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Abstract
Based on sensory conflict theory, motion sickness is strongly related to the information processing capacity or resources of
the brain to cope with the multi-sensory stimuli experienced by watching virtual reality (VR) content. The purpose of this
research was to develop a method of measuring motion sickness using the heart-evoked potential (HEP) phenomenon and
propose new indicators for evaluating motion sickness. Twenty-eight undergraduate volunteers of both genders (14 females)
participated in this study by watching VR content on both 2D and head-mounted devices (HMD) for 15 min. The responses of
HEP measures such as alpha power, latency, and amplitude of first and second HEP components were compared using paired
t-tests and ANCOVA. This study confirmed that motion sickness leads to a decline in cognitive processing, as demonstrated
by increasing in alpha power of HEP. Also, the proposed indicators such as latency and amplitude of the HEP waveform
showed significant differences during the experience of motion sickness and exhibited high correlations with alpha power
measures. Latencies of the first HEP component, in particular, are recommended as better quantitative evaluators of motion
sickness than other measures, following the multitrait-multimethod matrix. The proposed model for motion sickness was
implemented in a support vector machine with a radial basis function kernel, and validated on twenty new participants. The
accuracy, F1 score, precision, recall, and area under the curve (AUC) of the motion-sickness classification results were 0.875,
0.865, 0.941, 0.8, and 0.962, respectively.
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1 Introduction

The recent emergence of virtual reality (VR) has contributed
immensely to the advancement of technology and increased
economic activity in this area. It has also shifted the focus of
industry worldwide. In the past two decades, VR has been
used in areas such as architecture, education and training,
mobile technology, medical visualization, user interfaces,
entertainment, and manufacturing (Azuma 1997; Höllerer
et al. 1999; Zyda 2005; Pan et al. 2006; Van Krevelen and
Poelman 2010; Kesim and Ozarslan 2012; Rodríguez et al.
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2015; Stolz et al. 2019). These integrations of technology
have enhanced the efficiency and accuracy of tasks in the
workplace and daily activities. VR technologies have been
combined to create a hybrid of virtual and augmented experi-
ences (Raajan et al. 2012). The technology is still undergoing
rapid development and has attracted the most attention in
all fields of work and study, particularly in creating virtual
content for entertainment, therapies, training practices, appli-
cations, and so on (Zyda 2005; Kesim and Ozarslan 2012).

VR appears to have a positive effect on people because the
technology improves the experience of immersion, realism,
interactivity, and co-existence (Steuer 1992; Psotka 1995;
Ryan 1999; Lambooij et al. 2007, 2009; Bailenson et al.
2008; Clemente et al. 2014). However, there are also side
effects, especially from head-mounted displays (HMD) with
stereoscopic views, which prevent daily or long-term use
of the devices. The technology is known to cause visu-
ally induced motion sickness (VIMS) (Hettinger and Riccio
1992; Kennedy et al. 2010; Naqvi et al. 2013) and symp-
toms such as visual fatigue, anxiety, nausea, disorientation,
abdominal discomfort, and oculomotor symptoms (Mon-
Williams et al. 1993; Lambooij et al. 2007, 2009; Diels et al.
2007; Bouchard et al. 2011; Carnegie and Rhee 2015). The
severity of these adverse effects ranges from mild (some dis-
comfort) to significant (distressing enough to prevent the user
from carrying on with the experience). Some studies have
even investigated the use of drugs such as hyoscine hydro-
bromide to relieve the associated motion sickness for a short
period (Regan 1995; Regan and Ramsey 1996). This human
factor may, ultimately, negatively influence the advancement
and popularization of the VR industry. To eliminate this pos-
sibility, human factors such as VIMS need to be identified
carefully and resolved (Bos et al. 2008). Numerous factors
may triggerVIMS includingpostural instability, such as body
swaying, and viewing conditions, such as gaze angle, fixa-
tion, retinal slip, and HMD fields of view (Smart et al. 2002;
Yokota et al. 2005; Merhi et al. 2007; Diels et al. 2007; Bos
et al. 2010; Moss and Muth 2011; Kim et al. 2018). The
likelihood of these triggers to cause VIMS needs verifica-
tion and guidelines for minimalizing VIMS are required to
inform developers and users. Therefore, studies on standard-
ized indicators that quantitatively measure VIMS must be
conducted.

Previous studies have measured motion sickness using
self-reporting, behavior, and physiological responses to
improve the viewing experience of VR content. Self-
reporting-based studies demonstrated that subjective rating
scores from a simulator sickness questionnaire (SSQ) (Merhi
et al. 2007; Sharples et al. 2008; Kiryu et al. 2008; Palmisano
et al. 2017; Mazloumi Gavgani et al. 2018) and motion
sickness susceptibility questionnaire (MSSQ) (Yokota et al.
2005; Kim et al. 2005; Nalivaiko et al. 2015; Chuang et al.
2016; Mazloumi Gavgani et al. 2018) increased when view-

ers experiencedmotion sickness.Other researchersmeasured
motion sickness using the Coriolis test (Zuzewicz et al. 2011;
Malinska et al. 2015) and the Graybiel and Hamilton ques-
tionnaire (Ohyama et al. 2007). Inmeasuringmotion sickness
through observations of the viewer’s behavior, including
head, body, and eye movements, Merhi et al. (2007) reported
that movements measured from six positions in the X, Y ,
and Z axes of the head increased significantly when the sub-
jects experienced motion sickness. In the study by Yokota
et al. (2005), body sway (in the X and Y axes) during the
presentation of a motion sickness-inducing stimulus was
measured and was found to increase. Interestingly, another
group reported that the area of the center of gravity (COG)
tends to change from being elliptical to circular in shape
when the subject experiences visually induced motion sick-
ness (Chardonnet et al. 2015) and Kim et al. (2005) revealed
that the rate of blinking is significantly positively correlated
with the MSSQ score. Lastly, other researchers measured
physiological responses tomotion sickness such as heart rate,
autonomic balance, respiration, and electroencephalogram
(EEG) spectrum.

In terms of cardiac response, many previous studies found
that an increased heart rate (Kim et al. 2005; Zuzewicz
et al. 2011; Nalivaiko et al. 2015; Malinska et al. 2015) and
activated sympathetic nervous system (i.e., increased low fre-
quency (LF) and decreased high frequency (HF) on the heart
rate variability (HRV) spectrum) (Uijtdehaage et al. 1992;
Gianaros et al. 2003; Yokota et al. 2005; Ohyama et al.
2007; Kiryu et al. 2008; Zuzewicz et al. 2011; Malinska
et al. 2015) are associated with motion sickness. In view
of the activated sympathetic nervous system in response to
motion sickness, one report mentions that skin temperature
decreases and the galvanic skin response rises (Kim et al.
2005). Additionally, researchers have shown that respira-
tion increases (Kim et al. 2005; Kiryu et al. 2008) and the
spectral power of respiratory and blood pressure is activated
(Kiryu et al. 2008) when motion sickness is being experi-
enced. In studies related to brain response, motion sickness
was assessed by brain activity observed on an EEG spectrum.
Chuang et al. (2016) reported that increased motion sickness
is correlated with the activation of alpha and gamma bands
in motor, parietal, and occipital areas. The demonstrations of
these phenomena have revealed an increase in the neurophys-
iological demand to process information from multi-modal
sensory systems. Lin et al. (2013) showed that brain areas in
the left and rightmotor, parietal, lateral, andmidline occipital
lobes are activatedmore than other brain areas while subjects
are experiencing motion sickness. Additionally, the relative
delta power increases and the relative beta power decreases
in F3 and T3 regions (Kim et al. 2005). A summary of the
literature associatedwithmeasuringmotion sickness is given
in Table 1.
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Table 1 The summary of literature for the motion sickness measurement

