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Abstract
Virtual reality (VR)-based motor therapy is an emerging approach in neurorehabilitation. The combination of VR with 
electroencephalography (EEG) presents further opportunities to improve therapeutic efficacy by personalizing the para-
digm. Specifically, the idea is to synchronize the choice and timing of stimuli in the perceived virtual world with fluctuating 
brain states relevant to motor behavior. Here, we present an open source EEG single-trial based classification pipeline that 
is designed to identify ongoing brain states predictive of the planning and execution of movements. 9 healthy volunteers 
each performed 1080 trials of a repetitive reaching task with an implicit two-alternative forced choice, i.e., use of the right 
or left hand, in response to the appearance of a visual target. The performance of the EEG decoding pipeline was assessed 
with respect to classification accuracy of right vs. left arm use, based on the EEG signal at the time of the stimulus. Differ-
ent features, feature extraction methods, and classifiers were compared at different time windows; the number and location 
of informative EEG channels and the number of calibration trials needed were also quantified, as well as any benefits from 
individual-level optimization of pipeline parameters. This resulted in a set of recommended parameters that achieved an 
average 83.3% correct prediction on never-before-seen testing data, and a state-of-the-art 77.1% in a real-time simulation. 
Neurophysiological plausibility of the resulting classifiers was assessed by time–frequency and event-related potential 
analyses, as well as by Independent Component Analysis topographies and cortical source localization. We expect that this 
pipeline will facilitate the identification of relevant brain states as prospective therapeutic targets in closed-loop EEG-VR 
motor neurorehabilitation.
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1 Introduction

1.1  Motivation

This study is part of a research project that aims to develop 
a personalized “closed-loop” therapeutic VR environment 
for patients with stroke, where the parameters and the timing 
of visual stimuli in the virtual world are determined by the 
ongoing EEG such as to optimize the efficacy of VR-based 
neurorehabilitation. The approach is based on the hypothesis 
that slow fluctuating brain states modulate motor behavior 
(Schmidt et al. 2016) and that synchronization of suitable 
target brain states with the timing of visual stimuli in the VR 
world (i.e., signals to initiate paretic limb movement) can 
optimize therapeutic efficacy of VR-based physiotherapy. 
Results from real-time EEG-triggered transcranial magnetic 
stimulation (TMS) support this notion, where the exact same 
stimulus has been shown to have different effects depending 
on EEG-defined oscillatory brain states, both in an instanta-
neous sense, and with regard to the induction of long-term 
plastic changes (Zrenner et al. 2018). Here, we use pre-
movement EEG data from 9 healthy volunteers performing 
a simple repetitive reaching task to develop an open-source 
EEG-signal processing and classification pipeline. Our pipe-
line is designed to identify ongoing brain states predictive 
of planning and execution of movements as potential thera-
peutic targets in motor neurorehabilitation, while also taking 
into account the practical limitations of implementing real-
time EEG-classification in a clinical setting.

1.2  Neurophysiological background

Various characteristic EEG signals have been described in 
relation to the preparation and execution of movements: a 
low-frequency negative shift in the EEG recording, termed 
the movement-related cortical potential (MRCP), occurs 
about 2 s before voluntary movement (Shibasaki et al. 1980). 
The MRCP is an encompassing term which can be sepa-
rated into the Bereitschaftspotential (BP) (Kornhuber and 
Deecke 1965) in self-paced voluntary movement tasks, and 
as Contingent Negative Variation (CNV) (Walter et al. 1964) 
in cued movements, concerning the movement preparation 
period between a warning cue and a go cue. The BP itself 
consists of two components: the early BP, characterized 
by a negative potential with a maximum over the centro-
medial cortex, and the late BP (also known as the Lateral-
ized Readiness Potential, LRP) occurring 400 ms prior to 
movement onset, lateralized to the contralateral hemisphere 
around EEG electrodes C1 or C2 (Shibasaki and Hallett 
2006). CNV also consists of two distinct waves (Rohrbaugh 
and Gaillard 1983): the fronto-centrally dominant wave and 
the centro-parietally dominant wave. The former tends to 

reflect orienting properties of the warning signal (Love-
less and Sanford 1974), while the latter is thought to reflect 
motor preparation, and to be mostly identical to the readi-
ness potential (Rohrbaugh and Gaillard 1983), although it 
contains some non-motoric components and is more strongly 
influenced by the amount of pre-cue information (Brunia 
2003; Ulrich et al. 1998). A further neural correlate of move-
ment is the event-related desynchronization (ERD) occur-
ring in the mu and the beta frequency bands (Pfurtschel-
ler 1981; Pfurtscheller and Aranibar 1979). In contrast to 
MRCP components, ERD onset in the beta band is bilateral 
in primary motor areas during movements of the non-dom-
inant side, and contralateral when performing movements 
with the dominant side (Bai et al. 2005). All of these compo-
nents are indicative of motor planning and upcoming motor 
behavior (Shakeel et al. 2015).

The period prior to movement can also be defined as “pre-
movement,” and is referred to as the planning or preparation 
phase of movement (Crammond and Kalaska 2000; Toni 
and Passingham 2003). Typically, this period is thought to 
represent the time in which participants are conscious that 
they will make an action, but it is before any muscle activ-
ity can be registered. Libet et al. (1990, 1983) showed that 
unconscious motor preparation precedes conscious initiation 
of the action, at least according to the current definitions of 
motor-related brain activity. Therefore, the aforementioned 
MRCP components could be thought of as a neurological 
marker predicting whether and when a spontaneous move-
ment will occur (Schultze-Kraft et al. 2017), according to the 
“What, When, Whether Model of Intentional Action” (Brass 
and Haggard 2008). whereas the later MRCP components, 
as seen in studies by Coles (1989) and Eimer (1998), provide 
strong evidence as a neurological marker for predicting what 
kind of movement will occur (i.e., left vs right).

1.3  Task design

For the purpose of developing a suitable signal processing 
and classification pipeline, we use an implicit repetitive two-
alternative forced choice task (use of the right or the left 
hand in a simple reaching task) in order to identify brain 
states that are relevant to “what” motor behavior is being 
planned, and using single-trial classification accuracy as 
the measure of pipeline performance. This task is neither 
self-paced (as it would need to be to express the classical 
BP, where participants move at their own volition without 
external cuing), nor does it include “get ready” cues leading 
to an explicit movement preparation stage or instructions as 
to which hand should be moved (as used in tasks designed to 
express the CNV and LRP). Indeed, in our study, the delay 
to the appearance of the visual stimulus is randomly jittered 
in order to reduce predictability and to investigate whether 
the natural ongoing brain state at the time of the stimulus 
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biases the motor choice that is then freely made. This design 
enables us to investigate ongoing brain dynamics that are 
expressed before the start of motor preparation, and which 
may nevertheless bias an upcoming motor behavior. A fur-
ther advantage of this task is that it is similar to the physi-
ological situation of reaching during motor rehabilitation 
training. However, without an explicit preparation period, 
the neurophysiological interpretability of our task is more 
difficult as compared to well-established classic paradigms 
(see above). With regard to decoding motor choice from 
EEG, previous studies have typically yielded classification 
accuracies ranging from 60–82.5%, depending on movement 
complexity and the classifier algorithms (Bai et al. 2007; 
Doud et al. 2011; Haw et al. 2006; Jiang et al. 2015; Jochum-
sen et al. 2013; Lew et al. 2012; Liao et al. 2014; Niazi et al. 
2011; Tavakolan et al. 2017; Vuckovic and Sepulveda 2008; 
Waldert et al. 2008; Yong and Menon 2015).

1.4  EEG‑based classification

Many different EEG-classification approaches exist, mostly 
in the context of Brain-Computer Interface (BCI) applica-
tions. These can generally be divided into the following 
three processing stages, each with its own set of different 
design choices:

1. Features of Interest: What aspects of the EEG signal are 
relevant and during what time window? With regard to 
motor preparation, researchers have used low-frequency 
oscillations (Pereira et al. 2017), event-related poten-
tials (ERP) between channel-pairs (Schultze-Kraft et al. 
2017), independent component analysis (ICA) (Karimi 
et al. 2017) and event-related (de)synchronization (ERD/
ERS) of oscillatory power at 10 and 20 Hz (Morash et al. 
2008; Müller-Putz et al. 2008; Pfurtscheller et al. 2006; 
Waldert et al. 2008; Yong and Menon 2015); all have 
been found to be informative.

