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Abstract
Food portion size estimation is a critical yet challenging task in dietary assessment. Augmented reality technology enables 
the presentation of food dimensions and volume in a virtual three-dimensional object. It has the potential to improve percep-
tion and estimation of portion sizes. This study aims to develop and evaluate a novel mobile augmented reality application, 
namely Virtual Atlas of Portion Sizes (VAPS), as a portion size estimation aid. The development methodology of VAPS 
involves food photography, reconstruction of 3D models using photogrammetry method and presenting them in an AR 
environment. The 3D food models displayed in either semi-transparent or vivid mode for users to perform food portion 
estimation. Users can then resize and rotate the 3D models to fit the virtual model with the actual food. A total of thirty-six 
participants were involved in the evaluation and were divided into a health science and a non-health science background 
group. VAPS received good usability level with 76 SUS score. In terms of task completion time, unsurprisingly, the health 
science group performed faster. However, both groups have equivalent accuracy on the food portion estimation task using 
VAPS: 22.5% for non-health science group and 26.6% for health science group. The health science group liked and have 
better accuracy in vivid 3D food models (37.5%). Meanwhile, the non-health science group preferred semi-transparent 3D 
food models, but the accuracy is not significantly different between semi-transparent (25%) and vivid 3D food model (20%). 
Results demonstrate the potential of VAPS to aid in portion size estimation for dietary assessment, and participants’ feedback 
will be incorporated in the future for improvement of the app.

Keywords  Food portion · Portion estimation · Food atlas · Augmented reality · Human–computer interaction

1  Introduction

Dietary assessment plays an important role in determining 
nutritional status of individuals and groups and understand-
ing diet-disease relationships. However, accurate measure-
ment of dietary intake is considered to be an open research 
problem in the field of nutrition and health (Fang et al. 
2016). Typically, dietary intake information is obtained 

through self-reporting methods, such as 24-h diet recalls, 
dietary history, diet records, and food frequency question-
naires. While individuals can reliably report the types of 
food they have consumed, they are less capable of quan-
tifying the amount or portion of foods consumed. As the 
accuracy of portion size estimates has been reported to be 
low in previous research (Foster et al. 2006; Nikolić et al. 
2018; Ovaskainen et al. 2008), and even among nutrition 
professionals (Ainaa Fatehah et al. 2018), it is not surprising, 
therefore, that portion size estimation inaccuracy is deemed 
as one of the largest measurement errors in most dietary 
assessment methods (Gibson 2005).

To overcome the challenges associated with portion size 
estimation, 2-dimensional food photographs are often used 
in such dietary assessment methods as diet records or 24-h 
recalls. Portion size photography, either in printed or elec-
tronic version, represents the range of small to large portion 
sizes for commonly consumed food items. They are typically 
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presented as a series of photographs depicting graduated 
sizes for each food item and are bound together in an album 
format. These food photographs are used as visual prompts 
and portion size estimation aid to help individuals describe 
the amounts of food they have eaten. Portion size photog-
raphy, in either print or electronic version, represents the 
range of portion sizes of commonly consumed food items. 
It is normally incorporated into dietary assessment methods, 
such as dietary records and 24-h recalls, to help individuals 
describe amounts of food eaten. Individuals can select the 
food photograph that resembles most closely the amount of 
food they have actually consumed, and hence more accu-
rately estimate the portion sizes consumed (Martin et al. 
2008). Food portion size estimation using food photographs 
remains a challenging task, as it requires three primary 
skills—perception, conceptualization and memory (Nelson 
et al. 1994). Perception refers to an individual’s ability to 
relate an amount of food, which is present in reality, to the 
amount depicted in a photograph. Conceptualization is the 
ability of an individual to make a mental construction of a 
food amount, which is not present in reality, and to relate 
that construction to a photograph. This process, of course, is 
affected by the individual’s memory (Frobisher and Maxwell 
2003). Besides these cognitive skills, estimation of portion 
size can also be influenced by the characteristics of food. 
The amounts of some foods, especially foods of indeter-
minate or amorphous shape, have been reported be more 
difficult to quantify (Almiron-Roig et al. 2013; Hernández 
et al. 2006; Hooper et al. 2019).

