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Abstract
Volume rendering produces informative two-dimensional (2D) images from a 3-dimensional (3D) volume. It highlights the 
region of interest and facilitates a good comprehension of the entire data set. However, volume rendering faces a few chal-
lenges. First, a high-dimensional transfer function is usually required to differentiate the target from its neighboring objects 
with subtle variance. Unfortunately, designing such a transfer function is a strenuously trial-and-error process. Second, 
manipulating/visualizing a 3D volume with a traditional 2D input/output device suffers dimensional limitations. To address 
all the challenges, we design NUI-VR2 , a natural user interface-enabled volume rendering system in the virtual reality space. 
NUI-VR2 marries volume rendering and interactive image segmentation. It transforms the original volume into a probability 
map with image segmentation. A simple linear transfer function will highlight the target well in the probability map. More 
importantly, we set the entire image segmentation and volume rendering pipeline in an immersive virtual reality environment 
with a natural user interface. NUI-VR2 eliminates the dimensional limitations in manipulating and perceiving 3D volumes 
and dramatically improves the user experience.
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1 Introduction

Direct volume rendering generates informative two-dimen-
sional (2D) images from three-dimensional (3D) volumes by 
directly mapping voxel values to optical properties with a 
transfer function. To highlight a target, users need to design 
a transfer function so that voxels within the target area carry 
distinctly different optical properties from those outsides. 

This process requires tremendous user design efforts, espe-
cially when the region of interest is hard to differentiate with 
neighboring objects. Image segmentation is a highly related 
field regarding extracting a target. However, utilizing image 
segmentation techniques to facilitate the volume rendering 
process has not been well studied. For exploring 3D vol-
umes, there are intrinsic limitations to use a traditional 2D 
input device, a mouse, or a keyboard, to label and interact 
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with 3D volumes. The dimensional discrepancy imposes 
heavy burdens on users as they need to escalate 2D actions 
into 3D effects subjectively. Additionally, perceiving the 
entire 3D dataset on a 2D surface is infeasible. We need a 
more effective way to observe the data. To address the chal-
lenges above, we design and implement NUI-VR2 , a natural 
user interface-enabled volume rendering system in the vir-
tual reality space. In NUI-VR2 , users inspect the 3D volume 
in a VR environment and specify a few seeds within the tar-
get with intuitive gestures and voice commands. With those 
seeds, image segmentation converts the original volume into 
a probability volume where voxels in the target yield higher 
values. A simple linear transfer function will highlight the 
target well. Users can explore the rendered volume with NUI 
inside an immersive VR environment. In summary, our main 
contribution is threefold:

• Propose a generic strategy for integrating image segmen-
tation and volume rendering. Image segmentation and 
feature selection techniques instead of high-dimensional 
transfer functions are applied to highlight the target.

• Design and implement a novel end-to-end volume inter-
action, image segmentation, and volume rendering sys-
tem in VR.

• Develop an attention-based NUI for the VR environment 
with unlimited gestures and voice commands.

2  Related work

Transfer function design has been the focus of many vol-
ume rendering researchers (Pfister et al. 2001; Arens and 
Domik 2010; Ljung et al. 2016; Mady and Abou El-Seoud 
2020). Initially, researchers assign optical properties to vox-
els based on their intensity values (He et al. 1996; Bajaj 
et al. 1997; Sabella 1988; König and Gröller 2001). Levoy 
(1988) first added the local grayscale gradient to the map-
ping process to isolate objects with similar intensities. Other 
data features, e.g., curvature (Kindlmann et al. 2003), tex-
ture (Caban and Rheingans 2008), and distance (Tappenbeck 
et al. 2006) information were also included later on. The 
difficulty in identifying a proper transfer function increases 
as the dimensionality of the features expands. Tzeng et al. 
(2005) proposed a smart volume rendering system. They 
trained a model with the user’s inputs and used it to clas-
sify the volume to eventually simplify the transfer functions. 
Topology-based (Takeshima et al. 2005; Weber et al. 2007) 
and domain-specific (Tiede et al. 1998) segmentations were 
also applied to divide the original volume into sub-volumes 
to achieve a similar goal. ImageVis3D (Fogal and Krüger 
2010) is a powerful transfer function design software with 
an intuitive user interface. All of them help design a transfer 

function, but none of them frees users from the daunting 
process.