2. Feature Extraction: It is then necessary to reduce the 
number of dimensions and extract those that are most 
relevant, while excluding noise. Blind source separation 
methods such as ICA (Karimi et al. 2017) or principal 
component analysis (PCA) (Velu and de Sa 2013) are 
frequently used, as is the extraction of power (and phase) 
at a given set of frequencies from a time-series using the 
discrete Fourier transform (Planelles et al. 2014).

3. Classification Algorithms: How can different classes 
best be differentiated? Various methods beyond linear 
regression have been developed such as Support Vector 
Machines (Liao et al. 2014; Tavakolan et al. 2017), Lin-
ear Discriminant Analysis (Bhattacharyya et al. 2010), 
Neural Networks (Atzori et al. 2016; Loukas and Brown 
2004; Roy et al. 2012), Boltzmann and Deep Belief Net-

works (Chu et al. 2018), K-nearest neighbors (Blankertz 
et al. 2002), or even custom algorithms (Bai et al. 2011).

Another relevant parameter in the case of EEG concerns 
the number and location of EEG electrodes, which spans 
from 4 to 256 in the literature (Bai et al. 2011; Hammon 
et al. 2007; Meinel et al. 2016; Pfurtscheller et al. 2006; 
Planelles et al. 2014).

In summary, there are a large number of free parameters 
in how a given pipeline can be setup, and different research-
ers make different choices (with consequences for reproduc-
ibility, see (Botvinik-Nezer et al. 2020)). Given the many 
degrees of freedom, we here investigate how the most rel-
evant parameters influence classification performance in the 
specific case of decoding motor choice from EEG at the time 
a visual target for a reaching task appears, and determine 
suitable default settings. Further background on machine 
learning, algorithms, and feature selection/extraction can be 
found in Appendix 2.

1.5  Need and novelty

This study is intended to help realize the full potential of 
the individual EEG signal to improve the effectiveness of 
VR-based therapy by personalizing the VR task according to 
brain activity. Here, we present and make available a novel 
signal processing pipeline able to differentiate EEG-defined 
brain states predictive of movement intention, which we 
hope may serve as therapeutic targets in future “closed-loop” 
EEG-VR therapy paradigms. To facilitate use of such an 
approach in a clinical setting, we have systematically inves-
tigated and identified suitable default values for relevant 
parameters in the analysis pipeline (number and location of 
EEG channels, time windows for analysis, feature extraction 
method, classification algorithm, and minimum number of 
trials for effective training in a calibration phase), that lead 
to a personalized and individualized classification model 
that can then be implemented in a real-time “closed-loop” 
EEG-VR paradigm.

A further point of novelty with respect to previous studies 
is that we have chosen a simple reaching task that mimics 
a therapeutic setting, as to make the results more directly 
applicable. One application of an EEG-VR therapy system 
with the ability to detect real-time EEG-derived brain states 
corresponding to a patient’s motor intention is the percep-
tion of virtual movements of the affected limb in the VR-
world that are appropriately synchronized to the patient’s 
endogenous movement intention. This could be helpful in 
cases where the patient has severe motor impairment, such 
as in hemiplegia, where no voluntary movements can be 
generated in the affected limb. The approach is similar to 
mirror therapy (Dohle et al. 2009; Yavuzer et al. 2008), 
where the illusion of a successful movement of the affected 
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limb supports the rehabilitation process, but in our case the 
illusory movement is instead coupled to and driven by the 
stroke-affected networks instead of the unaffected hemi-
sphere. We believe that there is significant potential to fur-
ther develop such paradigms using EEG and VR to improve 
rehabilitation outcome in patients.

2  Material and methods

2.1  Participants

The study protocol was approved by the local Ethics Review 
Committee of the Medical Faculty of Eberhard Karls Uni-
versity Tübingen (Protocol 716/2014BO2). The study was 
conducted in accordance with the latest version of the Decla-
ration of Helsinki. After giving written informed consent, 11 
right-handed healthy male participants (mean and standard 
deviation age 27 ± 5 years, range 22–40 years) were included 
in the study fulfilling the following pre-established inclusion 
criteria: (i) age 18–65 years, (ii) no known medical condi-
tions, (iii) self-identified as right-handed. Two participants 
were excluded, and their data were not further analyzed, 
one due to a strong bias toward use of the right hand (> 95% 
of trials), such that fewer than 50 trials remained in both 
classes, which is insufficient to train and test a classifier; 
another participant was excluded due to EEG artifacts affect-
ing > 50% of the trials. The number of included participants 
is similar to previous studies in this domain (Wierzgała et al. 
2018).

2.2  Experimental setup

Scalp EEG was recorded using 126-channel high-density 
EEG cap (Easycap GmbH, Germany) in a standard 10–5 sys-
tem layout (Oostenveld and Praamstra 2001), and right and 
left deltoid muscle activity was recorded using bipolar sur-
face EMG electrodes (Kendall, USA) placed on the belly of 
the anterior deltoid and referenced to the acromion. EEG and 
EMG signals were acquired simultaneously using a biosignal 
amplifier (NeurOne Tesla, Bittium, Finland) at a sampling 
rate of 5 kHz in direct current (DC) mode while applying 
an anti-aliasing low-pass filter with a cutoff at 1,250 Hz and 
no high-pass filter. Participants were seated in a comfort-
able reclining chair, while visual stimulation was provided 
using an immersive curved display (CF791, Samsung, cur-
vature 1500R, 34″ diagonal) at a distance of 1.5 m to achieve 
equidistance. A custom-built photodiode was attached to the 
screen to record the timing of visual stimulus onset on an 
additional bipolar input channel of the biosignal amplifier. 
An infrared hand tracker was used (Leap Motion Orion v4, 
Ultra Leap, USA) to monitor hand position using a refresh 
rate of 100 Hz. Additional hand tracking markers to record 

movement onsets were taken from the Leap Motion and 
measured through Unity3D software (Unity Technologies, 
USA). These were calibrated to correspond to the partici-
pants’ hands relative to a home position, in which the par-
ticipants’ began each task. Timestamps were recorded for 
every stimulus presentation, hand movement into and away 
from the home position, and stimulus contact. Synchroniza-
tion was achieved between the photodiode and Unity3D data 
through timestamp alignment.

2.3  Virtual reality presentation

The visual stimuli presentation and task logic was pro-
grammed in C# and realized through Unity3D, it is an 
adapted form of a protocol used in a previous study (McDer-
mott and Himmelbach 2019). Stimuli consisted of yellow 
squares (2.5 cm × 2.5 cm, visual angle ~ 1.0º) on the immer-
sive display, centered along the midpoint of the participants’ 
body position. The position of the participants’ hands as 
tracked were also presented virtually on the screen. The 
stimuli would stay present until the participant contacted 
them with their virtual hand. These stimuli were precisely 
tracked in time using two methods: (i) internal timestamps 
via Unity3D, and (ii) a photodiode which was connected 
directly into the EEG-NeurOne interface that placed triggers 
in the EEG-trace upon stimulus presentation.

2.4  Study design

Following a 5-min eyes-open resting-state EEG measure-
ment, participants were instructed to place their hands on 
marked spots (home position) on a glass board and to remain 
at rest. Upon presentation of a target stimulus, the participant 
was then instructed to reach out to contact the stimulus in 
virtual space, which disappeared on virtual contact, and then 
to return to the home position and wait for the next stimu-
lus to appear. After reaching the home position, the next 
stimulus appeared after a jittered interval of 2.5–3.5 s; this 
timer was reset if the hands moved from the home position 
prematurely. Target stimuli were presented in the center of 
the screen, with an added ± 0.25 cm random jitter along the 
x-axis, and over three stacked positions on the y-axis (as 
if the squares were stacked on top of one another). After a 
short demonstration consisting of 10 stimuli, the participant 
began the task. Participants completed a total of 5 rounds 
consisting of 216 stimuli with short breaks between rounds, 
yielding 1080 trials in total. After this, another 5-min eyes-
open resting-state EEG measurement was performed. Note 
that participants were not instructed in any way with regard 
to hand selection and were free to select either their right or 
left hand when making the reaching movement. This means 
it was theoretically possible for a participant to use the same 
hand the entire time; we accepted this drawback in order to 
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avoid biasing the participants, and we discuss this aspect 
of the design (hand-use preference bias) extensively below 
(Fig. 1).