Augmented reality (AR) is an emerging technology 
that overlays virtual information on the physical world 
to enhance the blending between the virtual and physical 
worlds. AR is able to track the features embedded within 
an image which acts as a marker (Tan et al. 2018) and ren-
ders virtual information, normally a 3D model, on top of 
it. The 3D model can be interactive, as it enables users to 
make changes on a model or trigger other functions within 
an AR app (Muhammad Nizam et al. 2018a, b; Sadik and 
Lam 2017). Therefore, instead of using printed food photo-
graphs in an album or digital photographs in a mobile app, 
AR is able to show and provide interactable 3D models that 
enhance the users’ ability to visualize the food concerned, 
including its dimensions and volume.

This study aims to develop a virtual food atlas using 
AR technology and evaluate its usability, accuracy and 
gather subjective feedback about its use as a portion size 
estimation aid. We envision that the invented mobile AR 
app, namely Virtual Atlas of Portion Sizes (VAPS), can be 
used to aid portion size estimation, both during (via a food 
record method) and after a meal (via a 24-h dietary recall 
interview method). During food recording, users need to 
perceive the size of the food portion in front of them. Having 
a semi-transparent overlay allows viewing and matching of 

the size of the food portion beneath the app. On the other 
hand, dietary recalls require users to remember and relate 
the food users had consumed the previous day. Having vivid 
food models which look similar to real food will enable bet-
ter conceptualisation of food. Due to different user require-
ments for different dietary assessment methods, VAPS was 
designed to include both vivid and semi-transparent food 
models for estimating food portion sizes. This paper is 
organized as follows: Sect. 2 discusses related studies of AR 
apps in nutrition and 3D model generation methods. Sec-
tions 3 and 4 outline the development methodology of the 
VAPS, followed by the experiment setup, and finally Sect. 5 
presents the conclusion and directions for future work.

2 � Related work

2.1 � Augmented reality in nutrition

AR technology is considered a new frontier in the field of 
human nutrition. Several studies have documented the appli-
cation of AR technology in nutrition-related work, mainly 
for changing eating behaviour (Chanlin and Chan 2018), 
improving nutrition knowledge (Narumi et al. 2012), assist-
ing in portion estimation (Dinic and Stütz 2017; Domhardt 
et al. 2015; Stütz et al. 2014), and presenting standard por-
tion serving (Rollo et al. 2017).

One of the earliest reported work in this field was aimed 
at controlling food consumption by changing apparent size 
of food using AR. Narumi et al. (2012) developed a head-
mounted display-based AR, which visualized food portions 
to be larger than their actual sizes to alter the users’ visual 
perception of the food size. The study demonstrated that 
the food consumption of participants was affected by the 
augmented size, leading to less food consumption. Another 
study applied AR technology in an education context. A 
mobile AR information system, namely ARFood (Chanlin 
and Chan 2018), was developed to enhance college students’ 
learning of nutrition knowledge. When triggered by food 
image scan, ARFood provided nutrition information and 
enabled live access to nutrient information on a daily basis. 
Chanlin and Chan (2018) classified the participants into high 
and low levels of monitoring group. Participants with lower-
level monitoring were less engaged or checked for specific 
information less in the app, while high-level monitoring par-
ticipants used the app more. The study reported that 40% 
of the participants were in the low-level monitoring group. 
Participants in this group felt it was cumbersome to per-
form daily meal recording and were not keen to use the app 
extensively. In contrast, participants in the high-level moni-
toring group (60%) were more engaged with the ARFood 
app and had improved nutrition knowledge and behaviour. 
They recorded, checked and monitored their nutrient intake 
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more often and analysed their dietary intakes to maintain a 
healthy eating lifestyle.

