. In the end, relating the participant’s 
exercise performance to the behaviour of the vehicle and, 
by placing the user in first-person control of the game, it is 
expected that the user will perceive all changes in the envi-
ronment with greater impact than through a screen, which 
is the most commonly employed system.

2.3  Study design

2.3.1  Participants

The committee of CEU San Pablo University provided eth-
ical approval for this research (Trial reference: 550/21/51). 
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Participants were recruited via email by contacting those 
people subscribed on the list to participate in studies of the 
NeuroRehabilitation Group of the Cajal Institue, Spanish 
National Research Council (CSIC). Thirteen participants 
(nine men and four women, aged 25.38 ± 1.14 ) volun-
teered to participate in this study. They were informed 
about all the procedures and possible discomforts before 
giving their informed consent. The following criteria were 
applied for the selection of participants for the study.

• Inclusion criteria: (i) Healthy physical condition, (ii) 
Ability to follow instructions. (iii) Ability to perform 
pedalling movements.

• Exclusion criteria of participants: (i) Visual problems 
that cannot be overcome by the use of contact lenses or 
glasses compatible with the usage of VR HMD. (ii) Pres-
ence of any pathology or joint disorder affecting lower 
limb movement. (iii) Predisposition to suffer dizziness or 

loss of balance. (iv) Altitude sickness. (v) Failure to sign 
the informed consent form.

• Withdrawal criteria: (i) Decision by the participant to 
drop out. (ii) Feeling dizzy during the test due to visual 
incongruities. (iii) Feeling of discomfort or fatigue due 
to physical exercise.

2.3.2  Data collection system

The system configuration taken during the experimental 
study is the shown at Fig. 5. We set up the virtual platform 
with the ENLAZA™ sensor, an Oculus Quest 2™ and a 
stationary bike provided with a hall effect sensor connect to 
an Arduino UNO microcontroller that triggers the angle of 
pedal position each nanosecond. That Arduino is connected 
to a PC running an specific software to read the Arduino 
serial port, clean incoming readings and save the amount 
of cycles performed. In order to synchronize the VCP and 
the pedalling platform of reference in the pedalling trials, 

Fig. 5  Overview of the com-
ponents of both systems used 
in the validation study. The left 
side of the diagram shows the 
elements of VCP, and the right 
side shows the elements of the 
reference pedalling system
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since the VCP is a closed-loop system, both systems had to 
be initiated simultaneously at each attempt by the user via 
pressing a keyboard button with one hand and a virtual but-
ton with the other hand.

2.3.3  Procedure

Preliminary preparation Prior to placing the physical ele-
ments of the test on the participant, the ENLAZA™ sensor 
had to be paired via Bluetooth with the Oculus Quest 2™. 
Then, the sensor was placed on the participant’s thigh by 
adjusting the elastic-strap and ensuring its correct orienta-
tion. Once the subject sat in a chair with the feet secured to 
the pedals of the ergometer, the Oculus Quest 2 HMD was 
adjusted to the user’s head by widening or narrowing the 
elastic bands.

According to this arrangement, the design of the commer-
cial motorized ergometer and the positioning of the subject, 
maximum knee extension was reached at 90◦ crank angle, 
maximum knee flexion at 270◦ , maximum hip extension at 
140◦ crank angle, and maximum hip flexion at 320◦ crank 
angle. As 0 ◦ or 320◦ crank angle corresponds to the posi-
tion when the pedal is in its top position and 180◦ to the 
pedal bottom position. Therefore, it is expected to obtain a 
minimum hip flexion about 30◦ and a maximum hip flexion 
about 70◦ according to normal ranges of hip flexion during 
city bike cycling movement (De Roeck et al. 2021).

Pedalling trials procedure Prior to the experimental trials, 
all the participants performed a 2-min warm-up of pedalling 
to familiarise with the virtual platform. Then, the experi-
mentation is organized in two identical sessions in which 

participants performed 3 sets of pedalling at a constant speed 
of 30 rpm, 60 rpm and 90 rpm with 3 min rest between 
sets. Also, each set is divided in 3 trials of 1 min cycling, in 
order to assess the number of cycles 3 times per each target 
speed. After 30 min of resting, we repeated the whole ses-
sion, assuming this lapse of resting time to be sufficient to 
allow this second round of pedalling exercises to be consid-
ered as an independent sample. In each trial, the participants 
were told the target speed to cycle at and to maintain it based 
on the information displayed on the vehicle’s control panel 
and the aeroplane’s behaviour.