On the image segmentation side, researchers proposed 
numerous innovative algorithms (Zhu and Yuille 1996; Gao 
et al. 2012; Bali and Singh 2015; Kuruvilla et al. 2016) over 
the years. They usually require some user interactions to 
guarantee accurate segmentation results. Such user inter-
actions include specifying sample seeds inside the target 
(Boykov and Jolly 2001; Vezhnevets and Konouchine 2005; 
Karasev et al. 2013) or boundary masks outside (Mortensen 
and Barrett 1998). If the sample seeds or boundary masks 
are not well-defined, which is often the case with a tradi-
tional 2D input device, segmentation leakages may occur. 
Researchers have been trying to improve the user interac-
tions with Microsoft Kinect. Kinect-based interfaces effec-
tively alleviated the dimensional discrepancy between the 
user space and the 3D data (Wang and Jung 2017; Ju et al. 
2018).

Researchers have been trying to utilize VR as the visu-
alization media to visualize volumetric data. At first, Hänel 
et  al. (2016) used a theatre-like system consisting of a 
room-sized cube and projectors. However, the high setup 
requirement prohibits its wide adoption. Recently, portable 
VR technologies, from simple cardboard inserts for smart-
phones to sophisticated VR headsets with accurate tracking 
sensors, became widely available (El Beheiry et al. 2019). 
The advancement of VR technologies led to flourishing 
research to exploit portable VR to visualize volumetric data 
(Cohen et al. 2013; Chan et al. 2013; Faludi et al. 2019), and 
the results have been promising because of the immersive 
environment. As VR improves user experience in volume 
exploration and visualization, we set up our proposed system 
entirely in VR.

3  Methods

NUI-VR2 is set up in the VR space. With the six-degree-
of-freedom positional tracking capability of the current VR 
headsets, e.g., Oculus Rift, users can virtually interact with 
the volumes. As reported in Hänel et al. (2016), users are 
more motivated to explore the data in VR because of the 
immersive experience. We take advantage of the portable 
VR headset, Oculus Rift, instead of the enormous theatre-
like environment as in Hänel et al. (2016) to make NUI-
VR2 more accessible. The typical rendering process for an 
m × n × k volume is numbered in Fig. 1 and can be sum-
marized as below: 

1. Users browse through the volume with voice commands 
and gestures. Once users locate the target, they could 
record a few seeds within the target and generate all 
kinds of 3D masks outside the target. Those seeds and 
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masks serve as the inputs for various segmentation algo-
rithms.

2. Assume users record s seeds, and we compute f prede-
fined features for each seed, we will get an s × f  seed 
feature matrix after the feature computation step.

3. The feature selection process selects r features out of the 
f features and reduces the size of the seed feature matrix 
to s × r.

4. We compute the r features for the entire volume and 
obtain an m × n × k × r feature volume.

5. With the seed matrix, the feature volume, and option-
ally the boundary masks, we can apply a wide range of 
image segmentation techniques to generate an m × n × k 
probability volume. The target region will carry larger 
values than the others in the probability volume.

6. Finally, we render the probability volume with a simple 
linear transfer function to highlight the target. Figure 1 
shows a rendering of a human head with a tumor high-
lighted as an example.

3.1  Natural user interface

One challenge for users to explore 3D volumes, especially 
in VR, is the lack of an efficient input device. Kinect recog-
nizes voice commands and tracks 3D locations of multiple 
human joints, including fingertips. We designed a NUI sys-
tem with Kinect to reduce the dimensional discrepancy. It 
enables users to generate seeds and boundary masks directly 
in the 3D space effortlessly.

3.1.1  NUI system overview

Figure 2 shows an overview of NUI-VR2 with an emphasis 
on the NUI system. The NUI system runs on an individual 
thread separate from the render thread and detects voice 
commands and gestures. Once an event is detected, the NUI 
thread sends the event and some optional metadata to the 
render thread. The render thread then updates the volume 
rendering as instructed by the event. For example, when 
users move their left-hand tips, the NUI thread sends the 
LEFT-HAND-TIP-MOVED event with the position info to 
the render thread. The render thread then fetches the new 
position data and repositions the rendering.