Measurement Platform Content Participants Paper

Subjective rating SSQ HMD Optic flow video 13 Palmisano et al. (2017)

Virtual factory 139 Sharples et al. (2008)

Console video game 32 Merhi et al. (2007)

Projector Stereoscopic vision 17 Chardonnet et al. (2015)

First-person viewpoint
video

27 Kiryu et al. (2008)

MSSQ HMD Rollercoaster 26 Nalivaiko et al. (2015)

Virtual living room 15 Yokota et al. (2005)

Projector (simulator) Driving 19 Chuang et al. (2016)

Driving 17 Lin et al. (2013)

Driving 7 Yu et al. (2010)

Projector 3D virtual environment 61 Kim et al. (2005)

Coriolis test HMD (simulator) Forklift 24 Zuzewicz et al. (2011)

HMD Virtual work station 19 Malinska et al. (2015)

Questionnaire of
Graybiel and
Hamilton

Projector Texture pattern video 10 Ohyama et al. (2007)

Behavior Head movement HMD Console video game 32 Merhi et al. (2007)

Body movement HMD Virtual living room 15 Yokota et al.,(2005)

Projector Stereoscopic vision 17 Chardonnet et al. (2015)

Eye blink Projector 3D virtual environment 61 Kim et al. (2005)

Physiological response HR HMD (simulator) Forklift 24 Zuzewicz et al. (2011)

HMD Virtual work station 19 Malinska et al. (2015)

Rollercoaster 26 Nalivaiko et al. (2015)

Projector 3D virtual environment 61 Kim et al. (2005)

Autonomic balance (LF,
HF)

HMD (simulator) Forklift 24 Zuzewicz et al. (2011)

HMD Virtual work station 19 Malinska et al. (2015)

Virtual living room 15 Yokota et al. (2005)

Projector First-person viewpoint
video

27 Kiryu et al. (2008)

Texture pattern video 10 Ohyama et al. (2007)

Respiration (RR, HF,
RSA)

Projector First-person viewpoint
video

27 Kiryu et al. (2008)

3D virtual environment 61 Kim et al. (2005)

Blood pressure (LF) Projector First-person viewpoint
video

27 Kiryu et al. (2008)

Temperature HMD Rollercoaster 26 Nalivaiko et al. (2015)

Projector 3D virtual environment 61 Kim et al. (2005)

Skin conductance,
gastric
tachyarrhythmia

Projector 3D virtual environment 61 Kim et al. (2005)

Motor, parietal,
occipital alpha,
gamma

Projector (simulator) Driving 19 Chuang et al. (2016)

Left and right motor,
parietal, lateral and
midline occipital

Driving 17 Lin et al. (2013)

F3, T3—delta
F3—slow Beta
T3—beta

Projector 3D virtual environment 61 Kim et al. (2005)
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The evaluation of motion sickness has thus far been
scored subjectively according to predefined questionnaires
and described using interview techniques. However, these
questionnaires depend on personal interpretation and expe-
rience (Cain 2007). Since there are individual differences
in interpretation, the repeatability and validity of subjective
evaluations are often unclear and uncertain (Annett 2002;
Cain 2007). Therefore, subjective rating is limited in that
it cannot be used to assess motion sickness quantitatively.
Moreover, the measurement of behavior using cameras or
other devices is strongly influenced by the noise of the sur-
rounding lights and movement. Also, the results of these
measurements do not consider physiological mechanisms
sufficiently to enable the phenomenon of motion sickness to
be interpreted accurately. Motion sickness is strongly related
to the subject’s capacity to process information and resources
for interpreting multi-sensory stimuli that are produced by
VR content (Lin et al. 2007, 2013; Chen et al. 2010; Chuang
et al. 2016). The cause of VIMS needs to be interpreted by
cognitive load, i.e., the large amount of information fromVR
content that the brain needs to process compared with that
from 2D display content. Thus, psychophysiological mea-
sures are the objective method of assessing motion sickness
through consideration of psychological processes rather than
behavioral and subjective ratingmeasures. However, the cog-
nitive process is not controlled by brain function alone but
does involve the phenomenon of heartbeat evoked poten-
tial (HEP). The vagus nerve in the heart and major organs
communicates sensory information from the external envi-
ronment to the brain through efferent and afferent pathways
(Davis and Natelson 1993; Porges 1997, 2007). The heart’s
response to sensory input has an effect on brain sensory
systems such as emotional state, cognitive function, and per-
formance (Hansen et al. 2003; McCraty et al. 2009; Park
et al. 2014, 2015). Thus, there is a limitation to interpreting
the phenomenon of VIMS from fragmentary responses in the
heart or brain.

The purpose of this study was to determine a method
for measuring motion sickness from VR content in HMD
based on the HEP phenomenon and to propose new indica-
tors for the evaluation of motion sickness. To assess motion
sickness, HEP measurements (defined in Figs. 1, 5) taken
from ECG and EEG signals collected while subjects viewed
HMD content were compared with the same measurements
made while subjects viewed 2D content. The proposed new
indicators (latency and amplitude in HEP) in this study
were compared with one (alpha power of HEP) used in a
previous study (Park et al. 2015) by employing themultitrait-
multimethod (MTMM) matrix for evaluating the reliability
of variables Finally, selecting the useful classification fea-
tures giving significant results in the HEPmeasurements, the
motion-sickness and normal stateswere distinguished by var-
ious classifiers: linear support-vector machine (SVM), radial

basis function (RBF) SVM, elastic net regularization, logis-
tic regression (the LASSO model), and L2 (Ridge model)
regularization. The accuracies, F1 scores, precisions, recalls,
and areas under the curve (AUCs) were compared among the
results of the various classifiers.

2 Heartbeat evoked potential

Heartbeat Evoked Potential (HEP) is a change in alpha brain
waves to communicate the change of cardiac output such
as blood pressure, heart rhythm, and variability from major
organs such as heart to brain (Schandry and Montoya 1996).
The communication occurs through a visceral nerve, known
as “vagus nervous”, to transmit visceral-afferent information
into various brain parts: hypothalamic and thalamic nuclei,
amygdalae, hippocampus, cerebellum, somatosensory cor-
tex, prefrontal cortex, and insula (Warner and Cox 1962;
Montoya et al. 1993; Davis and Natelson 1993; Drew et al.
2008). First, the visceral nerve transmits the information to
the NTS (nucleus tractus solitarius) in the brainstem. The
joint information at the NTS is then sent to the mid-brain
such as hypothalamus and thalamus, followed by the arrival
at the cortex (Janig 1996). The mid-brain transfers informa-
tion with neocortex, especially at the frontal and prefrontal
brain cortices. Some researchers have focused their studies
on the premotor and orbital areas of the frontal lobe because
of the direct processing of information through visceral-
afferent pathways from the mid-brain (hypothalamus and
thalamus) to the prefrontal and frontal cortices (Nauta et al.
1986; Fuster 1988; Nieuwenhuys et al. 2007). These areas
are related with attention and mental processes (Boussaoud
2001; Hartikainen and Knight 2003; Villena-Gonzalez et al.
2017), thus signifying the relationship between heartbeat and
attention. Based on this relationship, a significant post-R-
wave (250–450 ms) in Fz brain region was found (Schandry
et al. 1986). Also, a negative shift was found in the range of
250–400 ms waveform at Fz, F7, F8, and Cz brain regions
(Schandry and Weitkunat 1990). This significant change in
HEP can be an indicator for assessing cortical activity such as
attention and mental state by measuring the brain and heart
synchronization (Pollatos and Schandry 2004; Fukushima
et al. 2011; Lechinger et al. 2015).