3  Results

This study aims to evaluate the performance of our devel-
opment in terms of cadence estimation accuracy. For this 
purpose, we carried out the analysis of the correlation and 
reliability of the cadence results between our development 
and the pedalling system developed previously, as a refer-
ence. The statistical analysis was performed using IBM 
SPSS Statistics, version 27. Due to the low sample size, 
the Shapiro–Wilk test will be applied to confirm the nor-
mal distribution of our data, with a significance level of 
p ≤ 0.5 . For each subject and session, 3 samples of each 
speed were taken to generate the descriptive statistics 
shown in Table 1. Each test consists of 1 min of pedal-
ling. Thus, the mean and standard deviation of each set of 
speeds for 1 min of pedalling is calculated.

Table 1  Session 1: Sample 
mean ( x ) and standard deviation 
( � ) of cycles per minute at 
target Speed 30 rpm, 60 rpm 
and 90 rpm

N Speed = 30 rpm Speed = 60 rpm Speed = 90 rpm

N MOTOMed VCP MOTOMed VCP MOTOMed VCP

(x±�) (x±�) (x±�) (x±�) (x±�) (x±�)

1 31.66 ± 1.52 32.00 ± 0.00 60.00 ± 0.00 59.66 ± 0.94 90.00 ± 0.82 88.00 ± 3.56
2 33.66 ± 0.57 33.00 ± 1.73 60.33 ± 2.86 60.00 ± 1.41 95.00 ± 1.63 89.66 ± 1.88
3 31.33 ± 2.08 31.00 ± 5.57 61.33 ± 0.47 61.33 ± 2.05 90.00 ±  2.16 88.00 ± 0.82
4 32.33 ± 1.15 32.66 ± 0.57 60.33 ± 0.47 60.66 ± 0.47 91.00 ± 2.16 88.66 ± 1.25
5 31.33 ± 0.57 32.00 ± 1.73 61.00  ± 1.63 61.33 ± 1.69 93.00 ± 4.96 89.00 ± 1.4
6 32.00 ± 2.64 31.66 ± 6.02 60.66 ± 0.47 60.66 ± 1.24 90.33 ± 1.88 85.66  ±  0.47
7 29.66 ± 1.15 30.33 ± 0.57 61.66  ±  0.47 61.00 ± 0.00 87.66 ± 0.47 84.66 ± 0.47
8 29.33 ± 1.53 29.33 ± 2.31 59.66 ± 0.94 58.33 ± 2.05 87.66 ± 1.25 86.00 ± 5.65
9 29.00 ± 1.00 28.33 ± 1.52 59.33 ± 2.36 58.66 ± 4.03 87.33 ± 0.47 83.66 ± 1.25
10 29.33 ± 1.15 29.00 ± 2.00 62.00 ± 0.82 61.66 ± 2.49 88.667 ± 0.47 84.00 ± 0.82
11 31.66 ±  2.08 31.66 ± 2.08 61.33 ± 2.05 60.66 ± 1.25 88.66 ± 0.47 85.00 ± 0.81
12 29.33 ± 1.52 29.33 ± 2.52 59.33 ± 0.47 57.66 ± 0.47 89.00 ± 0.82 83.66 ± 1.24
13 33.00 ± 1.73 32.66 ± 1.53 58.66 ± 0.47 58.00  ±  0.82 90.00 ± 1.41 88.33 ± 0.94
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3.1  Visualization of cadence estimation algorithm 
performance

Average hip ROM curves have been generated for a pedal-
ling cycle at 30 rpm, 60 rpm and 90 rpm. Figure 6 shows that 
the hip flexion values performed during cycling exercises on 
the virtual platform are in accordance with the normal range 
of motion(Ericson et al. 1988) as predicted for this activity .

Figure 7 illustrates the relationship between the number 
of samples and the pedalling cadence for different speeds. 
Each point on the curves in the graph represents a sample 
taken by the inertial sensor and processed by the VR HMD, 

and each curve represents the hip flexion angles captured 
during pedalling at different set speeds. Considering that at 
all times, and acknowledging that the system has a sampling 
rate of 30 Hz, it is expected to observe that a 30 rpm cadence 
cycle has a similar number of samples to 2 cycles of 60 rpm 
cadence and, in turn, to 3 cycles of 90 rpm cadence. This 
implies that for high pedalling speeds, each pedalling cycle 
is described with fewer samples due to the constant data 
capture rate (30 Hz).