There are only a few studies that have used AR technol-
ogy to estimate food portion sizes (Rollo et al. 2017; Stütz 
et al. 2014). Stütz and colleagues developed EatAR (Stütz 
et al. 2014), a mobile AR (MAR) that overlaid a 3D shape, 
such as hemisphere, on top of a food (such as rice). In EatAR, 
the 3D hemisphere shape’s volume can be adjusted by using 
either the 3-point user input or a time-based touch gesture 
to fit over a real food. While the results showed that MAR 
systems significantly outperformed the eyeballing and hand 
methods in portion estimation, the participants favoured 
the time-based touch gesture less. The challenges of using 
this method were related to food types of different shapes 
such as ice cones, banana and pasta sauces. It was apparent 
that EatAR should support different predefined 3D shapes 
and incorporate a simpler user interaction to adjust the 3D 
shapes. Therefore, EatAR Tango was developed in subse-
quent research with simpler user interaction by utilizing the 
depth sensor on the smartphone’s camera (Dinic and Stütz 
2017). EatAR Tango provides an unsorted list of 3D points 
captured in the presented food scene. A user defines the area 
of the food portion by removing the non-related 3D points to 
construct a 3D mesh of the food. Hence, the volume of the 
food portion can be figured out. Because EatAR Tango relies 
on users to determine the boundaries of a portion of food, 
the experiment showed that users might mislabel the area 
of food resulting in overestimation of food volume (Dinic 
and Stütz 2017).

Another study by Domhardt et al. (2015) conducted a 
pilot study of BEAR, a mobile phone application using aug-
mented reality technology to help diabetic patients estimate 
the amount of carbohydrates. The estimation of carbohydrate 
content was based on the patients’ selection of food types 
and 3D redrawing of said food on the smartphone screen. 
Patients were instructed to use BEAR in real-life for three 
weeks and were tested at the beginning and at the end of the 
study. The researchers found that, at the end of the study, 
in 44% of the estimates of carbohydrate content, there was 
an error reduction of 6%. More recently, Rollo et al. (2017) 
demonstrated the potential of ServAR, a MAR application 
that displays a virtual standard food serving over a plate. 
These virtual food images had been modified through photo 
editing software and acted as standard serving or reference 
sizes, following the Australian Guide for Healthy Eating. 
Even though the food was not presented in 3D form, ServAR 
showed potential as a tool to guide the serving of food for 
portion control.

Taken together, the application of AR technology in the 
field of nutrition is fraught with numerous limitations and 
still requires exploration in different contexts. Previous 
research has demonstrated the current limitations of the AR 
technology associated with the supportability of the mobile 

device (Chanlin and Chan 2018), interaction technique that 
is yet to be user friendly (Domhardt et al. 2015), requires 
different approaches to estimate the food portion (Stütz 
et al. 2014). Specifically related to food portion size estima-
tion, AR-enabled tools including EatAR (Stütz et al. 2014), 
EatAR Tango (Dinic and Stütz 2017), BEAR (Domhardt 
et al. 2015) and ServAR (Rollo et al. 2017) are developed 
for use when real food is in front of users. However, when 
such a tool is used during dietary recording, it is difficult to 
view the real food underneath the 2D virtual overlay of vivid 
food model (Rollo et al. 2017). In this study, we developed 
VAPS which utilizes AR technology to aid both prospective 
(diet records) and retrospective (24-h dietary recalls) dietary 
assessment methods, with or without the presence of food. 
Our research addresses previous gaps by developing a 3D 
virtual food atlas with both vivid and semi-transparent food 
models.

2.2 � 3D model generating

One of the main elements in VAPS is the 3D model itself. 
3D models have been used extensively in industries such as 
entertainment, education, architecture, medicine and health-
care. 3D models represent data in an intuitive, scalable and 
easily interpretable way (Cheng 2012). The models are 3D 
virtual sample of the real-world and offer a clear and intui-
tive visualization of the elements represented. The creation 
method of 3D model provides a common and interesting 
solution for the documentation and visualization of real-life 
objects. This is due to its remarkable results and its afford-
ability. Different 3D models can be obtained depending on 
the conditions of the project (time and budget), techniques 
used, target audience and platform of visualization, among 
others (Owda et al. 2018). There are a few ways to gener-
ate 3D model, which includes using 3D modelling software 
(Havemann and Fellner 2005), 3D scanning the physical 
object using 3D scanners (Daneshmand et al. 2018) and 
photogrammetry method (Chandler and Buckley 2016). In 
this study, the 3D food model needs to be created before it 
can be imported to the AR environment. Creating a realistic 
3D model using the 3D modelling method requires highly 
skilled personnel and a lot of time and effort, especially the 
foods having different shapes, sizes, volumes and textures. 
3D scanning has a drawback that interferes with 3D model 
construction, especially when dealing with physical objects 
that have dark, shiny or clear surfaces, for example, foods 
that have been cooked with oil. The shiny surfaces of such 
foods may disrupt the data acquisition process, causing the 
3D scanner to fail in obtaining accurate data to generate 
the 3D model. After considering all these limitations, the 
photogrammetry method was used in this study to generate 
the 3D food models for VAPS.