2.5  Data Preprocessing

2.5.1  Software, filtering and epoching

Data processing was performed with custom scripts in MAT-
LAB (R2017b, MathWorks Inc.), using EEGLab Toolbox 
v. 13_6_5b (Delorme and Makeig 2004), FieldTrip toolbox 
v. 20,190,705 (Oostenveld et al. 2011), and FastICA tool-
box v. 2.5 (Hyvarinen 1999). After confirming alignment 
of the timestamps from Unity3D and the photodiode, EEG 
and EMG channels were saved separately. Then, a high-
pass filter was applied to the EEG raw data (sample rate 
5 kHz, 1 Hz cutoff, FIR filter order 5000). EEG Epochs 
were extracted centered ± 2.5 s around the onset time of the 
visual stimulus, downsampled from 5 to 1 kHz (applying a 
zero-phase anti-aliasing filter), and low-pass filtered (45 Hz 
cutoff, FIR filter order 500). Epochs were then split into a 
pre- and post-stimulus segment, and the further data clean-
ing steps were performed based on the signal properties of 
the pre-stimulus segment only. Post-stimulus data were not 
used to inform the cleaning process to ensure that there was 
no way for the EEG signals or any artifacts during the task 
execution period to indirectly affect the pre-stimulus signal 
through the cleaning process.

2.5.2  Bad channel and trial rejection

Bad channels and trials were manually rejected using 
FieldTrip’s “ft_rejectvisual” function by visually check-
ing for outliers according to variance. Peripheral electrodes 

that were affected by the reaching movement were removed 
by default; the list of removed peripheral electrodes can be 
found in Appendix 2.

2.5.3  Artifact reduction

Data were then re-referenced to the average signal across the 
remaining channels and baseline-corrected. Next, ICA was 
performed using the FastICA algorithm on each participant 
independently, setting the number of components to 50 and 
using the symmetric mode of the algorithm with a Gauss-
ian contrast function. Components were visually inspected 
with respect to topography, time-course, and the resulting 
channel-level signal amplitude. Specifically, ocular artifacts 
were removed, and channels AFp1 and AFp2 were checked 
for confirmation of the removal of eye-blinks and eye-move-
ments; on average 2 components were removed. The same 
transform and ICA component removal was applied to the 
post-stimulus to re-create a single cleaned dataset containing 
the entire − 2.5 s to 2.5 s window.

2.5.4  Detection of movement onset

Movement onset times were determined using the hand 
tracking device, defined as the time when the hands moved 
away from the home position, and these times were cor-
related with EMG data to ensure accuracy. The EMG data 
were filtered and an envelope was created (Appendix 1; 
Fig. 9), the movement onset according to EMG was defined 
as the first time that the EMG envelope exceeded 50% of its 
maximum. The movement onset distribution is visualized 
in Fig. 2d. We allowed classification using time windows 
up until 150 ms after visual onset in many of our parameter 
optimizations, as no muscle activity should be present at 

Fig. 1  Study and task design. The participants started with their 
hands in a calibrated home position. After a random interval, a visual 
target stimulus was presented along the central vertical of the screen. 
The participants then reached out with either the right or the left 

hand and contacted the virtual stimulus, which then disappeared and 
the participants returned their hands to the home position. EEG was 
recorded during the task
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that time according to prior research (Ladd and Woodworth, 
1911; Murakami 2010). However, in our data, 21 out of 9720 
trials (0.02%) showed signs of muscle activity in this period.

2.5.5  Classifier data preparation

Each data trial was labeled according to the hand selection 
(i.e., left vs right). In order to achieve the most robust output 
from our classifier, for each participant, the trial order was 
randomly permuted and then split into two sets: first, train-
ing data (80% of a participant’s data) and second, testing 
data (20% of a participant’s data). The training data were 
used for model building and cross-validation. The testing 
data were kept separate and used to assess the final model 
for accuracy, where accuracy was reported as the percentage 
of correctly classified trials.

The classifier was trained with an equal number of exam-
ples for right vs. left arm movement to avoid a priori bias. 
However, because participants chose their arm freely in the 
reaching task (see below), the maximum number of available 
training samples is limited by how often the rarer side was 

chosen. Due to varying inter-individual biases, the maxi-
mum number of trials available varied between participants: 
After balancing, the datasets ranged from 100 to 296 trials 
in each class, with a mean of 225 trials.

2.5.6  Hand‑use preference bias and dataset size

Given that the paradigm involved a free choice of using the 
left or the right hand, we calculated the preference of using 
the right or the left hand on a trial-by-trial basis and searched 
for repeating patterns. We created a 2 × 2 movement matrix 
(Appendix  1 Fig. 11), in which we predicted the likelihood 
that a right-hand trial would follow a right-hand trial, as 
well as the likelihood that a left-hand trial would follow a 
right-hand trial. This was also calculated for the opposite 
cases. As seen in the section above, these individual-level 
biases caused participant-level fluctuations in the number of 
available trials, as we performed post hoc balancing between 
left- and right-hand trials in order to set the a priori chance 
of classification to 50% for each condition.

Fig. 2  Time window analysis and movement onsets. a Function 
of classification accuracy with respect to data window position and 
length. Prediction accuracy is averaged over the group of 9 partici-
pants, the position of the data point on the x-axis shows the right-side 
end of the time window. b Group average classification accuracy for 
different feature extraction methods (ICA vs. PCA-based spatiotem-
poral) at different time points, with varying number of features, using 
a fixed time window 150  ms prior to and including the data point 
shown. c Optimal time windows for each participant. The horizontal 

bars represent time windows which produced the highest accuracy in 
the classification, with all other variables held constant. d Overview 
of movement onsets across participants, relative to the visual onset 
of the stimulus, as determined by hand position tracking. The median 
latency and interquartile range is shown with whiskers extending to 
the most extreme data points excluding outliers, plotted separately. 
The shaded pink area in all figures represents the time from the onset 
of the visual stimulus to 150 ms after the stimulus, which is data still 
used by the classifier. 21 trials are contained in this area (0.02%)
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2.6  Classifier properties

The classifiers included linear support vector machines 
(SVM) and logistic regression with dimensionality reduc-
tion and features derived from principal component analysis 
(PCA) and independent component analysis (ICA). All of 
the methodology, described in detail in the following and 
further in Appendix 2, was implemented using MATLAB, 
FastICA, and the FieldTrip toolbox, along with custom code.

2.6.1  Feature extraction with spatiotemporal PCA

To extract spatiotemporal features in a given time window 
for decoding, we concatenated the respective data matrix 
within the chosen window in each trial of the training data 
into one long spatiotemporal representation vector. In the 
simplest case, when the time window constitutes only one 
time instant, the vector length equals the number of chan-
nels. The entries of this vector could directly be used as input 
features for the classifier, as done in Ofner et al. (2017). 
However, a wider time window leads to a channel × time spa-
tiotemporal matrix with a large number of non-independent 
elements. Therefore, to reduce data dimensionality, PCA 
was applied to the spatiotemporal matrices, which were 
then projected into the subspace spanned by M eigenvectors 
corresponding to the M largest eigenvalues to get the com-
pressed data. The entries of the compressed spatiotemporal 
vectors were used directly as features for classification.

2.6.2  Feature extraction with ICA

After a dimensionality reduction step, and before running 
ICA, we subtracted the average data epoch over all trials 
from each individual trial. This preprocessing step has been 
shown to eliminate bias in the ICA results due to tempo-
rally overlapping brain activity that is phase-locked to the 
stimulus onset (Metsomaa et al. 2014). ICA was then applied 
to this pre-processed data using FastICA with symmetric 
mode and the “tanh” contrast function to estimate M inde-
pendent components. An ICA-derived demixing matrix was 
used to separate the components from the compressed data, 

where the mean and the variance of each component was 
selected as features to be used in single-trial-level classi-
fication. Here, the variance of a component was computed 
after subtracting the averaged component over the training 
trials from the single-trial waveform, where the mean of 
this mean-subtracted component was assumed to be zero. 
Therefore, in the ICA approach, where M is equal to 30, the 
total number of features would equal 60.