This fact is also observed in the generation of the aver-
age hip flexion curve for one pedalling cycle (Fig. 6). For 
90 rpm a smoother curve is observed due to the scarcity of 

Fig. 6  Mean hip joint range 
of motion (degrees) during 
ergometer cycling at the three 
set speeds: 30 rpm, 60 rpm, 90 
rpm

Fig. 7  Five second time plot (ms) of hip ROM capture by the VCP during pedalling exercise at the three set speeds. The dots plotted along the 
curves represent each sample taken by the IMU and processed by the VCP in real-time during exercise
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samples along the slope, while for 30 rpm an average curve 
with smaller oscillations is observed, due to a higher amount 
of samples.

3.2  Validity evaluation of cadence estimation 
algorithm

The validity of the algorithm can be understood as the 
proportion of number of cycles that are correctly detected 
according to the number of cycles measured by the refer-
ence cycling platform. Therefore, the higher the correct 
rate, the more the algorithm accuracy is. The assessment 
of these proportions can be established by correlating the 
cycles averages of the VCP against the sample averages of 
the MOTOMed™ cycles. The formula used to calculate this 
correlation coefficient is:

where x and y are the detected cycles averages of the algo-
rithm method and the measured cycles averages of the 
MOTOMed™. To assess the validity of the cadence esti-
mation system, we applied the correlation coefficient of 
Spearman for each of the target speeds, taking a confidence 

(2)Correl(X, Y) =

∑
(x − x)(y − y)√∑
(x − x)2

∑
(y − y)2

interval (CI) of 95%, between the measures taken simulta-
neously. Also, the normal distribution of the data has been 
verified for all groups.

Involving all the trials in the two sessions, Spearman cor-
relation value for MOTOMed™-VCP algorithm for target 
speed of 30 rpm was 0.946 ( p ≤ 0.001 with 95% CI ranged 
0.818 to 0.985) for the first session and 0.858 ( p ≤ 0.001 
with 95% CI ranged 0.571 to 0.958) for the second session. 
In general, for both sessions, the correlation values indicate 
a high correlation between the results of both pedalling sys-
tems at a cadence of 30 rpm. Spearman correlation value 
for MOTOMed™-VPC for each session at a target speed of 
60 rpm was 0.931 ( p ≤ 0.001 with 95% CI ranged 0.772 to 
0.980) and 0.895 ( p ≤ 0.001 with 95% CI ranged 0.669 to 
0.970), respectively. These values point out a high correla-
tion between the cadence estimation performance of both 
systems at a cadence of 60 rpm. Finally, the Spearman cor-
relation value for MOTOMed™-VCP for each session at a 
target speed of 90 rpm was 0.787 ( p = 0.001 with 95% CI 
ranged 0.401 to 0.935) and 0.760 ( p = 0.003 with 95% CI 
ranged 0.344 to 0.927). Since the correlation outcomes are 
less than 0.8, it is considered a moderate correlation between 
both pedalling systems at a cadence of 90 rpm. These results 
illustrate that several cycles are not detected by the VCP at a 
90 rpm, as shown in Tables 1 and 2 (Table 3).

Table 2  Session 2: Sample 
mean ( x ) and standard deviation 
( � ) of cycles per minute at 
target speed 30 rpm, 60 rpm and 
90 rpm

N Speed = 30 rpm Speed = 60 rpm Speed = 90 rpm

N MOTOMed VCP MOTOMed VCP MOTOMed VCP

(x±�) (x±�) (x±�) (x±�) (x±�) (x±�)