A synchronization of heart and brain causes the brain
to display a corresponding negative peak on the electroen-
cephalography (EEG) simultaneously with the R-peak of
the ECG signal. This synchronized response has previously
been characterized as the event-related potential (ERP), and
known to be related to the first and second periods of the HEP
(McCraty et al. 2009; Park et al. 2015). The first period of
HEP, 50–250 ms after the R-peak, reflects the time interval
of the rate of change from heart to brain along the afferent
pathway. When brain has more information to process, the
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Fig. 1 Overview for heartbeat evoked potential (HEP)

heart–brain communication increases by the afferent path-
way, and the synchronization in the alpha band also increases
(Wölk et al. 1989; McCraty et al. 2009; Park et al. 2015). The
second period of HEP, 250–600 ms after R-peak, indicates
communication of both afferent signals and the hydraulic
blood pressure wave from heart to brain, as well as alpha
synchronization. An increased synchronization of the alpha
wave in first period of HEP indicates an active state of car-
diovascular information processing in the afferent pathway
(Wölk et al. 1989; McCraty et al. 2009; Park et al. 2015). As
shown in Fig. 1,HEP is a characteristic phenomenon from the
synchronization of heart and brain through afferent pathways
in the vagus nerve.

3 Methods

3.1 Participants

A total of 48 undergraduate volunteers of both genders (24
females) with ages ranging between 21 and 30 years (mean
age, 24.95±2.69 years) participated in this study. First, 28
participants (mean age, 25.04±2.22 years) of both genders
(14 females)were recruited to conduct statistical analysis.We
have trained classifiers for using statistically significant fea-
tures. Finally, 20 participants (mean age, 24.86±3.16 years)
of both genders (10 females) were recruited as test samples
to validate the classifiers. All participants were right-handed
and had no family or medical history of cardiovascular, auto-
nomic, or central nervous systemdisorders. Every participant

was asked to abstain from alcohol, cigarettes, and caffeine for
24 h prior to the experiment and to sleep normally. Consents
fromall participants,whowere notified of the restrictions and
requirements, were received. This research complied with
the tenets of the Declaration of Helsinki and was approved
by the Institutional Review Board at Sangmyung University
(No. BE2018-46). Informed consent was obtained from each
participant.

3.2 Experimental procedure

A pre-task was conducted to measure the sensitivity of par-
ticipants to motion sickness prior to the main task. The
participants were required to view the VR content “Ul-
timate Booster Experience” (GexagonVR, 2016) through
an HTC VIVE device (HTC Inc., Taiwan & Valve Inc.,
USA) for 10 min and report their motion sickness using a
subjective rating and interview. The subjective rating was
composed of three factors including nausea (7 items), ocu-
lomotor symptoms (7 items), and disorientation (7 items)
and is well-known as the SSQ (Kennedy et al. 1993). The
participants were also asked to self-report subjective motion
sickness using a four-point scale (0–3) for 16 items both
before and after viewing the VR content with the following
specifications: (1) nausea (general discomfort, increased sali-
vation, sweating, nausea, difficulty concentrating, stomach
awareness, and burping); (2) oculomotor symptoms (general
discomfort, fatigue, headache, eyestrain, difficulty focusing,
difficulty concentrating, andblurred vision); and (3) disorien-
tation [difficulty focusing, nausea, fullness of head, blurred
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vision, dizzy (eyes open), dizzy (eyes close), and vertigo].
The subjective rating of motion sickness was calculated by
the SSQ score of the following Eq. (1) (Kennedy et al. 1993):

(1)

SSQ score � {(N × 9.54) + (O × 7.58) + (D × 13.92)}
× 3.74

where the values of N , O, and D were calculated by the
summation of each of the items for nausea, oculomotor symp-
toms, and disorientation, respectively. Participants who did
not feel or felt motion sickness severely enough to discon-
tinue the experiment were excluded from the main experi-
ment. Forty subjects participated in the pre-task; twenty-eight
subjects were included in the main experiment.

Theywatched the 2D version of theVR content on the first
day and the HMD version on the following day or vice versa.
Because this study was designed “within subject design”,
the order of tasks (i.e., 2D and HMD) was randomly decided
based on a counterbalanced repeatedmeasures design tomin-
imize sequence/order effects. The content of “No Limits 2
Roller Coaster Simulation” (Ole Lange, Mad Data GmbH &
Co. KG, 2014) was used in the experiment to cause motion
sickness in participants; there were differences in 2D andVR
versions only; however, the scene was identical. Participants
watched both 2D and HMD versions using an LED monitor
and HMD device, respectively. The VR contents used for the
pre- and main tasks are shown in Fig. 2.

The 2D and HMD versions were presented on a 27-inch
LED monitor (27MP68HM, LG) and HTC VIVE device
(HTC Inc., Taiwan&Valve Inc.,USA). The participantswere
required to self-report subjectivemotion sickness using a 1 to
7 points scale in theSSQboth before and after themain exper-
iment. A reference section was included for 5 min before
and after the VR content. ECG and EEG signals were mea-
sured both before and after each VR content viewing period.
The setup of the experiment procedure and environment are
shown in Figs. 3 and 4.

3.3 Data acquisition and signal processing

EEG signals were recorded at a 500 Hz sampling rate from
three channels on the scalp at positions FP1, FPz, and
FP2 based on the international “10–10” system (ground:
FAz, reference: average between electrodes on the two ears,
amplitude: 70 µV, and DC level: 0–150 Hz) and using a
Mitsar-EEG 202 machine (Mitsar Inc., Russia). The elec-
trode impedance was kept below 3 k�. The FP1, FPz, and
FP2 regions were measured because these regions were
strongly related to the HEP phenomenon (Montoya et al.
1993; McCraty et al. 2009). ECG signals were recorded at a
500 Hz sampling rate using an amplifier system (ECG 100C
amplifiers in BIOPAC system Inc., USA) based on the Lead-I
method. The ECG signal was digitized with the DAQ-Board

(NI-DAQ-Pad9205 in National Instrument Inc., USA) and
MP100 power supply (BIOPAC Systems Inc., USA).