2.6.3  Classifier selection

We used the MATLAB fitclinear function with fivefold 
cross-validation and the parameters as summarized in 
Table 1 to build linear classifiers for predicting the choice 
of hand based on the EEG-derived features described above. 
Here, we use the notation (“option name,” “option choice”) 
to describe the choices we made when using the fitclin-
ear function. Logistic regression (“Learner,” “logistic”) 
was chosen for the linear classification model (after test-
ing against SVM). Regularization was performed with the 
lasso (L1-norm) penalty (“Regularization,” “lasso”) for the 
ICA-derived features, and with the ridge (L2-norm) penalty 
for the spatiotemporal PCA-derived features. Sparse Recon-
struction by Separable Approximation (SpaRSA; “Solver,” 
“sparsa”) was the objective function minimization tech-
nique for ICA, and a stochastic method was used for the 
spatiotemporal PCA. Lastly, automatic optimization of the 
regularization coefficient was performed via ('Optimize-
Hyperparameters', 'Lambda'). This optimization attempts 
to minimize the cross-validation loss (error); specifically, 
it searches for this optimum among 30 positive values of 
the regularization coefficient, log-scaled in the range  [10−5 
/ number of trials,  105 / number of trials]. The above-men-
tioned parameters and options were chosen after preliminary 
test runs comparing parameters options.

2.7  Parameter optimization

We tested our data separately using fitclinear with spati-
otemporal PCA- and ICA-derived features, as well as across 

Table 1  Feature extraction approaches

Approach Classifier Linear model Regularization penalty Minimization technique Lambda

ICA MATLAB fitclinear 
fivefold cross-
validation

Logistic Lasso (L1) SpaRSA Optimized 
in-function 
(30 times per 
iteration)

ST MATLAB fitclinear 
fivefold cross-
validation

Logistic Ridge (L2) Stochastic Gradient Descent Optimized 
in-function 
(30 times per 
iteration)
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different time windows, various sets of channels, and differ-
ing number of trials.

2.7.1  Determining optimal time windows

To find the optimal time window for each participant, we 
tested classification accuracy for different window lengths 
and window positions. The position of a window is here 
defined by its start time with respect to the onset of the 
visual stimulus. To find the optimal window size, its posi-
tion was first set at − 550 ms, and the size then varied, with 
possible sizes being 600, 500, 400, 300, 200, 150, 100, 
and 50 ms. Simultaneously, to find the optimal position of 
the time window, we shifted each aforementioned window 
100 ms at a time until they reached the extent of our clas-
sification window (at 150 ms). In this format, the window 
size of 600 ms would have only 2 plausible positions, (− 550 
to 50 ms, and − 450 to 150 ms), whereas the window size of 
100 ms would have 14 test positions. For each window size 
and position, the classification accuracy was evaluated by 
averaging the results over 20 randomly generated and non-
overlapping training and test sets.

2.7.2  Determining optimal channels

The question of how many channels are needed to create 
an effective pipeline is of practical relevance especially 
for clinical applications. To determine the most informa-
tive set of channels for classification, we considered subsets 
of each participant’s channels post hoc using an iterative 
process: Starting with a single channel and a time window 
of −150 ms to 150 ms, ICA feature extraction was per-
formed, and then the classification accuracy of each single 
channel was compared, with the most informative channel 
being selected. Then, the process was repeated and the clas-
sification accuracy of n + 1 channels (the previously selected 
channel(s), with each remaining channel, separately) was 
compared, choosing again the channel with the highest 
accuracy. This was repeated until n = 5, at which point the 
classification accuracy of n + 3 channels was compared until 
n = 30, at which point the n + 5 channels were compared 
until all channels were selected. For this analysis, the train-
ing data and the calculated optimal time windows were used 
in a fivefold cross-validation manner, the resulting accuracy 
was assessed using the validation data.

Each channel was given “points” based on its rank-
ing: channel rankings #1–5 = 5 points, #6–15 = 3 points, 
#16–30 = 2 points, #31–50 = 1 point, > #50 = 0 points. 
Through the addition of these points, we compiled a list of 
channels for each participant, where the most points would 
indicate the most relevant channel for classification. Then, 
we took these participant-specific lists and combined the 
point values to create the optimal channel set at group level. 

If an individual participant was missing a channel, and there-
fore the group list had, i.e., only 8 of 9 participants contrib-
uting point values to the specific channel, the missing points 
were replaced by the average of the other participants. The 
group-level ranking points were normalized to 0–100 with 
respect to the single channel with the highest score.

2.7.3  Classifier features

We determined the number of features that should be used 
by testing the classifier performance using the ICA approach 
with 5, 15, 25, 35, and 45 components, and the spatiotempo-
ral approach comparably with 40, 60, 80, and 100 features. 
Other variables were held constant, i.e., all available chan-
nels were used, and a sliding 150 ms time window was used 
across various starting points.

2.7.4  Number of trials

To estimate how classification accuracy improves with an 
increasing number of trials, we ran the pipeline with our rec-
ommended parameters taken from the results of the previous 
analysis. The training set size was increased in a controlled 
manner, with trials being equalized for left- and right-hand 
choices. We started with 10 randomly selected trials for 
each case, and increased the number by 20 until reaching 
the maximum number of trials, which was determined by 
the minimum of total left- or right-hand selections (leaving 
out 20 test trials in both selection categories). These training 
data were used to build a classifier, which was tested against 
the 40 test trials. This process of shuffling the training and 
the test datasets was repeated 20 times.

3  Real‑time analysis

The goal of this study was the development of a process-
ing pipeline that can be implemented in real-time EEG-VR 
paradigms. Whereas the calibration of the classifier based 
on training data is time demanding, this step is only required 
once and does not need to run in real time. All of the com-
putations of the actual trial-by-trial processing and classifi-
cation using a sliding window of data can be performed in 
real time by standard PC hardware. In an actual real-time 
implementation, an EEG amplifier is required that provides 
a continuous low-latency low-jitter stream of real-time 
data (3–5 ms delays are possible with standard commercial 
hardware). Additionally, care needs to be taken to minimize 
and compensate for signal delays due to digital signal pro-
cessing steps such as digital filters, see previous work on a 
real-time EEG-based oscillatory phase estimation method 
implemented using Mathworks Simulink Real-Time (Zren-
ner et al. 2018) as an example for such an implementation. 
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In our case, a linear transformation of the data acquired in 
the sliding window is performed using the ICA weights from 
our calibration. These data are then fed into the participant’s 
saved model and a movement class is predicted.

In the context of this study, we performed two real-time 
simulations: (1) using a time window prior to movement 
onset (here, the type of the stimulus in the VR world can 
be controlled, i.e., virtual movements), and (2) using a time 
window prior to visual stimulus onset (here, the type and 
position of the stimulus can be controlled by EEG, i.e., 
stimuli positioning). Therapeutic applications exist for both 
use-cases. To perform these simulations, we used each par-
ticipant’s first 100 right-hand and first 100 left-hand trials to 
calibrate a classifier using our recommended parameters. To 
test the model, the simulation then classified all remaining 
trials, starting from one trial after the last trial indexed cali-
bration. This was done without order permutations or cor-
rection for bias (to include any non-stationarities that would 
also be present in a non-simulated real-time environment). 
Simulations were only performed for study participants with 
at least 25 testable trials after the calibration phase; thereby 
excluding participants 3 and 9.

4  Neurophysiological analysis

4.1  Interpreting the classifier weights and the ICA 
topographies

For this subanalysis, our aim was to study whether the esti-
mated classifier and independent components could be used 
to gain insight into the relevant neurophysiological processes 
behind movement planning and preparation. Specifically, we 
addressed the question “From where are the relevant signals 
arising on the cortex?”. The topographies of the relevant 
EEG signals, as determined by the classifier, can then be 
used to estimate the cortical source activity. They can also be 
compared across participants with the goal of possibly using 
the similarities over participants as a priori information to 
increase the accuracy of classification with reduced number 
of trials in the future.

The topography ν reflects the spatial distribution of the 
brain signal whose mean over the chosen time window is 
most relevant for classification. In our case, ν represents the 
topography which would be most predictive of right- versus 
left-hand movement. In Appendix 2, we provide a detailed 
derivation of this relation.