1 29.00 ± 5.29 29.33 ± 2.88 60.33 ± 1.24 59.66  ±  2.36 89.33 ± 0.47 87.33 ± 2.62
2 33.00  ±  2.64 33.66 ± 2.88 60.00 ± 1.41 59.33 ± 0.94 93.00 ± 0.82 90.00 ± 0.82
3 29.33 ± 1.15 28.66 ± 0.57 58.66 ± 0.47 58.00 ± 0.81 90.00  ±  1.41 88.33 ± 0.94
4 33.33 ± 1.15 32.66  ±  1.53 60.66 ± 0.47 59.66 ± 0.94 90.66 ± 0.94 85.00 ± 0.82
5 30.00 ± 1.00 29.00 ± 2.64 60.33 ± 0.94 60.33 ± 0.47 90.33  ± 1.24 85.33  ±  0.47
6 31.33 ± 0.57 32.00 ± 2.00 60.66  ±  0.47 60.66 ± 1.25 91.00 ± 2.16 85.66 ± 3.09
7 32.66 ± 3.21 31.66 ± 5.13 61.00 ± 1.41 60.66 ± 0.47 87.66 ± 0.47 83.33 ± 0.47
8 30.00 ± 1.00 29.66 ± 0.58 59.33 ± 0.47 59.00 ± 0.00 87.66 ± 1.24 83.00 ± 0.82
9 29.66 ± 1.15 30.00 ± 1.00 60.33 ± 0.47 60.00 ± 0.82 87.66 ± 1.24 83.66 ± 0.47
10 29.33 ± 0.58 29.00 ± 1.00 59.66 ± 0.94 59.00  ±  0.81 89.66 ± 1.69 84.33 ± 0.47
11 31.00  ±  0.00 31.00 ± 1.00 61.00 ± 0.00 60.33 ±  0.47 89.33 ± 0.47 86.00 ± 0.82
12 29.33 ± 0.57 29.66 ± 1.53 59.66 ± 1.25 59.33 ± 1.25 88.33 ±  0.47 83.00 ± 0.82
13 32.33 ± 1.15 32.66 ± 0.58 59.00 ± 0.82 59.33 ± 0.94 91.00 ± 2.16 88.66 ± 1.24

Table 3  Spearman correlations, 
95% confidence interval 
and significance between 
MOTOMed™-VCP organized 
for target speed (30 rpm, 60 
rpm, 90 rpm) and sessions 
(session 1–session 2)

Session 1 Session 2

Spearman Sig. (bilateral) 95% CI Spearman Sig. (bilateral) 95% CI

Speed = 30 rpm 0.946 ≤ 0.001 [0.818 , 0.985] 0.858 ≤ 0.001 [0.571 , 0.958]
Speed = 60 rpm 0.931 ≤ 0.001 [0.772, 0.980] 0.895 ≤ 0.001 [0.669, 0.970]
Speed = 90 rpm 0.787 0.001 [0.401 , 0.935] 0.760 0.003 [0.344 , 0.927]
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3.3  Reliability evaluation of the systems

To evaluate the reliability of the measures collected by both 
systems, we calculated the standard error of measurement 
(SEM) and repeatability of the measurements using intra-
class correlation coefficients (ICC), interpreted as a test-
retest analysis. The ICC model (3,1) or Two-Way Mixed 
Effect model (Absolute Agreement Definition) described 
by Shrout and Fleiss (1979) was chosen because it consid-
ers random effects on the measurements over time (between 
session 1 and session 2). SEM can be estimated from ICC 
(Weir 2005):

were SD is the standard deviation of the measures. Reliabil-
ity data are provided in Table 4.

The ICC values ranged between 0.416 and 0.913 involv-
ing all the speeds. At a target speed of 30 rpm the ICC values 
for the MOTOmed and the VCP are 0.743 to 0.746, respec-
tively, and SEM values are 1.02 and 1.16 cycles, respec-
tively. Something similar happens at a target speed 60, which 
ICC values for each system (MOTOmed and VCP) 0.416 
and 0.445, and SEM values are 0.96 and 1.26, respectively. 
According to these results, at speeds between 30 and 60 rpm, 
the SEM outcome indicates a measurement error of about 1 
cycle for each system. This is consistent with previous cor-
relation results, which reflected the high correspondence in 
measurements of both systems at these speeds. However, 
in terms of repeatability, we observe that the ICC values 
are relatively low for both systems. The fact that both sys-
tems show consistency in repeatability indicates that both 
are affected by the same factors. We attribute these results 
to the human factor because, given that the tests have been 
performed with humans, despite their attention to maintain-
ing the cadence, they do not achieve the same number of 
cycles in all sets, affecting the repeatability results. In con-
trast, at a target speed of 90 rpm, the ICC values are 0.913 
and 0.851 for each system and SEM values are 0.799 cycles 
for the MOTOmed and 3.24 cycles for the VCP. In this case, 
the repeatability results show that for both sessions the sys-
tems have shown similar measurements, suggesting that both 
systems have been consistent with their measurements and 
that participants have been consistent with their cadences. 
However, it is evident for the VCP system that a target speed 

(3)SEM = SD
√
1 − ICC,

of 90 rpm its measurement error is 3 times higher than that 
of the MOTOmed.