The processing of HEP signals was as follows: (1) the
ocular and muscular artifacts were removed from the EEG
signals by artifact subspace reconstruction (Mullen et al.
2013); (2) the R-peak was detected from the ECG signals
based on the QRS detection algorithm (Pan and Tompkins
1985); (3) EEG signals with the artifacts removed were
separated from 50 to 600 ms based on R-peak; (4) these
separated signals were averaged by the “grand average tech-
nique,” and this signal was defined as the HEP signal in
this study; (5) HEP signals were then divided into the two
components of interest—the first period in HEP (50–250 ms
after the R-peak) and the second period in HEP (250–600 ms
after the R-peak). The indicators of amplitude, latency, and
alpha power in HEP were as follows. The amplitude of HEP
was defined by the difference in value between positive and
negative dominant peaks from the HEP signal in the range
50–600 ms. The latency of the first and second components
of HEP was defined by the location (time value) of the dom-
inant positive peak from each period. The alpha power of the
HEP first and second components was defined by the rela-
tive power of the alpha band from each period based on fast
Fourier transform (FFT) (Wölk et al. 1989; McCraty et al.
2009; Park et al. 2019). Signal processing and the definitions
of indicators are shown in Fig. 5.

3.4 Statistical analysis

This study was designed to test and compare the viewer’s
experience of motion sickness while experiencing both 2D
and HMD contents “within subject design.” Therefore, a
paired t-test was performed on sample data based on the nor-
mality test. In addition, because the independent t-test could
not confirm the viewer’s state before watching the VR con-
tent, this study was also applied to an analysis of covariance
(ANCOVA). The ANCOVA compared dependent variables
between groups after the VR content with the pre-VR con-
tent baseline as a covariate (Keselman et al. 2016;McGibbon
and Krebs 2004; Park et al. 2014; Mun et al. 2014). The
statistical significance was controlled by the Bonferroni cor-
rection to resolve the problemcaused bymultiple comparison
based on the number of each individual hypothesis (i.e., α

� 0.05/n) (Dunnett 1955). For this experiment, the statisti-
cally significant level of the HEP measure was set to 0.0033
(HEP indicators: alpha power (6), amplitude (3), and latency
(6), α � 0.05/15). The effect size based on Cohen’s d (Mor-
ris et al. 2014) and the partial eta-squared value (η2p) (de
Morree et al. 2014) were calculated to confirm not only the
statistical significance, but also the effect size. In the case
of Cohen’s d, standard values of 0.10, 0.25, and 0.40 for
effect size were generally regarded as small, medium, and
large, respectively. In the case of the partial eta-squared value,

123



Virtual Reality (2022) 26:979–1000 985

Fig. 2 The VR contents used for
the pre- and main tasks. Top
image: VR content used in the
pre-task (“Ultimate Booster
Experience,” GexagonVR,
2016). Bottom image: VR
content used in the main task
(“No Limits 2 Roller Coaster
Simulation,” Ole Lange, Mad
Data GmbH & Co. KG, 2014)

Fig. 3 The experimental procedure

standard values of 0.01, 0.06, and 0.14 for effect size were
generally regarded as small, medium, and large, respectively
(Huck et al. 1974). Also, the MTMM matrix was applied
to verify test–retest reliability, convergent, and discriminant
validity among various motion sickness indicators such as
SSQ score, amplitude, alpha power, and latency of HEP
in the FP1, FPz, and FP2 regions. If data samples involve
the multi-trait and the multi-method, the MTMM matrix
evaluates the relationship between multiple measures. This
study defined the multi-trait and the multi-method as HEP
measures and display types (2D and HMD), respectively.
By confirming themonomethod-monotrait (reliability diago-
nal), monomethod-heterotrait, and heteromethod-monotrait,
the test–retest reliability, discriminant validity, and conver-
gent validity were tested and verified (Campbell and Fiske
1959). All statistical data analysis (i.e., subjective ratings,

HEP measures, and MTMM matrix) was conducted using
IBM SPSS Statistics 21.0 for Windows (SPSS Inc., USA).

3.5 Classification

The classification into motion sickness and normal state
was performed by five classification algorithms: SVM,
RBF–SVM, elastic net regularization, LASSO model, and
L2 (Ridge model) regularization. These algorithms were
chosen for their popularity in biomedical data classification
(Zhou et al. 2010; Herrera et al. 2013; Li et al. 2016). Fif-
teen HEP features (six alpha power features and six latency
features of the HEP first and second components in the
FP1, FP2, and FPz regions; three amplitudes of HEP wave-
forms in the FP1, FP2, and FPz regions) were extracted
from our experimental data, and the ten statistical features
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Fig. 4 The experimental environment and equipment

Fig. 5 Examples of signal processing for HEP measurements (alpha
power, latency, and amplitude of HEP waveform). A Removing the eye
movement and blinking artifacts from EEG signals. B Detecting the
R-peak from ECG signals. C EEG signals after removing the artifacts.

D Data separation (trial) in EEG signals based on R-peak from ECG
signals. E Grand average signal for all trials in EEG signals. F Defini-
tion for latency of HEP first and second components and amplitude of
HEP.GDefinition for alpha power of HEP first and second components

showing statistically significant results were trained by the
five-classification algorithm on a 28-subject dataset. The
classification performances of the five algorithms were eval-
uated by their accuracies, F1 scores, precisions, recalls, and
AUCs (James et al. 2013; Saito and Rehmsmeier 2017) on a

new dataset of 20 subjects. The classification measures are
defined below:
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Accuracy: proportion of correct predictions among the
total number of predictions.

Accuracy � (TP + TN)/(TP + FN + TN + FP) (2)

Recall: ratio of correctly predicted positive observations
to all observations in the actual class.

Recall � TP/(TP + FN) (3)

Precision: ratio of correctly predicted positive observa-
tions to all predicted positive observations.

Precision � TP/(TP + FP) (4)

F1 Score: weighted average of Precision and Recall. Note
that this score accounts for both false positives and false
negatives.

F1 Score � 2 ∗ (Recall ∗ Precision)/(Recall + Precision)
(5)

AUC: area under the receiver operating characteristics
(ROC) curve. The AUC value lies between 0.5 (bad clas-
sifier) and 1 (excellent classifier).

In the above expressions, TP and FN denote the numbers
of correctly classified and incorrectly classified motion-
sickness instances, respectively, TN is the number of true
negative classifications, and FP is the number of true posi-
tive classifications.

3.5.1 Logistic regression: Lasso, Ridge, and ElasticNet

Logistic regression is the appropriate analysis technique for
dichotomous (binary) dependent variables. This linear clas-
sifier sums the weighted polynomials of features (Pereira
et al. 2016). Logistic regression methods can be trained with
different objective functions. For this purpose, we selected
three objective functions: Lasso (Zhang et al. 2012), Ridge
(Cessie and Houwelingen 1992), and ElasticNet (Zou and
Hastie 2005), respectively.

3.5.2 Support vector machine: linear and RBF

SVM is widely used in physiological and biomedical data
classification (Diykh and Li 2016). The SVM classifier finds
the optimal hyperplane that maximizes the margin between
two groups. The hyperplane is determined by the following
decision function (Lima et al. 2009). This classifier deter-
mines the prediction class (positive if f (x) exceeds 1, negative
if f (x) is less than − 1). We applied a linear SVM with no
kernel (Chang et al. 2010), and SVM using an RBF kernel
(Zhao et al. 2011).