698	 Virtual Reality (2021) 25:695–707

1 3

Photogrammetry uses measurements from photographs 
to produce drawings, maps, measurements or 3D models 
of real-world scenes or objects (Photogrammetry 2017). 
Due to low cost and high accessibility, many 3D models 
are constructed using this method (Hernandez and Lemaire 
2017). Photogrammetry captures and processes multiple 
images of an object from different positions and angles 
(Chandler and Buckley 2016). It is a complex process that 
involves camera calibration and orientation, image point 
measurements, 3D point cloud generation, mesh genera-
tion and texturing to capture high quality images (Remon-
dino et al. 2005). However, even though photogrammetry 
is a complex process, there are software packages such as 
3DF Zephyr (3DFlow 2014) to deal with the 3D recon-
struction. Using photogrammetry is inexpensive and does 
not take much time to produce the required data (Ch’ng 
et al. 2019; Remondino 2011). Photogrammetry is able 
to deliver metric and detailed 3D information accurately 

and reliably with precise estimation of measured image 
correspondences (Mikhail et al. 2001).

3 � Methodology

Figure 1 illustrates the methodology of the VAPS app devel-
opment. The three main steps are: (1) the generation of the 
3D food model via photogrammetry; (2) refining the 3D 
model; and (3) creating the AR environment.

3.1 � Creation of the 3D food model

In the first step, photogrammetry software 3DF Zephyr 
(3DFlow 2014) was used to stitch multiple images to con-
struct 3D models. The photographic acquisition phase is 
critical for construction of the 3D model, as the software, 
3DF Zephyr, must have a good dataset of images. Blurred 

Fig. 1   Development methodol-
ogy of VAPS
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images and dataset with no overlapping pictures are exam-
ples of unacceptable data. We used an Asus ZenFone AR 
with 23-megapixel camera to photograph the food images. 
A plate or bowl of food was rotated on a 12-inch turntable 
(Lazy Susan), thus making it easy for photographs to be 
taken from different angles. To ensure the quality of the 
lighting, photography for all food items was conducted in a 
portable photo studio light box. Because of the poor charac-
teristics and repetitive features of the plate and bowl, a piece 
of flyer paper was put under the bowl/plate to increase the 
features of the photograph to help Zephyr better recognize 
the dinnerware. The Asus ZenFone AR was mounted on a 
tripod in a fixed distance (approximately 25 cm from the 
edge of the turntable) so that the food would always appear 
in the centre of the frame. For each food image, a minimum 
of three orbits were taken with an average of 200 images 

each. After the food images were taken, they were then 
imported into 3DF Zephyr and the generation of sparse point 
cloud was initiated and follow the official tutorial (3DFlow 
2017) to generate the dense point cloud, 3D mesh and tex-
ture mesh as shown in Fig. 2.

3.2 � Refinement of 3D food model

As shown in Fig. 2b, the 3D food model generated by 3DF 
Zephyr has some flaws, especially where the plate and bowl 
(which contained the food) are concerned. These flaws are 
due to the difficulty photogrammetry has in detecting and 
capturing shining surfaces and repetitive features. Therefore, 
the 3D food model must be refined before it is acceptable. 
Figure 3 shows the refining process. All unnecessary ver-
texes or polygons were removed using the delete function in 

Fig. 2   The results of 3D model 
generation: a sparse point cloud; 
b dense point cloud; c 3D mesh 
and d texture mesh

Fig. 3   Result of 3D model refining
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3DF Zephyr, so that only food was retained in the 3D model. 
A 3D bowl and plate were then created, following the actual 
size of the physical plate and bowl, using Blender 2.79 soft-
ware  (Blender 2017). Eventually, the 3D food and the bowl/
plate model were exported to the OBJ format supported by 
Unity software for the creation of the AR environment. The 
integration of both models was done in Unity.