4  Discussion

The objective of the present study was to test the validity 
and reliability of using a novel virtual reality HMD (Oculus 
Quest 2) in combination with a wearable IMU sensor placed 
on subject’s tight to assess cycling cadence. To study the 
validity of this system, it is confronted against a reference 
pedalling platform previously developed and validated as a 
reliable cycling platform (Piazza et al. 2018). In this way, 
the cycle detection measurements performed by both sys-
tems during trials of 3 repetitions of 1 min of pedalling at 
3 different set-point speeds (30 rpm, 60 rpm, 90 rpm) are 
captured simultaneously.

We highlighted the high concordance between the meas-
urements taken by the cycling platform of reference (referred 
to as MOTOmed) and Virtual Cycling Platform (referred 
as VCP) for slow (30rpm) and medium (60rpm) speed in 
both sessions (Spearman Correlation Session 1: 0.946 and 
0.931; Spearman Correlation in Session 2: 0.858 and 0.895). 
It has also been shown that the correlation is lower between 
the results of the reference platform and the system devel-
oped for 90 rpm (Spearman correlation session 1 = 0.787 
and Spearman correlation session 2 = 0.760). This correla-
tion result is attributed to the fact that at higher pedalling 
speeds more cycles are lost by the MMPD algorithm. While 
these results influence the accuracy of the pedalling cadence 
estimation, the algorithm is still quite successful overall as 
shown in the average results of Tables 1 and 2. As can be 
seen in the Fig. 7, at 90 rpm the movement is more shaky 
than at 60 or 30 rpm, simply because of the speed factor. 
High-speed pedalling exercises can result in a more unstable 
motion, which is reflected in the 90 rpm curve itself with 
a more staggered and less fluid shape. Small oscillations 
around the peak cause the algorithm to fail in cycle count-
ing, as it is sensitive to the detection of local minima and 
maxima. This explains why the pedalling speed influences 
the cycle detection accuracy of the cadence estimation algo-
rithm as shown in the outcome Tables 1 and 2.

Reviewing the repeatability results, it is observed that in 
the case of the MOTOmed, for all speeds the error in the 
measurement is around 1 cycle, while in the case of the VCP 

Table 4  ICC (with 95%) and 
SEM for cycles measurements 
between sessions taken by the 
MOTOMed and the VR cycling 
platform (VCP) organized by 
target speed

Speed MOTOmed VCP

ICC 95% CI Significance SEM ICC 95% CI Significance SEM

30 rpm 0.743 [0.083 , 0.855] 0.015 1.021 0.746 [0.173, 0.922] 0.014 1.16
60 rpm 0.445 [− 0.649 , 0.825] 0.151 0.96 0.416 [− 0.871, 0.821] 0.183 1.26
90 rpm 0.913 [0.719,0.973] ≤ 0.001 0.799 0.851 [0.504, 0.955] ≤ 0.001 3.24
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it coincides with the previous one at speeds 30 and 60, but 
the error in the measurement amounts to 3.24 cycles at 90 
rpm. It is also concluded that at speeds 30 and 60 the repeat-
ability of the systems is slightly less consistent, although we 
attribute this to the human factor. Indeed, during the experi-
mental trials, it was observed that at low to medium speeds, 
the participants are comfortable with the physical exercise 
and, due to the involving nature of virtual reality, they were 
often distracted by the virtual environment. However, at 
high speed, they focused all their attention on the pedalling 
due to the concentration required to maintain this speed. 
Therefore, the results of the ICC show that at high speed 
the VCP consistently exhibits cycle detection errors. But it 
also reflects the irregularity of the participants in the afford-
able speed tests, that we attribute to the engaging effect of 
virtual reality.

To summarize from the ideas drawn from the statistical 
analysis, the application of this tool should be limited to low 
or moderate speed exercise environments, excluding high 
speed applications from the scope of this system. Hence, 
these validation results have a clinical implication. In first 
place, our approach can be considered suitable as an engag-
ing tool to practise cycling exercise, as it is assumed low-
moderate pedalling speed for this group of users. It should 
also be considered the remarkable accomplishment of the 
VCP in the estimation of cycling cadence only based on 
hip ROM by only one inertial sensor. As a result, we devel-
oped a virtual cycling platform independent from the cycling 
ergometer or stationary bike used, which only requires the 
use of one inertial sensor and Oculus Quest 2 HMD.