Fig. 6 Average subjective rating formotion sickness in the 2DandHMD
conditions. There was a significant difference in the total SSQ score
between the 2D andHMDgroups based on a paired t-test andANCOVA
(*p <0.05, **p <0.01, ***p <0.001)

4 Results

4.1 Subjective rating

For the HMD viewing condition, a paired-samples t-test
showed significant differences between the pre- and post-
viewing conditions for the total SSQ score (t[54] � -10.801,
p � 0.0000, with large effect size [Cohen’s d � 2.940]).
However, no significant differences were found between the
ratings obtained pre- and post-viewing in the 2D viewing
condition (t[54] � 0.050, p � 0.9604, Cohen’s d � 0.014),
as shown in Fig. 6. ANCOVA was also performed to fur-
ther compare the differences in the total SSQ scores between
the 2D and HMD viewing conditions. There was a signifi-
cant difference in the total SSQ score post-viewing with an
adjusted total SSQ score in the pre-viewing condition as a
covariate (F[1, 54] � 127.989, p � 0.0000, with large effect
size [η2p � 0.707]), as shown in Fig. 6.

4.2 Alpha power, latency, and amplitude of HEP

In assessing the results from theHMDviewing task, a paired-
samples t-test showed that the alpha power of the first HEP
component post-viewing was significantly higher than that
found before the viewing task in FP1 (t[54] � − 4.197, p
� 0.0001, with large effect size [Cohen’s d � 1.142]), FPz
(t[54]� − 4.296, p� 0.0000, with large effect size [Cohen’s
d�1.169]), andFP2 (t[54]�−4.258,p�0.0000,with large
effect size [Cohen’s d � 1.159]). No significant differences
were found in the alpha power of the second HEP component
in FP1 (t[54] � -2.536, p � 0.0141, with large effect size
[Cohen’s d � 0.690]), FPz (t[54] � −2.454, p � 0.0174,
with large effect size [Cohen’s d � 0.668]), or FP2 (t[54]
� −2.289, p � 0.0260, with large effect size [Cohen’s d
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Fig. 7 Average alpha power of first and second HEP components of the
2D and HMD viewing conditions in the FP1, FPz, and FP2 regions.
There was significant difference in the alpha power of the first HEP

component between the 2D and HMD groups in all regions but the
alpha power of the second HEP component was not significant based
on a paired t-test and ANCOVA (*p <0.05, **p <0.0033, ***p <0.001)

� 0.623]). In considering the 2D viewing tasks, a paired-
samples t-test showed that there was no significant difference
pre- and post-viewing in either the alpha power of the first or
second components in all regions, as shown in Fig. 7.

When comparing the 2D and HMD groups based on
ANCOVA, the alpha power of the first HEP component in
the HMD group was significantly higher than that in the 2D
group in FP1 (F[1, 54] � 151.753, p � 0.0001, with large
effect size [η2p � 0.254]), FPz (F[1, 54] � 154.865, p �
0.0001, with large effect size [η2p � 0.258]), and FP2 (F[1,
54] � 149.505, p � 0.0001, with large effect size [η2p �
0.257]) with the alpha power of the HEP first component
adjusted in the pre-viewing condition as a covariate. No sig-
nificant differences were found in the alpha power of the
second HEP component in regions FP1 (F[1, 54] � 6.326, p
� 0.0150, with medium effect size [η2p � 0.107]), FPz (F[1,
54] � 5.957, p � 0.0179, with medium effect size [η2p �
0.101]), andFP2 (F[1, 54]�5.123,p�0.0277,withmedium
effect size [η2p � 0.088]), with the adjusted alpha power of
the second HEP component in the pre-viewing condition as
a covariate, as shown in Fig. 7.

As an example, one participant’s changes in HEP wave-
form in the FP1, FPz, and FP2 regions before and after
viewing the 2D and HMD are shown in Fig. 8. There were
minute differences in the dominant positive peak of the first
(50–250 ms) and second (250–600 ms) HEP periods before
and after viewing in 2D. Interestingly, the dominant peak
had an advance after viewing the HMD, instead of before, in
both the first and second HEP components. Also, the ampli-

tude (difference between the dominant positive and negative
peaks) of the HEP waveform before and after viewing in
2D showed small differences. The amplitude was lower after
viewing the HMD content than before watching it.

In analyzing the results of the HMD viewing task, a
paired-samples t-test showed that the latency of the first HEP
component post-viewing was significantly lower than that
for the pre-viewing condition in FP1 (t[54] � 5.990, p �
0.0000, with large effect size [Cohen’s d � 1.630]), FPz
(t[54] � 5.886, p � 0.0000, with large effect size [Cohen’s
d � 1.602]), and FP2 (t[54] � 6.342, p � 0.0000, with
large effect size [Cohen’s d � 1.726]). The latency of the
second HEP component post-viewing was also significantly
lower comparedwith the pre-viewing condition in FP1 (t[54]
� 4.154, p � 0.0001, with large effect size [Cohen’s d �
1.131]), FPz (t[54] � 4.250, p � 0.0001, with large effect
size [Cohen’s d � 1.157]), and FP2 (t[54] � 4.317, p �
0.0001, with large effect size [Cohen’s d � 1.175]). In ana-
lyzing the results of the 2D viewing tasks, a paired-samples
t-test showed that there was no significant difference in the
latencies of the first and second HEP components pre- and
post-viewing in all regions, as shown in Fig. 9.

When comparing the 2D and HMD groups based on
ANCOVA, the latency of the first HEP component in the
HMD group was significantly lower than that for the 2D
group inFP1 (F[1, 54]�47.625,p�0.0000,with large effect
size [η2p � 0.473]), FPz (F[1, 54]� 44.355, p� 0.0000, with
large effect size [η2p � 0.456]), and FP2 (F[1, 54] � 57.567,
p � 0.0000, with large effect size [η2p � 0.521]) with the
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Fig. 8 An example of the changes (before and after viewing) in HEP
latency and amplitude for both the 2D and HMD viewing condi-
tions in the FP1, FPz, and FP2 regions for Participant 11. The left
and right sides display the results for the 2D and HMD conditions,
respectively. The top, mid, and bottom lines are shown FP1, FPz, and
FP2 regions, respectively. The difference in HEP latency and ampli-
tude in the FP1, FPz, and FP2 regions are as follows: latency of

the first HEP component (2D: 222–206, 206–208, and 224–222 ms;
HMD: 244–220, 246–218, and 242–224 ms), latency of the second
HEP component (2D: 548–546, 520–542, and 532–550 ms; HMD:
448–396, 558–390, and 560–394 ms), and amplitude of the HEP (2D:
1.208–1.190, 0.947–0.920, and 3.399–3.223 uV; HMD: 2.907–2.326,
3.226–2.895, and 3.205–2.721 uV)

adjusted latency of first HEP component in the pre-viewing
condition as a covariate. The latency of second HEP com-
ponent in the HMD group was significantly lower than that
for the 2D group in FP1 (F[1, 54] � 16.236, p � 0.0002,
with large effect size [η2p � 0.235]), FPz (F[1, 54]� 17.278,
p � 0.0001, with large effect size [η2p � 0.246]), and FP2
(F[1, 54] � 17.919, p � 0.0001, with large effect size [η2p
� 0.253]) with the adjusted latency of second HEP compo-
nent in the pre-viewing condition as a covariate, as shown in
Fig. 9.

In assessing the results of the HMD viewing tasks, a
paired-samples t-test showed that the amplitude of the HEP
post-viewing was significantly lower than that pre-viewing
in the FPz (t[54]� 3.076, p� 0.00329, with large effect size
[Cohen’s d � 0.837]) and FP2 (t[54] � 3.557, p � 0.0008,

with large effect size [Cohen’s d � 0.968]). No significant
differences were found pre- and post-viewing in the ampli-
tudes of the HEP in FP1 (t[54] � 2.639, p � 0.0108, with
large effect size [Cohen’s d � 0.718]). For the 2D viewing
condition, a paired-samples t-test showed that there were no
significant pre- and post-viewing differences in the latencies
of the HEP in all regions, as shown in Fig. 10.