3.3 � Creation of augmented reality environment

To create an AR application, a tracking target needs to be 
defined. The AR engine used in this study was Vuforia. In 
general, Vuforia supports two types of image-based tracking. 
The first type is any image that is available in real-life, such 
as movie posters, food packages, or a brand logo. Second 
is VuMark, a marker that is similar to the QR code which 
can be customized in different shapes or forms and have a 
standardized construct for large numbers of AR targets. In 
addition to being highly customizable to closely reflect a 
project’s brand identity, VuMark also stores encoded data 
and initializes a smooth tracking experience. VuMark was 
used because it guarantees a smooth tracking AR experi-
ence and support standard design for the AR marker in an 
AR application. Figure 4 shows the VuMark that has been 

designed by following the official instruction from Vuforia 
(2019) and used in this research.

VAPS (Fig. 5) was developed using Unity together with 
Vuforia. The generated VuMarks were imported into Unity. 
The VuMarks were then associated with the corresponding 
3D food model sets. For example, 3D food models gener-
ated for chocolate cereal came in four portion sizes, which 
weighed 10, 30, 45 and 60 g. The 3D models were rendered 
in both vivid and semi-transparent forms with 50% trans-
parency. Users can trigger the rendering/display mode via a 
button on the phone’s display. In addition, users can resize 
or rotate the 3D food model using a rotation button to over-
lay the 3D food model on the real food displayed in front of 
them. After that, users can select one food model (one size) 
best associated with the actual size of the real food.

4 � Experimental design

This experiment aimed to examine the usability and accu-
racy of the newly developed VAPS app, determine the pref-
erences of rendering mode of 3D food models (vivid/semi-
transparent) and collect feedback for improving the app. 
Because VAPS targets amorphous foods (i.e. foods that take 
the shape of the container they are in), food was presented 
on typically used dinnerware. Two 3D food models, fried 
flat noodles and chocolate breakfast cereal, were presented 
in four portion sizes each. The fried flat noodles was served 
on a plate, while the chocolate breakfast cereal was served 
in a bowl.

Participants were invited to attend a 30-min evaluation 
session in a laboratory setting. The evaluation adopted 
the “think aloud” method and a System Usability Scale 
(SUS) questionnaire (Brooke 1996). Each participant was 
given four tasks (described in the next section) to estimate 
the portion size of the two foods using the different user 
interface modes of the AR app. To begin the evaluation, 
a facilitator welcomed the participants and briefed them 
about the study and procedure. All participants completed 
an informed consent form before participating in the study. Fig. 4   VuMark elements

Fig. 5   VAPS—Augmented Reality App, a semi-transparent mode and b vivid mode
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Next, the facilitator explained the “think aloud” method, 
which encouraged the participants to express their thoughts 
when performing tasks. The facilitator demonstrated the 
operation of VAPS to the participants before they started 
performing the given tasks. The participants did not receive 
any direct training on the assessment of portion sizes using 
the VAPS app.

The participants were required to read the task scenario 
aloud and to begin working on them while thinking aloud. 
The experiment was set at a table, and the participants were 
instructed to sit, while performing the tasks, as shown in 
Fig. 6. The session continued until all four task scenarios 
were completed, with the order of the tasks shuffled or ran-
domized for each participant. The facilitator took notes of 
each participant’s behaviour, selection (which food model) 
and completion time for each task. Finally, the participants 
were asked to complete a 10-item SUS questionnaire on a 
five-point scale. They were given a small incentive (MYR 
10) as compensation for their time. The evaluation session 
was attended by only one participant at a time, and all mate-
rials and equipment were reset at the end of each session.

Figure 7 shows the experimental environment setting 
for the marker and physical food during the evaluation. 
Three participants used VAPS to estimate the portion sizes 
of fried flat noodles and breakfast cereal displayed on the 
table (Fig. 6). In general, participants were required to use 
VAPS AR app to select one 3D food model that most closely 
resembled the real food amount presented. They needed to 
indicate whether the food amount depicted in the selected 
3D food model was more than, less than, or the exact same 
amount as portion size of the real food presented. The 3D 
food models in VAPS were presented in both vivid and semi-
transparent opacity. The participants could change the 3D 
food model presentation (vivid/semi-transparent) by tap-
ping a switch button in the app. Both variables were paired, 
and four (randomized) task scenarios were generated, as 
described below:

Task 1:	 Select a vivid 3D food model in the VAPS app that 
is closest to the real food amount presented on the plate 
(fried flat noodles).