3.1.2  3D image browsing

We use the 3D position of the left-hand tip to browse vol-
ume slices. To aid further discussions, we define the Kinect 
origin as � ∈ ℝ

3 and the direction where Kinect is facing as 
a unit vector � . d̃(t) , the distance of the left-hand tip to � in 
the � direction at time t, is used to extract a slice from the 
volume. We assume the volume resides in the center of the 
Kinect space with the viewing plane perpendicular to � and 
map the volume evenly to a valid range. The first (last, resp.) 
slice maps to the minimum (maximum, resp.) value within 
the range. Thus, a slice can be picked with d̃(t) . However, 
d̃(t) is noisy and may cause jitterings. To address this issue, 
we use recursive filtering:

Fig. 1  The NUI-VR2 workflow 
overview. Blue boxes represent 
the data, whereas yellow boxes 
represent the components of 
NUI-VR2 . The numbers indi-
cate the workflow sequence

Fig. 2  NUI-VR2 system over-
view
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where � ( 0 < 𝛼 < 0 ) is the smoothing factor. d(tn) will be 
more stable than d̃(t) . Figure 3 shows an example of brows-
ing a 3D human brain in NUI-VR2 . The distance of the user’s 
left-hand tip to � in the viewing plane direction controls the 
positions of the green dots. Users can issue an “insert” voice 
command to add them to the seed set.

3.1.3  3D surface generation

We track and smooth the joints on the arm and hands with 
Kinect in our NUI. Those joints can form a closed spatial 
curve. By sweeping and recording the curves over time, we 
can generate various 3D surfaces:

3.1.3.1 Surface from polygon We track a total of m joints 
{Pi} from the left-hand tip ( P0 ) to the right-hand tip ( Pm−1 ), 
where m ranges from 3 to 11. P0 still controls the browsing 
of the volume, as detailed in the previous section. We use the 
orthogonal components of Pi to create polygons on the cur-
rent viewing plane. Given P0 and its normal direction � , the 
vector from the Kinect origin � to the plane can be denoted as 
v ∶= ⟨P0, �⟩� , where ⟨⋅, ⋅⟩ indicates the inner product. Pi is 
then projected to the plane through Qi ∶= Pi − ⟨Pi − v, �⟩� . 
The loci of Qi , Qi(t) ∶ i = 1,… ,m , form a continuous 3D 
surface and controls the shape of the polygon in the slice.

3.1.3.2 Surface from circles Instead of polygons, users can 
also use circles with varying centers and radii to form 3D 
surfaces. Only two joints, the left-hand tip, and the right-
hand tip, are tracked. Since the left-hand tip is always in 
the viewing plane as designed, we only need to project the 
right-hand tip to the plane. The line segment in-between 

(1)d(t
0
) = d̃(t

0
)

(2)d(t
n
) = 𝛼d̃(t

n
) + (1 − 𝛼)d(t

n−1)

defines the circle’s diameter. The sweeping of circles con-
structs a 3D surface.

3.1.3.3 Spatial curve from  points We only track the left-
hand tip. Its 3D positions construct a continuous spatial 
curve. While moving the left hand, the viewing slice also 
follows. The recorded curve helps mark a target for image 
segmentation algorithms.

3.1.4  Voice control

Kinect features a multi-array microphone and recognizes 
predefined voice commands from the input audio stream 
with the Microsoft speech application programming inter-
face. We integrated voice commands in the volume render-
ing pipeline, so that when users explore 3D volumes, they 
can interact with the rendering process with their voice com-
mands without worrying about physical limitations. Table 1 
lists some voice commands in NUI-VR2 . We can easily add 
more voice commands to our NUI system.

3.2  Interactive image segmentation

Interactive image segmentations enable users to specify 
seeds and masks that serve as strong hints for extracting the 
target, e.g., the target shall include all the seeds and shall 
not leak through the masks. We provide a generic strategy to 
leverage interactive image segmentation in volume render-
ing. The image segmentation algorithm converts the origi-
nal m × n × k volume into an m × n × k probability volume, 
where voxels in the target area carry larger values as they 
share similar feature values with the seeds. By allowing 
users to specify numerous advanced image segmentation 
algorithms (Gao et al. 2010, 2012; Zhu et al. 2014; Gao et al. 
2010; Chang et al. 2018), we provide unlimited optimization 
opportunities to NUI-VR2.