4.2  Time–frequency analysis

Time–frequency analysis was performed using Morlet wave-
lets with a width of 7 cycles over the C1 and C2-centralized 
areas for each respective hemisphere (electrodes FCC1h, C1, 

CCP1h, FCC3h and their counterparts). In this analysis, fre-
quencies from 2 to 40 Hz were analyzed over a time window 
of −150 to 150 ms relative to the visual stimulus. This trans-
formation was applied for the right-hand trials and then the 
left-hand trials, and a difference was calculated through the 
operation  (X1 −  X2)/(X1 +  X2), where  X1 is the output from 
the right-hand trials, and  X2 is the output from the left-hand 
trials time–frequency analysis.

4.3  Source Localization

To more accurately place our most relevant classifier fea-
tures (i.e., the topography reflected by ν) within a neuro-
physiological framework, we localized cortical sources of 
relevant activity using Minimum Norm Estimation (MNE) 
(Hämäläinen and Ilmoniemi 1994) on a brain cortical mesh, 
with a regularization factor of  10–16, and free-oriented 
dipoles in the forward model.

In this study, we did not obtain individual MRIs for each 
participant, but we did use the 10–05 EEG fitting standards; 
this allowed us to use 10–05 electrode positions and the 
standard Boundary Element Method head model provided by 
Fieldtrip (Appendix 2). Along with this, we used a standard 
source-model based on the description of a surface within 
the grey matter of the Buckner40 brain (Fischl 2012). This 
procedure resulted in a cortical sheet with 15,684 unique 
source points. After specifying a participant’s unique 
remaining electrodes, these models were plotted together 
to ensure fit.

5  Results

5.1  Summary

Although we do analyze the neurophysiological plausibility 
of the resulting optimized features with regard to predicting 
lateralized movement, the main focus of this study is the 
development of a clinically applicable EEG signal process-
ing and classification pipeline. With respect to this, we first 
present the results of optimizing the (1) feature selection 
and classification method, (2) temporal selection of relevant 
time window, (3) spatial selection of EEG channels, and (4) 
number of trials; followed by the neurophysiological results.

5.2  Feature and classifier selection

In order to investigate the effect of the number and type 
of features on the prediction accuracy, a 150-ms sliding 
window was chosen in combination with several different 
feature conditions. Within the ICA approach, two main 
learners were tested: SVM and logistic regression. We 
thoroughly tested each classifier over 50 iterations for each 
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participant, and the results showed that logistic regression 
returned slightly higher accuracies across 6 of 9 participants 
when compared to SVM. Given this result (see Appendix 1, 
Fig. 10), in all subsequent analyses we used a logistic regres-
sion learner with ICA.

Additionally, ICA consistently results in higher classifica-
tion accuracies than the spatiotemporal approach once the 
time window incorporates −150 ms onwards, regardless of 
the number of features, with the accuracy saturating above 
25 components (Fig. 2b). Even the smallest tested feature 
set from ICA (15 components, i.e., 30 features) resulted in a 
greater accuracy than the largest feature set of the spatiotem-
poral approach (100 features). We therefore determined 30 
ICA components to be a suitable choice.

5.3  Determining optimal time window

For the analysis described above, a 150-ms sliding window 
was used. Here, we examined the optimal time window posi-
tion and length by comparing different possible combina-
tions for each study participant. Our data indicated that the 
highest accuracy when averaged over the group was from the 
time window −150 to 150 ms (Fig. 2a). The size and position 
of the sliding window was optimized for each participant 
in terms of producing the highest validated classification 

accuracy. Our results showed the average optimal window 
size was 239 ms, with the averaged range being from −172 
to 67 ms with respect to the visual stimulus (Fig. 2c). We 
therefore determined a window size of −150 to 150 ms as a 
suitable choice for the pipeline, encompassing the optimal 
windows for most study participants.

6  Ranking of EEG channels

As shown in Fig. 3a, the average classification accuracy as 
determined through a fivefold cross-validation increases 
with the number of channels used, plateauing around 30 
channels. Conditions included using optimized channels 
with respect to individuals and to the group as a whole, as 
well as comparing between average- and CPz-referenced 
EEG data. Granted, we chose to use the CPz-referenced 
dataset in our pipeline, as using average-referenced data with 
few channels is not realizable in practice. A minimum of 64 
electrodes (Nunez and Srinivasan 2006), evenly spaced and 
covering over 50% of the head surface (Luck 2014), are typi-
cally required for properly computing an average reference.

According to our results, there is a small benefit of using 
individually optimized sets of channels when using fewer 
than 20 channels. Individually optimized CPz-referenced 

Fig. 3  Channel selection and recommended set. a Group averaged 
classification accuracy as a function of number of channels when 
comparing a standard set of group optimally ranked and individually 
optimally ranked channels for both CPz-referenced and average-ref-
erenced EEG data. Accuracy is determined from fivefold CV. b Clas-
sification accuracy with additional channels at participant level using 

CPz-referenced data with the group-optimized ranking of electrodes. 
c Channels ranked by prediction accuracy for the group, the normal-
ized ranking scale represents the group’s most important electrodes 
ranked from worst (0) to best (100). The labeled electrodes represent 
the 32 chosen electrodes for the pipeline, plus CPz as a reference 
(marked)
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channels do show a small detriment in accuracy compared 
to average-referenced channels when using fewer than 10 
channels, likely due to the aforementioned methodological 
implications of using average-referenced data. Individual 
data are shown in Fig. 3b and display variability between 
participants with regard to the achievable accuracy, but show 
a comparable marginal benefit of including additional EEG 
channels up until ~ 30 channels. Based on this result, we 
propose a set of 32-channels that have the highest average 
ranking in terms of their cumulative predictiveness as shown 
in Fig. 3c and listed in Appendix 2.

7  Number of calibration trials

We calculated the number of trials required in the calibra-
tion session to achieve a given classification accuracy (see 
Fig. 4a) when using the set of 32 EEG channels determined 
above, a fixed time window from −150 to 150 ms with 
respect to the visual onset of the stimulus, and the ICA 
approach for classification with 30 components (or M−1, if 

there are less than 32 EEG channels). This analysis indicated 
that additional calibration data beyond 100 trials per condi-
tion brings only marginal improvement on average.

8  Classification accuracy in the causal case 
for EEG‑dependent stimulation

In therapeutic paradigms where the timing of a visual stimu-
lus (e.g., in the VR environment) is determined by real-time 
classification of ongoing neural oscillations as recorded by 
EEG, only the data preceding a potential stimulus are availa-
ble to the model. This would for example be the case in a set-
ting where a patient is presented with a stimulus in the VR 
world that is positioned according to detection of the brain 
state corresponding to the impaired limb (i.e., they intend 
to use the impaired limb, and therefore they are presented 
with a challenging but achievable stimulus for their range-
of-motion). In order to quantify the prediction accuracy in 
such a scenario, we used the same optimized parameters as 

Fig. 4  Calibration trials and final accuracies. a Prediction accuracy 
as a function of the number of trials used for classifier training, with 
parameters as in the recommended pipeline, using a time window 
of −150 to +150  ms around the onset of the visual stimulus. Train-
ing and test data were shuffled 50 times for each data point. b As a), 
but with a time window limited to before the visual stimulus (−150 
to 0  ms). c Final accuracies for four conditions: the recommended 
pipeline vs all available data vs real-time simulation (pre-movement 
and pre-visual). All accuracies are obtained by testing against never-
before-seen testing data. The blue bars represent a classifier condi-
tion with parameters recommended from our pipeline: the suggested 
set of 32 channels, a time window of −150 to +150 ms, and 100 tri-

als per condition for training. The red bars represent a classifier con-
dition in which all available trials and electrodes were used for the 
same time window. The yellow bars represent a condition where after 
a calibration step using the recommended parameters was completed 
(including using only the first 100 trials in each condition for train-
ing), a model was then made and trials were classified in a simulated 
real-time manner. The purple bars are the same as the previous, with 
the exception of the time window used being from −150 to 0 ms. Par-
ticipant 3 and Participant 9 were excluded for both real-time simula-
tions, as they had fewer than 25 trials after calibration was complete, 
whereas the remaining participants had a mean of 422 testable trials 
(range 171 to 573) after calibration
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above regarding trials, but with only pre-stimulus EEG data 
(time window −150 to 0 ms), as shown in Fig. 4b.