From the comparison between the 2D and HMD groups
based on ANCOVA, the amplitude of the HEP in the HMD
group was significantly lower than the amplitude measured
for the 2D group in FP2 (F[1, 54]� 12.475, p� 0.0009, with
large effect size [η2p � 0.191]) with an adjusted amplitude of
HEP in the pre-viewing condition as a covariate. However,
in the other regions, no significant differences were found in
the amplitude of the second HEP component in FP1 (F[1,
54] � 6.9976, p � 0.0108, with medium effect size [η2p �
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Fig. 9 Average latency of first and second HEP components for the 2D
and HMD conditions in the FP1, FPz, and FP2 regions. There was sig-
nificant difference in the latency of the first and secondHEPcomponents

between the 2D and HMD groups in all regions based on a paired t-test
and ANCOVA (*p <0.05, **p <0.0033, ***p <0.001)

Fig. 10 Average amplitude of the HEP for the 2D and HMD conditions
in FP1, FPz, andFP2. Therewas a significant difference in the amplitude
of the HEP between the 2D and HMD groups in FP2 but no significant

difference in the other regions (FP1 and FPz) based on a paired t-test
and ANCOVA (*p <0.05, **p <0.0033, ***p <0.001)

0.116]) and FPz (F[1, 54]� 9.384, p� 0.0034, withmedium
effect size [η2p � 0.150]) with an adjusted alpha power of the
second HEP component in the pre-viewing condition as a
covariate, as shown in Fig. 10.

4.3 Correlation analysis

As seen Fig. 11, we drew the plot for residuals of
SSQ scores and significant features of HEP (AP(1)FP1,
AP(1)FPz, AP(1)FP2, L(1)FP1, L(1)FPz, L(1)FP2, L(2)FP1,
L(2)FPz, L(2)FP1, AFP2) with linear regression lines. Correla-
tion coefficients between SSQ scores and each HEP features
in the post-viewing condition considering pre-viewing con-
dition are statistically significant (AP(1)FP1: r � 0.531, p
<0.05; AP(1)FPz: r � 0.564, p <0.05; AP(1)FP2: r � 0.542,
p <0.05; L(1)FP1: r � 0.642, p <0.05; L(1)FPz: r � 0.625, p

<0.05; L(1)FP2: r � 0.683, p <0.05; L(2)FP1: r � 0.642, p
<0.05; L(2)FPz: r � 0.643, p <0.05; L(2)FP1: r � 0.628, p
<0.05; AFP2: r � 0.497, p <0.05).

4.4 MTMMmatrix

In our research, the multi-method was defined by the 2D and
HMD viewing conditions and the multi-trait was defined by
measurements such as the alpha power of first HEP com-
ponent (FP1, FPz, and FP2 regions), the latency of the first
and second HEP components (FP1, FPz, and FP2 regions),
and the amplitude of HEP (FP2 region) based on measures
of statistical significance. The detailed results of the MTMM
analysis are shown in Table 2.

Firstly, the test–retest reliability was defined by the main
diagonal of the MTMM correlation matrix. The HEP mea-
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Fig. 11 Results of correlation analysis among HEP features and SSQ score (p <0.05 [n � 56])

sures (alpha power, latency, and amplitude of HEP) showed
good reliability in range of 0.752 to 0.785 (over 0.700) in
both the 2D and HMD viewing conditions. The alpha power
of the first HEP component in the FP1, FPz, and FP2 regions
revealed good reliability in both the 2D (0.785, 0.785, and
0.785) and HMD (0.785, 0.785, and 0.785) viewing condi-
tions. The latency of the first HEP component in FP1, FPz,
and FP2 revealed good reliability in both the 2D (first com-
ponent: 0.761, 0.762, and 0.759; second component: 0.757,
0.762, and 0.758) and HMD (first component: 0.759, 0.790,
and0.761; second component: 0.759, 0.761, and0.753) view-
ing conditions. The amplitude of HEP in FP2 revealed good
reliability in both the 2D (0.782) and HMD (0.782) viewing
conditions. The SSQ score showed moderated reliability in
both the 2D (0.461) andHMD(0.472) viewing condition, and
had low reliability comparison with HEP features. Secondly,
the discriminant validity was defined by the heterotrait—
monomethod triangles. The correlation coefficients among
SSQ score and latency of HEP second component (FP1, FPz,
and FP2 regions) showed a low and medium negative corre-
lation ranging from − 0.241 to − 0.448, and revealed no
significant results with other HEP features. The SSQ score
did have discriminant validity with HEP features. The cor-
relation coefficients between the alpha power and latency
of the first HEP component measures (FP1, FPz, and FP2
regions) revealed a strong negative correlation in the range of
− 0.914 to − 0.928. In contrast, the correlation coefficients
associated with the latency of the second HEP component
demonstrated a medium negative correlation ranging from
− 0.354 to − 0.422. The correlation coefficients associated
with the amplitude of HEP showed a medium negative cor-
relation ranging from − 0.321 to − 0.416. The latency of
the first HEP component did not have discriminant valid-
ity with the alpha power of the first HEP component, but

other measures did have discriminant validity with the alpha
power measure. Lastly, convergent validity was defined by
the monotrait-heteromethod (validity diagonal). The HEP
latency measures showed higher correlation (0.529–0.686)
than other measures (SSQ score: 0.246; alpha power of first
HEP component: 0.451–0.471; amplitude of HEP:− 0.367).
In particular, the correlation coefficients for the latency of the
first HEP component showed the highest positive correlation
(0.639–0.686).

4.5 Classification

In this experiment, the motion-sickness and normal groups
were classified by linear-SVM, RBF–SVM, elastic net reg-
ularization, the LASSO model, and L2 (Ridge model)
regularization. Ten features (three alpha powers of the HEP
first component in the FP1, FP2, and FPz regions, six laten-
cies of the HEP first and second components in the FP1, FP2,
and FPz regions, and the amplitude of the HEP waveform
in FP2 region) were statistically significant for classifica-
tion (see Figs. 7, 9, and 10). The classification algorithm
was trained on the 28-subject dataset, and its performance
was evaluated on a new 20-subject dataset. The comparison
results between the 2D and HMD conditions based on the
significant features in the 20-subject dataset are shown in
Table 3.