For simplicity, we use kernel density estimation (KDE) 
with a Gaussian kernel (Terrell and Scott 1992) as an 
example. KDE is the default image segmentation engine in 

Fig. 3  Viewing a 2D slice in a 3D MR human head volume in NUI-
VR2

Table 1  A few voice command examples in NUI-VR2

Commands Actions

Scan Switch to image browsing mode
Insert Add a voxel to the set of seeds
Circle/Polygon Construct a 3D surface with circles or 

polygons
Render Render the probability volume
Preset i Use the ith transfer function preset
Rotate X/Y/Z Rotate the volume along the X/Y/Z-axis
Up/Down/Left/Right Move the volume up/down/left/right
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NUI-VR2 . The kernel density estimator f (v) is the summa-
tion of s discrete multivariate Gaussians centered at ci:

where v ∈ ℝ
r is a volume voxel to be estimated, r is the num-

ber of features, ci ∈ ℝ
r (for i = 1, ..., s ) are the seeds, and � 

is the bandwidth of the Gaussian kernel. f (v) represents the 
possibility that voxel v falls within the same group with ci 
(for i = 1, ..., s ). A linear transfer function will emphasize the 
target very well in the final probability volume.

3.3  Feature selection

NUI-VR2 provides a feature set that consists of the 3D spa-
tial location, intensity, and texture features (Vimort and 
McCormick 2017), including energy, entropy, correlation, 
difference moment (DM), inertia, cluster shade (CS), clus-
ter prominence (CP), Haralick’s correlation (HC), short run 
emphasis (SRE), long run emphasis (LRE), gray level non-
uniformity (GLNU), run length non-uniformity (RLNU), 
low gray level run emphasis (LGLRE), and high gray level 
run emphasis (HGLRE). One significant advantage of using 
NUI-VR2 is that users could supply additional features to 
expand the default feature set.

However, different targets may share different sets of 
descriptive features. For example, points on a vertical line 
in a 2D Cartesian coordinate system bear the same x coor-
dinate. It will yield the most accurate result to characterize 
them only with their x values instead of their 2D coordinates. 
It is time-consuming and may lead to decreased accuracy if 
all of the features are used to characterize the target (Caban 
and Rheingans 2008). Thus, we add a feature selection pro-
cess in NUI-VR2 . The default feature selection algorithm 
is based on the �1-norm support vector machine (SVM). 
SVM is a supervised machine learning algorithm to find the 
optimal hyperplane for the classification problem Zhu et al. 
(2004). Given a set of n labeled training data {(xi, yi)}n1 with 
xi ∈ ℝ

r being the training data and yi ∈ {−1, 1} being the 
label, the �1-norm SVM tries to solve the following optimi-
zation problem:

(3)f (v) ∶=

s∑

i=1

e−||v−ci||
2∕�2 � ∶ ℝ

r
→ ℝ

q is the kernel function that maps x from the 
original r-dimensional space to a q-dimensional space, 
where x will be easier to be separated by a hyperplane. w 
represents the hyperplane, and b is the bias. � is the penalty 
parameter that controls the sparsity of w . All training data 
carries a label of 1 or − 1 depending on whether or not they 
are within the target. We retain x in the original space, i.e., 
r = q , so that w corresponds to the feature set. The solu-
tion to the above optimization problem leads to a sparse w . 
We only select features with nonzero w values as they play 
a major role in discriminating the two groups of training 
data. By varying � , we can control the number of selected 
features.