9  Summary of recommended signal 
processing pipeline

The pipeline resulted in effective predictive models for each 
participant using the following parameters for the classifier: 
the recommended 32-channels referenced to CPz, a fixed 
time window of −150 to 150 ms relative to visual stimulus 
onset, 30 independent components, the participant’s individ-
ual ICA weights, and using 100 trials from each condition for 
calibration. Lambda was determined by the intrinsic “opti-
mize hyperparameters” setting from fitclinear. The resulting 
pipeline is summarized in Fig. 5. Running the classifier on 
the 20% of each participant’s never-before-seen data, the 
accuracy was between 69.6% and 97.1%, with an average 
of 83.3%, comparable to the average of 85.96% obtained 
when using all available data (all channels, all trials, over the 
same time window) with the training parameters. The same 
analysis pipeline when applied to the real-time simulation 
produced a state-of-the-art 77.1% accuracy across the group 
when the sliding window was −150 to 150 ms (or 73.3% 
when testing specifically in the period − 150–0 ms prior to 
the visual stimulus), however, with a wide variance between 
participants from 50.9% to 96.5% (Fig. 4c).

10  Neurophysiological plausibility

Time–frequency analysis was calculated for each partici-
pant and for each hemisphere over the average of the area 
related to the most informative channels and ICA topogra-
phies. For the left hemisphere, this involved the electrodes 
C1, C3, CCP1h, FC1, FCC1h, and FCC3, and for the right 
hemisphere C2, C4, CCP2h, FC2, FCC2h, and FCC4h. The 
spectrograms show the normalized difference in spectral 
power between the selection of right-hand vs. left-hand tri-
als (right − left) / (right + left) for both hemispheres (Fig. 6). 
This indicates that in those trials, where the right hand is 
selected, power in the 10–25 Hz band is decreased in the 
left hemisphere and is increased in the right hemisphere, and 
vice versa when the left hand is selected, which is consist-
ent with literature concerning pre-movement motor cortical 
activity (Jasper and Penfield 1949; Pfurtscheller et al. 1998; 
Tzagarakis et al. 2010).

In order to confirm that the EEG signals derived for clas-
sification of movement intention using this pipeline corre-
sponded to neurophysiological relevant brain processes, as 
opposed to overfitting to artifacts, we calculated the ERP and 
performed a time–frequency analysis of the most important 
EEG channels as well as an analysis of the ICA topogra-
phies and anatomical source localization. The ERP analysis 
(Fig. 7a) showed a negative deviation on the hemisphere 
opposite the side of the hand used in the period 200–350 ms 
(consistent with studies investigating the lateralized readi-
ness potential (see: Shibasaki and Hallett 2006)). However, 

Fig. 5  Model steps and recommended parameters. Visualization of pipeline steps, with lines extending to relevant parameters for each step, 
along with how they are optimized, and our recommendations
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note that for the purpose of this study, an earlier time win-
dow around the time of the onset of the stimulus was ana-
lyzed (before the stimulus can affect the ongoing signal). In 
our analysis, during this window, a small deviation in the 

opposite direction before the visual stimulus can be seen. 
Similar slow fluctuations have previously been shown to 
modulate motor behavior (Birbaumer et al. 1990), conceptu-
alized in the “slow cortical potentials sampling hypothesis” 

Fig. 6  Time frequency analysis (top row). Time–frequency (TF) 
spectrograms for areas-of-interest within the left hemisphere. Each 
column is one participant, with the tenth column representing the 
grand average of all participants (GA). The spectrograms were 
obtained using Morlet wavelets averaged over the areas of C1, C3, 
CCP1h, FC1, FCC1h, FCC3h. Frequencies range from 2 to 40  Hz 
across the interval −150 ms to 150 ms. The spectrograms show the 

normalized difference in spectral power between the selection of right 
vs. left hand trials (right – left) / (right + left). The color bar repre-
sents the max and min values for each subject. (bottom row) TF in 
the right hemisphere averaged over the areas of C2, C4, CCP2h, FC2, 
FCC2h, FCC4h. The color bar units are normalized to the individual 
minimum and maximum

Fig. 7  Neurophysiology. a The average potential of EEG sensors C1 
(left hemisphere) and C2 (right hemisphere) with respect to the refer-
ence electrode CPz is shown across all 9 participants, time-locked to 
the onset of the visual stimulus, for trials where the left hand (red) vs. 
right hand (blue) was selected. The period used for pipeline classifi-
cation (−150 to 150 ms) is shaded light red. Median movement onset 
occurred after 300 ms. b The topographies depict each participant’s 
brain activity pattern most predictive of right- versus left-hand move-

ments within the time window −150 to 150 ms. Topography units are 
arbitrary and the color scales set to the individual [min max] range. 
c Source localization through Minimum Norm Estimation of classi-
fier-relevant brain activity for each participant, plotted at sensor level. 
Source power has been normalized to the individual maximum of 
each participant. With the exception of participant 1, all participants 
show relevant activity within the sensorimotor network
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(Schmidt et al. 2016). Note that in contrast to studies inves-
tigating EEG correlates of (self-paced or externally paced) 
movement, the task used in this study targets spontaneous 
fluctuations of brain state before motor preparation starts.

The individual topographies of the brain activity most 
predictive of right- versus left-hand movements are shown 
in Fig. 7b for each participant, indicating a consistent pattern 
with a positive deflection in the left hemisphere contrasted 
with negative deflection localized in the right hemisphere. 
Reversing the signs of these topographies would represent 
the pattern predicting left-hand movement (data not shown). 
For this analysis, we used all available trials and channels, 
as well as the participants’ individual optimal time windows 
as defined previously. Localizing the sensor activity to a 
standard source anatomy as shown in Fig. 7c shows a strong 
pattern of predictive activity across participants from the 
sensorimotor area, with exception of participant 1, who also 
showed amplitude maxima in the frontal channels at sensor 
level.

As can be seen in our analysis regarding the ranking of 
relevant channels (Fig. 3c), ICA topographies (Fig. 7b), and 
source localization (Fig. 7c), the classifier utilizes brain 
activity originating from motor regions, consistent with the 
existing literature: MRCPs are typically expressed primarily 
through the electrodes overlying sensorimotor gyrus (C3, 
C1, Cz, C2, C4) (Eimer 1998; Schultze-Kraft et al. 2016; 
Shibasaki and Hallett 2006), but there is also evidence for a 
role of medial frontocentral cortex as a movement generator 
(Toma et al. 2002) and the dorsal pre-motor cortex (Lu et al. 
2012; Solopchuk et al. 2016) in cued movement preparation.

11  Discussion

11.1  Therapeutic relevance

To realize the full potential of personalized EEG-VR-based 
neurorehabilitation, a closed-loop therapy system must “read 
out” individual evolving brain states (see Fig. 8) in real 
time to make the same determination that the brain makes 
when generating a motor action: What is the motor inten-
tion (appropriate VR-based stimulus, e.g., the illusion of a 
specific motor action of the paretic hand), as well as when 
to make the movement (synchronized with the patient’s voli-
tion) and whether to make the movement (requiring a cer-
tain threshold). To achieve this, a continuous “decoding” 
of ongoing EEG activity is required that detects relevant 
brain states with sufficient accuracy. We have in this study 
explored different features, feature extraction methods, and 
classifier models, resulting in a pre-configured EEG decod-
ing pipeline. The pipeline enables both post hoc testing of 
whether a given window of EEG data is predictive of some 
aspect of a motor behavior, and can also serve as a basis for 
a real-time implementation.