The logistic regression classifiers (elastic net regular-
ization and logistic regression with L1 and L2) clearly
distinguished motion sickness from the normal state, with
classification accuracies of 0.850, 0.900, and 0.898 respec-
tively, F1 scores of 0.870, 0.870, and 0.851 respectively,
precisions of 0.769, 0.769, and 0.741 respectively, and AUCs
of 0.895, 0.900, and 0.898, respectively. The recall was 1.0
in all three algorithms (Table 4). The regulation parameters
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Table 3 The analysis results of HEP measurements for validation data (n � 20) between 2D and HMD conditions

Alpha power Latency Amplitude

AP(1)FP1 AP(1)FPz AP(1)FP2 L(1)FP1 L(1)FPz L(1)FP2 L(2)FP1 L(2)FPz L(2)FP2 AFP2

2D-VC Before M 16.05 15.90 15.96 143.30 142.50 143.00 441.50 435.00 439.70 2.40

SD 2.45 2.46 2.42 34.31 33.73 31.17 60.58 61.07 62.21 0.63

After M 15.29 15.19 15.24 149.10 149.70 148.40 443.50 443.80 444.70 2.52

SD 2.85 2.80 2.80 35.73 35.71 36.47 60.67 61.34 60.75 0.61

Difference M − 0.77 − 0.71 − 0.72 5.80 7.20 5.40 2.00 8.80 5.00 0.13

SD 1.58 1.38 1.46 16.73 13.98 14.00 10.28 17.88 14.12 0.38

HMD-VC Before M 16.05 16.20 16.12 151.20 148.50 147.80 389.10 387.50 379.90 2.35

SD 2.21 2.09 2.30 34.37 34.19 36.20 54.68 52.71 67.32 0.65

After M 19.14 19.23 18.95 116.70 116.00 116.30 347.70 346.10 350.30 1.95

SD 1.44 1.35 2.24 33.19 31.91 34.58 39.33 37.98 41.98 0.53

Difference M 3.09 3.03 2.83 − 34.50 − 32.50 − 31.50 − 41.40 − 41.40 − 29.60 − 0.39

SD 2.29 2.03 3.39 28.53 32.02 33.88 46.36 46.79 70.23 0.56

VC Viewing condition, M mean, SD standard deviation, AP(1)FP1, AP(1)FPz, and AP(1)FP2 alpha power of first HEP component (FP1, FPz, and
FP2 regions); L(1)FP1, L(1)FPz,and L(1)FP1 latency of first HEP component (FP1, FPz, and FP2 regions); L(2)FP1, L(2)FPz,and L(2)FP1 latency of
second HEP component (FP1, FPz, and FP2 regions), AFP2 amplitude of HEP in FP2

Table 4 The comparison of the
performance of difference types
of classifiers

AUC Accuracy F1 Score Precision Recall

Training Test Training Test Training Test Training Test Training Test

Elastic
Net

0.977 0.895 0.893 0.850 0.900 0.870 0.844 0.769 0.964 1.000

Lasso 0.950 0.900 0.929 0.850 0.933 0.870 0.875 0.769 1.000 1.000

Ridge 0.932 0.898 0.911 0.825 0.918 0.851 0.949 0.741 1.000 1.000

Linear-
SVM

0.992 0.898 0.946 0.850 0.949 0.870 0.903 0.769 1.000 1.000

RBF-
SVM

0.999 0.962 0.964 0.875 0.966 0.865 0.933 0.941 1.000 0.800

Fig. 12 ROC curves (left) for five classification methods and t-SNE data plot (right)

were α � 4.8 for Lasso, α � 3.5 for Ridge, and α � 2.7
and γ � 0.98 for elastic net. The linear and RBF SVM
classifiers also distinguished between motion sickness and
the normal state, with classification accuracies of 0.850 and
0.875 respectively, F1 scores of 0.870 and 0.865 respectively,

precisions of 0.769 and 0.941 respectively, recalls of 1.0 and
0.8 respectively, and AUCs of 0.898 and 0.963, respectively
(Table 4). The regulation parameters were α � 1.7 and γ �
9.4 for RBF–SVM, and α � 3.5 for linear SVM. The ROC
curves for evaluating the classification performance, and the
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Table 5 Performance comparison of our method and previous methods in motion-sickness recognition

Study Subjects Feature extraction Classifier Accuracy

Training Test

Yu et al. (2010) 7 EEG PCA, LDA, NWFE,
F/BFS

SVM 0.996 –

Wei et al. (2011) 6 EEG PCA SVR 0.869 –

Ko et al. (2013) 6 EEG e-IBCGA SVM 0.807 –

6 – 0.721

Pane et al. (2018) 9 EEG Beta and theta powers CN2 rules 0.889 -

Mawalid et al. (2018) 9 EEG Alpha and beta powers Naïve Bayes classifier 0.838 –

Dennison Jr et al. (2019) 18 Multi-modal (EEG, EOG, RSP, stomach, etc.) Tree bagger 0.950 -

Li et al. (2019) 20 EEG & COP in force plate PCA Voting classifier 0.911 –

Li et al. (2020) 18 EEG WPT Polynomial-SVM 0.793 –

Present study 28 HEP Alpha power, amplitude,
and latency of HEP

RBF-SVM 0.964 –

20 – 0.865

EEG Encephalography, EOG electrooculography; RSP respiration, COP center of pressure, HEP heartbeat evoked potential, PCA principal com-
ponent analysis, LDA linear discriminate analysis, NWFE nonparametric weighted feature extraction, F/BFS forward/backward feature selections,
e-IBCGA extended bi-objective combinatorial genetic algorithm, WPT wavelet packet transform, SVM support vector machine, RBF radial basis
function

t-stochastic neighbor embedding (t-SNE) for vector visual-
ization, are shown in Fig. 12.

5 Discussion

VIMS is a major obstacle to the development of the VR
industry and the HMD device in particular. Many previous
studies have tried to measure the motion sickness in order
to resolve this problem. However, the previously proposed
methods had limitations and there has not yet been a standard-
ized method suggested. The aim of this study was to develop
an advanced method for measuring motion sickness based
on cognitive function using heart–brain synchronization by
studying HEPs. This study proposed new indicators such as
latency and amplitude of HEP to assess motion sickness and
compared this with the alpha power of HEP from a previ-
ous study based on the MTMM matrix. Based on the SSQ,
this study confirmed whether 2D and HMD viewing condi-
tions cause motion sickness. Following the subjective rating
obtained from the SSQ, participants experienced motion
sickness after the HMD viewing task, but not after the 2D
viewing task. This result is consistent with previous studies
(Kennedy et al. 1993; Merhi et al. 2007; Sharples et al. 2008;
Kiryu et al. 2008; Chardonnet et al. 2015; Palmisano et al.
2017).

Overall, our research yields three significant findings.
Firstly, the alpha powers of the first HEP components in the
FP1, FPz, and FP2 regions were significantly lower when
motion sickness was being experienced. In previous stud-
ies, brain sensory processing was found to be influenced