The present study has been performed with young healthy 
subjects, whose hip range of motion (ROM) is wide. The 
joint motions obtained (Figs.  6, 7) during standardized 
ergometer cycling conform to the hip normal range of 
motion investigated by different authors (Ericson et al. 1988; 
De Roeck et al. 2021). According to their studies, in the case 
of healthy young people the hip flexion moves between 32° 
and 70° of hip flexion (Ericson et al. 1988), which implies 
a range of movement of approximately 40◦ . From the char-
acterization of hip flexion motion performed in this study, 
slight differences in the maximum and minimum hip flex-
ion angles as a function of speed can be observed. And yet, 
our solution is suitable for hip flexion-extension work in 
these normal ranges. However, it would be worth analysing 
the validity of the tool with elderly subjects or participants 
with motor disabilities to know if it also correctly detects 
cadence cycles with tight hip ROM. Futhermore, most stud-
ies analyse joint kinematics at a cadence of 60 rpm (John-
ston 2007). In our study, we have analysed the cadences 
of 30 rpm, 60 rpm and 90 rpm, in order to analyse which 
range of cadence our application shows good accuracy in 
cadence estimation with respect to the system of reference. It 
is important to consider that our development is focused on 

the rehabilitation and improvement of lower limb mobility 
for adults, so they are not expected to work at high cadence. 
In this sense, our approach would be valid for the purpose 
for which it has been designed.

We highlight from our approach that it does not depend 
on specific cycling ergometers or hardware (Chen et al. 
2017) since it estimates the cadence based on user’s hip 
kinematics instead of crank angle of the ergometer likewise 
(Cardoso et al. 2019; Ferreira et al. 2019; Grani and Bruun-
Pedersen 2017). The easiness and accessibility of the setup 
sets the universality of the system, yet being useful as vir-
tual rehabilitation solution in day-care centres, rehabilitation 
clinics or even for home-based therapies. Also, in the near 
future, we plan to improve the design of the virtual scenarios 
to allow different uses of the tracking sensor, for example, 
to capture circular movements for the upper limb. Another 
positive aspect is that our approach is perfectly portable and 
simple to assemble, unlike the systems proposed by Cardoso 
et al. (2019), Ferreira et al. (2019) and Grani and Bruun-Ped-
ersen (2017), which are based on the mechanical adaptation 
of commercial ergometers crank/pedals or custom hardware 
developments.

In terms of the sense of presence and immersion of our 
system, no formal survey has been conducted in this tech-
nical validation to capture these user ratings. However, in 
future usability testing and assessment of the potential effect 
of this platform, it will be essential to collect users’ subjec-
tive assessments of their perception of immersion and pres-
ence. However, based on what was observed in the experi-
mental tests, it should be mentioned that the participants 
were truly involved in the virtual reality as they showed their 
captivation during the exercises and even allowed them-
selves to be drawn into the environment, sometimes even 
causing slight variations in the maintenance of the cadence. 
We believe that this feedback strategy may not only be ben-
eficial in increasing exercise adherence but also justifies the 
use of these technologies for this purpose. It differs from 
the strategies implemented in the exergames previously pre-
sented (Cardoso et al. 2019; Ferreira et al. 2019), which 
displayed the sensing data to the user with the purpose of 
enhancing their performance, but it does not necessarily 
have an effect on user’s engagement nor motivation. For this 
reason, we endorse the philosophy of proprioceptive stimu-
lation in VR as a strategy to involve the user in the physical 
activity followed in some studies (Grani and Bruun-Pedersen 
2017; Guo et al. 2017; Caserman et al. 2019). All in all, we 
have designed a virtual reality system that maps the user’s 
physical actions into virtual reality feedback and/or behav-
iour to provide consistency and verisimilitude to the vir-
tual environment. We think this system could be potentially 
beneficial for increasing user engagement and motivation to 
use intrinsic biofeedback to influence the sense of presence 
within the virtual environment.
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5  Conclusion

In this paper, a novel low-cost wireless standalone plat-
form for VR-based cycling exercises is developed. This 
system is based on a wearable IMU sensor paired with the 
Oculus Quest 2 headset and a common stationary bicycle. 
The present development has focused on defining an opti-
mal hip flexion motion detection algorithm for pedalling in 
the sagittal plane for a virtual reality environment. Further 
research is required to analyse more planes of movement, 
as the literature suggests performing a three-dimensional 
(3D) movement analysis instead of a two-dimensional 
analysis of an isolated plane. This would require to analyse 
the technical feasibility of increasing the computational 
load and how it affects the performance of the application, 
as the current processing of our system is fully done on an 
Oculus Quest 2 HMD.
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