Since the processing pipeline developed in this study is 
calibrated using data from healthy study participants, instead 
of looking for optimal brain states that bias performance 
(i.e., also including any artifacts), we sought out neurologi-
cally relevant brain states that bias laterality. However, any 
investigation of ongoing fluctuating brain states is compli-
cated by environmental interaction affecting brain dynamics. 
The specific parameters of the task play a critical role deter-
mining the resulting brain states. In choosing a very simple 
task (“freely reach for the objects that appear” – without 
any specific instructions regarding hand use), we mimic a 
natural situation that is regularly impaired by stroke, and 
therefore directly relevant from a real-world patient-centric 

Fig. 8  Closed-loop EEG-VR. In a future therapeutic application, 
where the VR rehabilitation task is controlled by the patient’s own 
EEG signal, information flows from the EEG recording to a classi-
fication system to detect relevant brain states (which is the focus of 
this study). When a specific target brain state (e.g., related to motor 
planning) is detected, this information is relayed to the VR controller 

in order to adapt the environment and optimize the therapy paradigm 
(e.g., through creating an illusion of movement, as in mirror therapy). 
The visual stimulation presented through the VR system is perceived 
by the patient and thereby affects the corresponding EEG signal, thus 
creating a fully closed-loop system
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point of view (Wright et al. 2011), but we also lose the abil-
ity to differentiate different stages of neural processing that 
is afforded by the use of warning cues.

With respect to classifier performance, real-time single-
trial classification has previously been achieved with 65% 
accuracy in a similar task (Bai et al. 2011; Schultze-Kraft 
et al. 2017). Whether the 77.1% accuracy achieved in our 
real-time simulation can in fact be achieved in a “real” real-
time situation is yet to be determined, we nevertheless see 
this as encouraging evidence that this approach may facili-
tate further development of real-time therapeutic systems 
designed for the clinical setting.

11.2  Limitations

An important limitation of this approach is the variability 
in achievable classification accuracy between participants. 
One factor influencing the classifier is the quality of the EEG 
data, but this will also be an issue in a realistic clinical set-
ting, especially when the EEG is affected by movement (this 
issue is currently being investigated in a follow-up study). A 
further limitation with respect to the interpretability of the 
targeted EEG signal as corresponding to an “ongoing fluc-
tuating state” is the use of a repetitive task in which partici-
pants could become accustomed to the timing of the stimulus 
onset. We attempted to reduce anticipation effects by using a 
jitter in that the latency to the next stimulus varied between 
2.5 and 3.5 s after returning the hands to the home posi-
tion. Participants were not instructed with regard to using 
the left or right hand to avoid any cognitively generated bias; 
however, this led to some participants using predominantly 
one hand or alternating hands (see Appendix 1, Fig. 11 for a 
movement matrix), which both reduced the randomness of 
the pre-stimulus brain state we intended to identify, and also 
the number of usable trials (which were balanced between 
classes to reduce bias). A task where explicit randomiza-
tion of left- versus right-hand use is employed by instructing 
participants not to be predictable may be effective in produc-
ing more balanced behaviors (see “Matching Pennies” in 
Schultze-Kraft et al. (2017)).

Concerning the parameters explored in determining the 
classification pipeline, we did not, and could not, exhaus-
tively test all possible combinations and approaches. We 
chose to test an arbitrary set of choices with respect to fea-
tures, feature extraction, and classification approaches, based 
on availability of toolboxes and popularity in the literature, 
as well making some pragmatic choices with respect to the 
goal of the study and the task design. Finally, whereas we 
were able to propose standard settings for many parameters, 
and the model creation portion of the pipeline takes only a 
few minutes, we also recommend a 100-trial acquisition per 
condition calibration step. For our task, this takes approxi-
mately 15 min. However, given the similarity in the ICA 

topographies and the consistent activity in the time–fre-
quency analysis, we expect that by using suitable priors, a 
sufficient calibration should be possible with fewer trials, 
leading to a significant acceleration of the calibration, as was 
achieved previously by Jayaram et al. (2016).

11.3  Outlook

Whereas “detectability” is a necessary requirement for a 
given brain state to serve as a therapeutic target in a closed-
loop EEG-VR paradigm, this alone is not sufficient. We will 
also need to demonstrate “therapeutic relevance”, in that 
synchronizing a virtual neurorehabilitation task with a given 
brain state improves the long-term outcome for the patient. 
One characteristic of potentially relevant brain states is that 
they affect motor performance, making it more or less likely 
that an impaired motor function is executed successfully. 
This approach is based on the hypothesis that if a VR-based 
rehabilitation task is repeatedly executed during periods 
where it is more likely to be performed well, it improves the 
effectiveness of the therapy.

We would also like to point out that even a suboptimal 
classification accuracy, constrained by what is achievable 
in a clinical neurorehabilitation setting, may already lead 
to a significant patient benefit: This work is based on the 
hypothesis that a given VR-based rehabilitative motor task 
is therapeutically most effective when it is triggered during 
a specific brain state, which can be estimated through EEG. 
If a spontaneously occurring target brain state (e.g., synchro-
nicity between the left and right motor cortex) is matched 
by chance (without using the EEG signal to control the VR 
task) only rarely (say, 10% of the trials), achieving an accu-
rate match even 50% of the time would achieve a fivefold 
increase in correctly matched training events. Clinical trials 
are needed to determine how such an approach translates to 
clinical outcome.

In conclusion, we hope that this study will enable experi-
menters, clinicians, and therapists to quickly prepare VR-
based therapy that is linked to ongoing fluctuating brain 
states; and to venture into a scenario where the patient’s 
brain creates the virtual environment that in turn supports 
brain network reorganization in a true “closed-loop” fashion. 
This allows for applications beyond mirror therapy, such 
as visually experiencing the illusion of successful move-
ments triggered by imagination and intention, controlling the 
type and timing of VR-based therapy tasks, and presenting 
stimuli at the moments most conducive to executing a suc-
cessful movement, as determined by the individual’s own 
brain state.
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Appendix 1: Additional figures

See Figs. 9, 10, 11.

Fig. 9  Example of classifying movement onset. EMG trace (light 
blue) with movement onset detection, enveloped. The vertical red 
line at 2500 represents the onset of the visual stimulus in the epoch. 

Movement initiation in this single trial is well over 250 ms after the 
visual stimulus, as can be seen as the dotted black line

Fig. 10  ICA combined with SVM and logistic classifier. To deter-
mine which classifier approach works best in combination with ICA, 
we ran 50 iterations of fivefold cross-validation using the training 

data. Here, though minimally different, the logistic classifier produces 
higher average accuracies in 6 of 9 participants, and best accuracies 
in 7 of 9 participants
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Appendix 2: Definitions, lists, and formulas

Supplementary Item 1: Technical Concepts and Definitions (quoting 
from references specified)

Principle component analysis (PCA): an orthogonal linear transformation that transforms the data to a new coordinate system such that the 
greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first principal component), the second 
greatest variance on the second coordinate, and so on (Jolliffe 2002)

Independent component analysis (ICA): a probabilistic method for learning a linear transform of a random vector. The goal is to find compo-
nents that are maximally independent and non-Gaussian (non-normal). Its fundamental difference to classical multivariate statistical methods 
is in the assumption of non-Gaussianity, which enables the identification of original, underlying components, in contrast to classical methods 
(Hyvärinen 2013)

Support vector machine (SVM): supervised learning models with associated learning algorithms that analyze data for classification and regres-
sion analysis (Cortes and Vapnik 1995). They construct a hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which can 
be used for classification, regression, or other tasks like outliers detection. Intuitively, a good separation is achieved by the hyperplane that has 
the largest distance to the nearest training-data point of any class (so-called functional margin), since in general the larger the margin, the lower 
the generalization error of the classifier (Hastie et al. 2009)

EEG source localization: The human brain continuously generates electromagnetic signals. The localization of the active brain areas which are 
responsible for those signals is termed as brain source localization. This process of source estimation with the help of EEG is known as the 
EEG source localization problem, a problem which has both a forward problem (estimating the potentials at the electrodes on the scalp, given 
some source distribution inside the head) and an inverse problem (estimate the distribution of source(s) from an EEG recording). In the current 
study, we used minimum norm estimation (MNE)

MNE is routinely employed for EEG evoked responses, revealing wide-spread activation in the different cortical areas. It is a distributed inverse 
solution that discretizes the source space into mesh points on the cortical surface using an elevated number of equivalent current dipoles. It 
estimates cortical activity power on the source locations simultaneously, choosing the distribution that exerts the minimum overall energy to 
represent sensor data consistent with the recorded ones

Fig. 11  Hand-selection bias. To get a more general idea of pattern 
tendencies in the participants, each choice and the following choice 
were tracked, and plotted in four categories (Left-Left, Right-Right, 