by changes in heart rhythm via afferent and efferent path-
ways, which are related to cognitive functions (Hansen et al.
2003; McCraty et al. 2009; Park et al. 2014, 2015). An
increase in the alpha power of the first HEP component is
related to the time interval for “rate of change” information
to transmit from the heart to the brain through afferent path-
ways in the vagus nerve (Wölk et al. 1989; McCraty et al.
2009). Park et al. (2015) reported that the alpha power of the
first HEP component was increased during cognitive loading
and that result is consistent with this research. If informa-
tion about cardiac rhythm is transmitted rapidly to the brain
(increasing the alpha power in the first HEP component), the
brain requires information rapidly through sensory input to
activate cognitive processing. Thus, as determined by this
study, the increasing alpha power of the first HEP compo-
nent can be interpreted as showing that cognitive load is
the cause of motion sickness. Also, many previous studies
have demonstrated that motion sickness is strongly related to
the cognitive load caused by experiencing VR content (Lin
et al. 2007, 2013; Chen et al. 2010; Chuang et al. 2016). An
increase in the alpha power of second HEP component is
related to the time taken for the pulse wave from the heart to
be transmitted to the brain (Wölk et al. 1989; McCraty et al.
2009). If the pulsewave is rapidly transmitted to the brain, the
brain requires blood flow to achieve increased information
processing. The alpha power of the second HEP compo-
nent raised during cognitive loading (Park et al. 2015). In
the results of this study, the alpha power of the second HEP
component in all brain regions tended to decrease during the
experience of motion sickness, but this was not statistically
significant based on the Bonferroni correction. Secondly, the
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latencies of the first and second HEP components in FP1,
FPz, and FP2 were significantly lower during motion sick-
ness. This result also can be interpreted in terms of cognitive
load. As mentioned above, the first and second components
of the HEP are strongly related to the information transfer
rate to the brain from the heart (Wölk et al. 1989; McCraty
et al. 2009; Park et al. 2015). Increasing the transfer rate is
highly correlated with activating cognitive load, based on the
alpha power (Park et al. 2015). Decreasing latencies of first
and second HEP components is also related to the informa-
tion transfer rate to the brain from the heart. The first and
second components represent the average time in which car-
diac rhythm information is transferred from heart to brain
(range 50–250 ms and 250–600 ms after the R-peak) (Wölk
et al. 1989; McCraty et al. 2009; Park et al. 2015). Moreover,
brain waves in prefrontal and frontal areas are influenced by
information about the cardiac rhythm (Schandry et al. 1986;
Wölk et al. 1989; Schandry and Weitkunat 1990; McCraty
et al. 2009; Park et al. 2015). In this study, the dominant
response (peak) from the HEP waveform was extracted from
the micro-response in the brain wave caused by the heart-
beat using signal averaging techniques. The location of the
dominant peak (latency) revealed the time taken for infor-
mation to be transmitted to the brain from the heart through
afferent pathways in the vagus nerve. If the latencies in the
first and second HEP components decrease, the increase in
the transfer rate from the heart is caused by the requirements
of the brain. Thus, decreases in the latency of HEP can be
interpreted as cognitive load, thus quantitatively assessing
motion sickness. Lastly, the amplitude of theHEP in FP2was
significantly reduced during motion sickness and revealed a
medium negative correlation (− 0.321 to − 0.416) with the
alpha power of the second HEP component, which was the
indicator of cognitive load.

The HEP waveform is the evoked potential caused by the
heartbeat in a similar way to the ERP response (by event
stimulus). The amplitudes in ERPs are strongly related to
high-level cognitive processing measures such as task dif-
ficulty, selective attention, and mental workload (Friederici
et al. 1993; Uetake andMurata 2000; Kok 2001;Murata et al.
2005; Cheng et al. 2007; Li et al. 2008; Kato et al. 2009;
Miller et al. 2011; Mun et al. 2012, 2014; Kathner et al.
2014; Park and Mun 2015; Chang et al. 2017; Getzmann
et al. 2018). ERP amplitude is consistent with the inhibition
function in the brain. For low level external stimuli, the brain
controls decrease the inhibition function to efficiently pro-
cess the information before revealing a large ERP amplitude
(Polich 2007). Thus, decreasing the ERP amplitude is closely
related to cognitive load and decreasing the amplitude of the
HEP waveform can be interpreted in the same context.

The HEP measures such as alpha power, latency, and
amplitude found in this study were significantly different
when comparing the HMD (motion sickness inducing) and

2D viewing conditions. These measures are strongly related
to the cognitivemechanismsunderlying thementalworkload.
Thus, the phenomenon of motion sickness can be interpreted
as the degradation of the human visual system due to sensory
overload. This is similar to the 3D visual fatigue found in
previous studies (Li et al. 2008; Lambooij et al. 2009; Mun
et al. 2012; Park et al. 2014, 2015). The results presented
here enable the quantitative assessment of motion sickness
and will assist with the establishment of guidelines regarding
HMD-based viewing of VR content.

The MTMM matrix, which was found to be very reliable
in all HEP measures rather than SSQ score, was internally
consistent in both the 2D and HMD conditions. There-
fore, the HEP measures showed strongly reliable repeat
measurements and consistent and high correlation with the
multi-method (2D or HMD). Discriminant validity showed
that the alpha power of the first HEP component did not
identify a relationship with the latency of the first HEP com-
ponent but did with other measures such as the latency of
the second HEP component and the amplitude of the HEP.
The HEP alpha power validated the indicator for cogni-
tive load (Park et al. 2015) and the correlation coefficient
between the alpha power and the latency of the first HEP
component revealed a strong negative correlation. Gener-
ally, electrophysiology features showedhigh reliability rather
than non-electrophysiology such as subjective rating (Park
et al. 2015). We found that SSQ score showed significant
discrepancy in reliability with electrophysiology measures.
Also, the convergent validity (monotrait-heteromethod) was
defined by the correlation between twomeasures of the same
trait with two different methods (2D and HMD). Because
the two measures are of the same trait, these measures are
expected to be strongly correlated. The HEP latency (first
component)measures had a higher correlation for themethod
than other measures. In summary, the latency of the first
HEP component had a higher correlation with HEP alpha
power, which is well-known as being associated with cog-
nitive load, and higher test–retest reliability and convergent
validity than other measures. This measurement, therefore,
is recommended to provide a better quantitative evaluation
of motion sickness and cognitive load than alpha power and
other measures.

Among the algorithms for classifying the motion sickness
and normal groups, theRBF–SVMachieved the highest aver-
age recognition accuracy (0.964 on the training set and 0.875
on the test set). Hence, RBF–SVM is a suitable promising
classifier for motion sickness. To better illustrate the study
findings, this paper compared the methods and results with
those of similar studies. In previous studies, the accuracy of
recognizing motion sickness was 0.793–0.996 in the training
set and 0.721 in the test set (one example), as shown in Table.
5. In terms of accuracy, sample size, and validation results,
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our methods outperformed the existing state-of-the-art clas-
sification methods for motion-sickness detection.

6 Conclusion

The aim of this study was to determine a method for measur-
ing motion sickness experience by watching VR content on
a HMD using the HEP phenomenon and to propose a new
indicator for evaluatingmotion sickness (cognitive function).
This study confirmed that motion sickness leads to a decay
in cognitive processing in the brain caused by multi-sensory
input as demonstrated by reductions in the alpha power of the
first HEP component in regions FP1, FPz, and FP2. Also, the
proposed indicators such as latency (first component in FP1,
FPz, and FP2) and amplitude (FP2) of the HEP waveform
in this study were significantly different when participants
experienced motion sickness and showed higher correlations
with alpha power measures (cognitive load). In particular,
latencies in the first HEP component was recommended as
better quantitative evaluators of motion sickness (cognitive
load) than alpha power and other measures when test–retest
reliability, discriminant, and convergent validity were ver-
ified by the MTMM matrix. Because the HEP measures
were extracted from the HEP waveforms of the heartbeat,
the proposed method is more flexible than offline methods
such as the ERP method, which requires specific tasks. In
addition, our proposed method implemented in RBF–SVM
more successfully classified the motion-sickness state than
state-of-the-art recognition methods for motion sickness,
demonstrating a higher performance than previous studies.
The proposed HEP measurement method is useful for quan-
tifying motion sickness and determining the optimal viewing
parameters of VR content, including the viewer characteris-
tics, viewing environment, content, and device factors. These
results will improve the popularization of VR and invigorate
the development of future VR with suppressed negative side
effects.
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