3.4  Virtual reality

Using VR to explore 3D volumes has big potentials (El 
Beheiry et al. 2019; Cohen et al. 2013; Chan et al. 2013; 
Faludi et al. 2019). Coupled with our touch-less NUI, VR 
will undoubtedly make NUI-VR2 more innovative, efficient, 
and enjoyable because of its realistic and immersive nature. 
There are various kinds of consumer VR devices, including 
cardboard viewer (e.g., Google Cardboard), mobile device 
mount (e.g., Samsung Gear VR), standalone VR (e.g., Ocu-
lus Quest), and tethered VR (e.g., Oculus Rift). We decided 
to build our system with Oculus Rift because it offers the 
best performance as we can connect the VR headset with a 
powerful computer. We use the Visualization Toolkit (VTK) 
Schroeder et al. (2004) as the rendering engine. VTK sup-
ports Oculus Rift natively and provides a rich feature set 
related to volume rendering. Figure 4 shows the rendering 
result of a 512 × 512 × 288 abdominal CT volume in NUI-
VR2 . A predefined transfer function is applied. Both figures 
mirror the entire display in Oculus Rift after chromatic aber-
ration and lens distortion corrections. In Fig. 4a, users can 
have an overall view of the data, whereas in Fig. 4b, users 
can have a closer look at the internal structure of the volume. 
The rendering results illustrate that NUI-VR2 can deliver 
high-quality images in the VR space just as in a traditional 
desktop setup.

(4)min
b,w

n�

i=1

(1 − yi(b + w ⋅ �(xi))) + �‖w‖1

Fig. 4  Render an abdominal 
CT volume with NUI-VR2 with 
a predefined transfer function. 
a Render the volume from 
outside; b render from inside 
the volume
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3.5  System evaluation

As far as we know, there is no comparable image segmen-
tation and volume rendering system as NUI-VR2 , so it is 
hard to perform direct system-to-system comparisons. In 
Sect. 3.4, we have qualitatively shown the superb rendering 
quality of NUI-VR2 in the VR space. In the next section, 
we will comprehensively evaluate NUI-VR2 from the other 
perspectives:

• First, we compare the NUI system with a traditional 
mouse to show that the NUI system ensures higher image 
segmentation accuracy than a mouse.

• Next, we illustrate the effectiveness of image segmen-
tation and feature selection in volume rendering. Users 
can easily adjust the rendering results by changing their 
parameters.

• Finally, we compare NUI-VR2 with ImageVis3D, the 
leading software in transfer function design. The results 
show that NUI-VR2 highlights targets better and requires 
less effort from users than ImageVis3D.

4  Results

4.1  Evaluation of NUI

In this section, we qualitatively and quantifiably evalu-
ate the NUI system. In NUI-VR2 , the interactive image 
segmentation result plays a vital role in the rendering 
quality. We select Shortcut (Zhu et al. 2014) as the image 

segmentation algorithm that requires a bounding surface 
outside the target as the initialization. Within the same 
amount of time, we use a traditional mouse and our NUI 
to define the bounding surfaces. Figure 5 shows that we 
can only define some sparse strips outside the targets with 
a mouse, and segmentation leakages occur. In comparison, 
we can swap closed 3D surfaces outside the targets with 
gestures using our NUI. There are no segmentation leak-
ages because of the well-defined surfaces. Table 2 shows 
the dice coefficients and the Hausdorff distances of the seg-
mentation results. NUI ensures consistently more accurate 
results than the mouse. Both the qualitative and quantifi-
able results show the superb efficiency and effectiveness 
of the NUI system.

4.2  Effectiveness of image segmentation 
and feature selection

We do not rely on transfer functions to adjust the volume 
rendering effects. Instead, we modify the parameters for the 
image segmentation and feature selection algorithms. This 
section will show the effectiveness of our proposed approach 
and how to change the rendering results in NUI-VR2.

We first use the 3D spatial location, the intensity, and 
eight texture features to highlight the cerebral cortex. To 
compute those texture features, we calculate them over the 
entire voxel intensity range of the volume, set a voxel inten-
sity bin at each intensity level, and average their values in all 
the 13 directions. The only parameter left is the neighbor-
hood radius size N. We use KDE with the Gaussian kernel 
as the image segmentation algorithm, and two hundred seeds 

Fig. 5  Image segmentation result comparison between a mouse and 
our NUI. (top) Vessel segmentation; (bottom) brain tumor segmen-
tation; a ground truth of targets; b initializations with the mouse; c 

segmentation results with the mouse; d initializations with our NUI; e 
segmentation results with our NUI

Table 2  Dice coefficients (the 
larger the better) and Hausdorff 
distances (the smaller the better) 
result comparison

Measurements Vessel Tumor 1 Tumor 2 Tumor 3 Tumor 4

Dice coefficient (mouse) 0.807 0.922 0.691 0.853 0.942
Dice coefficient (NUI) 0.88 0.951 0.84 0.934 0.944
Hausdorff distance (mouse) 30.7 28.4 51.9 16.2 5.2
Hausdorff distance (NUI) 7.0 3.46 11.0 12.1 4.7
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are selected within the target. The bandwidth of the Gauss-
ian kernel � dominates the KDE calculation. Figure 6 shows 
the different rendering results with different N and � values. 