Left–Right, and Right-Left). For example, “Right-Left” would repre-
sent a right choice that was preceded by a left choice. The color bars 
indicate frequency (in %)
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Time–frequency analysis (with Morlet wavelets): Wavelet Transform, a typical time–frequency domain method, can extract and represent 
properties from transient biological signals. Specifically, through wavelet decomposition of the EEG records, transient features can be accu-
rately captured and localized in both time and frequency context. Thus wavelet transform is like a mathematical microscope that can analyze 
different scales of neural rhythms and investigate small-scale oscillations of the brain signals while ignoring the contribution of other scales 
(Adeli et al. 2003; Hazarika et al. 1997)

Event-related potential (ERP): is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. More 
formally, it is any stereotyped electrophysiological response to a stimulus (Luck 2014). Typically, ERPs are scalp recorded voltage fluctuations 
that are time-locked to an event. The ERPs reflect stages of information processing in the sensory-related hierarchical neuronal networks, in 
the networks of cognitive control as well as in the memory and affective systems of the brain. The ERP amplitude is usually smaller than the 
amplitude of background EEG so that the reliable ERP is obtained by averaging EEG fragments in multiple trials. Each ERP represents a sum 
of potentials generated in widely distributed cortical sources. The functionally different sources of ERPs are called components and are associ-
ated with distinct hypothetical psychological operations. One way of separating the components is to obtain a difference between the two ERPs 
performed at conditions which differ in only one respect: presence or absence of a hypothetical operation (Kropotov 2016)

Event-related (De)synchronization (ERD/S): ERD designates a short-lasting and localized amplitude attenuation of rhythms within the alpha 
band; event-related synchronization (ERS) describes a short-lasting amplitude enhancement. The topographical pattern of the ERD may reflect 
activation or excitation of cortical areas. Localized patterns or ERS probably represent inhibition of cortical areas (Pfurtscheller 1991)

Contingent negative variation (CNV): the reaction time between a warning and a go signal as measured by EEG. The CNV was one of the first 
event-related potential (ERP) components to be described. In a chronometric paradigm, the first stimulus is called the warning stimulus and the 
second stimulus, often one that directs the subject to make a behavioral response, is called the imperative stimulus. The foreperiod is the time 
between the warning and imperative stimuli. The time between the imperative stimulus and the behavioral response is called the reaction time. 
The CNV, then, is seen in the foreperiod, between the warning and imperative stimulus (Walter et al. 1964)

Bereitschaftspotential (BP): a measure of activity in the motor cortex and supplementary motor area of the brain leading up to voluntary 
muscle movement. The BP is a manifestation of cortical contribution to the pre-motor planning of volitional movement. Note that the BP has 
two components, the early one (BP1) lasting from about − 1.2 to − 0.5; the late component (BP2) from − 0.5 to shortly before 0 s (Deecke et al. 
1976; Kornhuber and Deecke 1965)

Lateralized Readiness Potential (LRP): an event-related brain potential, or increase in electrical activity at the surface of the brain, that is 
thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the 
brain that happens when a person gets ready to move one arm, leg, or foot. It is a special form of the BP (Vaughan Jr et al. 1968)

Supplementary Item 2: Machine learning background (quoting from references specified)

 
Machine learning (ML) is the study of computer algorithms that automatically improve through experience (Mitchell 1997). ML algorithms 

build a model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed 
to do so (Koza et al. 1996). In supervised learning, the approach taken by the work at hand, the computer is presented with example inputs and 
their corresponding outputs, the goal is to then learn a general rule to map inputs to outputs, a so-called input–output pair (Russell and Norvig 
2002). Through iterative optimization of an objective function, supervised learning algorithms learn a function that can be used to predict 
the output associated with new inputs (Mohri et al. 2012). An optimal function will allow the algorithm to correctly determine the output for 
inputs that were not a part of the training data. An algorithm that improves the accuracy of its outputs or predictions over time is said to have 
learned to perform that task (Mitchell 1997). Types of supervised learning algorithms include active learning, classification and regression. 
The algorithm that then maps these input–output pairs would be known as the “classifier”. However, prior to this mapping, the data must be 
prepared in a way that is optimized. Typically, choices must be made with respect to dimensionality reduction (i.e., feature selection and fea-
ture extraction (Pudil and Novovičová 1998)), and algorithm used for the classification
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We chose, for instance, to use a linear classifier. In general, a linear classifier achieves input–output mapping by making a classification decision 
based on the value of a linear combination of the characteristics. An object's characteristics are also known as feature values and are typically 
presented to the machine in a vector called a feature vector. Such classifiers work well for practical problems such as document classification, 
and more generally for problems with many variables (features), reaching accuracy levels comparable to nonlinear classifiers while taking less 
time to train and use (Yuan et al. 2012). Apart from that, we used PCA and ICA for dimensionality reduction

Figure taken from (Cozza et al. 2020) with permission

Supplementary Item 3: Recommended 32-channel electrode set, referenced to CPz

C2, CCP1h, FC2, CCP2h, FC4, FCC1h, CP2, FCC4h, CP4, FFC4h, FCC5h, F4, FCC3h, C1, P1, PPO1h, 

FCC6h, C6, AFF5h, F2, F6, AF4, C3, FCC2h, FFC3h, POz, CPP5h, Fz, Cz, Pz, CP3, CCP4h

Supplementary Item 4: List of removed peripheral electrodes

F9 F10 FFT9h FFT10h FT9 FT10 FT7 FT8 FTT8h FFT7h T7 T8 TP7 TP8 TTP7h TTP8h TP10 TP9 

TPP10h TPP9h P8 P7 P9 P10 PPO10h PPO9h PO9 PO10 POO10h POO9h O9 O10 OI1h OI2h Iz Oz 

O1 O2 POO1 POO2 PO7 PO8

Supplementary Item 5: Enveloped EMG analysis

Step 1: Filter Design
Filter = designfilt('highpassfir', 'FilterOrder', 100, 'CutoffFrequency', 10, 'SampleRate', 1000)
Step 2: Envelope
e = envelope(data_filtered, 100, 'rms');
Step 3: Threshold
movementOnset = find(e >  = 0.5 * max(e(MOVWINDOW)), 1); % at some percentage of max envelope
movementOnset = find(e >  = 0.5 * max(e(MOVWINDOW)), 1); % at some percentage of max envelope

Supplementary Item 6: Computing the individual most predictive topographies



366 Virtual Reality (2023) 27:347–369

1 3

The topography , which represents the most predictive source activity for right-hand movement in terms 

of the its mean waveform, can be computed as , where is the mixing matrix obtained from ICA 

and contains the weights for the mean features from logistic regression, given in the same order that 

the component-wise topographies are organized as columns in . The derivation of this equation is 

outlined as follows. ICA assumes an underlying linear model , where is a recorded EEG 

data matrix with channels and time points, is the mixing matrix, and is an waveform 

matrix containing underlying components in its rows. We used ICA to estimate the demixing matrix 

, which is the inverse of , to derive the components by . Given is a single data epoch within 

a predefined window relative to the visual stimulus onset, here we used the row-wise mean and the 

variance of as input features for the classifier. This mean operator can be included in the linear model 

in a straight-forward manner as

where is a 1-vector. The overall contribution of the component means to the classification can 

be estimated by applying the respective logistic regression -assigned weights, in vector , to the 

component means as 

Therefore, the vector can be interpreted as a overall spatial filter picking up the brain signal 

whose mean is estimated most relevant for the classification. To convert the spatial filter into the 

corresponding topography , which represents the spatial distribution of the multi-dimensional data, to 

which the spatial filter is most sensitive to, we used the relation provided in (Haufe et al. 2014) as  

where Cov denotes the covariance matrix operator, can be set to be an identity matrix for 

independent components, and . Thus, we can use the weights from logistic regression and the 

ICA-derived topographies to estimate the relevant topography. 

Supplementary Item 7: Fieldtrip electrode layout and head model

https:// github. com/ field trip/ field trip/ blob/ master/ templ ate/ elect rode/ stand ard_ 1005. elc
https:// github. com/ field trip/ field trip/ blob/ master/ templ ate/ headm odel/ stand ard_ bem. mat
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