The cerebral cortex is well highlighted. The rendering effects 
can be adjusted by simply varying those two parameters. On 
the contrary, it would be pretty hard to highlight the cerebral 

Fig. 6  The cerebral cortex is well highlighted in all cases. The rendering quality can be adjusted by tuning N and �

Fig. 7  Rendering of the spine with different numbers of selected fea-
tures. a With all the 18 features; b with correlation, SRE, LRE, and 
LGLRE removed; c with correlation, SRE, LRE, LGLRE, energy, 

entropy, IDM, and inertia removed; d with only intensity, CP, HC, 
GLNU, RLNU, and HGLRE

Fig. 8  Target highlighting in 
NUI-VR2 . a kidneys; b the left 
hippocampus; c a brain tumor
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cortex with a transfer function based on these 12 features, 
i.e., designing a 12-dimensional transfer function.

Next, we illustrate the effectiveness of feature selection. 
We use all of the 18 features in the default feature set, and 
perform a feature selection process as detailed in Sect. 3.3. 
Figure 7 shows the rendering result of a 86 × 142 × 240 CT 
volume with different numbers of selected features. The 
time to compute the probability volume on a commodity 
laptop is labeled. As we increase � in Eq. 4, we increase 
the penalty for non-sparse w in the optimization, so the 
resulting w becomes more sparse and has more 0 elements. 
As a result, fewer features get selected. Feature selection 
effectively filters out redundant features and speeds up the 
volume rendering process. How many features should be 
selected depends on the feature set and the data. In NUI-
VR2, users can adjust � to find the sweet spot for the opti-
mal rendering quality and speed.

4.3  Comparison with transfer function design

In this section, we compare NUI-VR2 with the traditional 
transfer function design method. With NUI-VR2 , users only 
need to specify some seeds/masks to label the target. Fig-
ure 8 shows some example renderings with NUI-VR2 . The 
default feature set and image segmentation engine in NUI-
VR2 highlight the targets very well. For example, we only 
select seeds from the left hippocampus, and NUI-VR2 only 
renders the left hippocampus accordingly, even though the 
right hippocampus shares almost the same contexture as the 
left one. It is tough to do a similar rendering with the tradi-
tional transfer function design method.

The brain tumor is the easiest one to render with a trans-
fer function, and we used ImageVis3D to highlight it. The 
2D transfer function editor in ImageVis3D is a histogram 
of the intensity (x-axis) and gradient magnitude (y-axis) 
of voxels. To highlight a target, we need to place all kinds 
of geometries in different places in the editor by trials and 
errors. In comparison, users only need to designate a few 

sample points in the VR environment with NUI in NUI-
VR2 . Figure 9 shows the rendering result with ImageVis3D. 
We cannot render the brain tumor differently from the other 
objects even with a carefully crafted 2D transfer function. A 
higher-dimensional transfer function will be more effective 
in highlighting the buried head tumor, but a steeper learning 
curve and more design efforts will be required.

5  Conclusion

In this paper, we detail the design of NUI-VR2 : a NUI-ena-
bled volume rendering system in the VR space. NUI-VR2 
marries image segmentation and volume rendering. Numer-
ous general-purpose image segmentation algorithms could 
fit into our system. Users only need to define some seeds/
masks to label the target instead of designing a complicated 
transfer function. We also design a Kinect-based NUI sys-
tem based on 3D gestures and voice commands. Users can 
explore the volume, select seeds, and generate boundary 
masks directly in the 3D space. All the operations happen in 
an immersive VR environment. VR naturally fits 3D volume 
rendering and improves the user experience in perceiving the 
volume. NUI-VR2 dramatically simplifies the target-centric 
volume rendering process and delivers high-quality render-
ing results.
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