Task 2:	 Select a semi-transparent 3D food model in the 
VAPS app that is closest to the real food amount pre-
sented on the plate (fried flat noodles).

Task 3:	 Select a vivid 3D food model in the VAPS app that 
is closest to the real food amount presented in the bowl 
(chocolate breakfast cereal).

Task 4:	 Select a semi-transparent 3D food model in the 
VAPS app that is closest to the real food amount pre-
sented in the bowl (chocolate breakfast cereal).

5 � Results and discussion

A total of 36 adults (22 females, 14 males) participated in 
this experiment. The participants were aged between 21 and 
40 years, of which 11% were above 30 years old. More than 
two-thirds (69%) of the participants were students, while 
the rest were working adults (31%). The majority of the par-
ticipants are attending institutions of higher education or 

Fig. 6   Participants using the VAPS app during the usability test

Plate / Bowl 
of food with 

known weight

AR 
marker

Fig. 7   Experiment table setting for the usability test
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have attained tertiary education qualification (81%), with 
such diverse education backgrounds as information tech-
nology, accounting, social sciences, nutrition and dietetics. 
Participants were categorized as “health science background 
group” (n = 16) if they were studying or working within the 
field of health sciences including nutrition, dietetics and bio-
medical sciences. Three types of data were collected during 
the experiment, which are subjective data (SUS questions, 
preferences and open questions), accuracy and completion 
time to estimate the food portion size.

5.1 � SUS score

Based on the SUS questionnaire findings and its interpreta-
tion (Bangor et al. 2008), VAPS was deemed acceptable and 
considered a good app by the participants. The SUS score 
of 76 indicated that VAPS is at the second highest quartile 
level.

5.2 � Accuracy and preference

In terms of accuracy when estimating food portion sizes 
using the app, three interpretations were recorded—correct, 
overestimated and underestimated. “Correct” was recorded 
if the participant selected the exact portion size, “overesti-
mated” if the participant selected a portion size larger than 
the real portion size, while “underestimated” was recorded 
when the participant selected a portion size smaller than 
the real portion size. An adjacent portion size less than 33% 
error in relation to the real weight is the benchmark used 
to define “acceptable results” in previous work (Stütz et al. 
2014). In this experiment, the mean relative error is 32% 
between two portion sizes. However, in this study, we do 
not accept the adjacent portion size selection as a “correct” 
estimation.

Table 1 shows the overall result of food portion size esti-
mation accuracy for dinnerware and rendering. The results 
showed that 35 out of 144 (24.3%) portion size selections 
were correct. Generally, the participants were more likely 
to overestimate the food portion sizes (46.5%), especially 
when the food was presented on a plate (76.4%) and in vivid 
rendering mode (56.9%). When the food was presented in a 
bowl, 34.7% of the participants selected the correct portion 
size. Chi-square test was used to determine the significance 

of the independent variable because the output data for 
accuracy consist of three nominal outcomes (Johnson and 
Karunakaran 2014). An association between accuracy 
and dinnerware was observed using the Chi-square test 
(χ2(2) = 52.692, p < 0.05). Chi-square test also reported a 
significant difference between rendering mode and accu-
racy, χ2(2) = 13.596, p < 0.05. Vivid 3D model (27.8%) 
resulted in higher accuracy than semi-transparent 3D model 
(20.8%). This relatively higher accuracy may be due to the 
constrained environment (bowl), which allowed participants 
to better estimate the food amount by comparing the shape 
of the physical bowl and the top surface of the food with 
the virtual bowl. On the other hand, the plate is considered 
as an open environment, where the food is spread out (in 
width and depth) on the plate’s surface; when comparing 
the physical and virtual food on the plate, the participants 
had to make a complex comparison of all the sides and top 
of the food, resulting in less accurate estimation (13.9%).

The results for participants from non-health science 
and health science backgrounds group are shown in 
Table 2. Both groups tended to perform better when food 
was served in a bowl (p < 0.05); the non-health science 
background group achieved 37.5%, while the health sci-
ence background group had 31.2% accuracy. The results 
indicate it is more difficult to judge when food was served 
on a plate, even for the health science background group. 
Interestingly, for the rendering mode, the results showed 
that the non-health science background group had equiva-
lent accuracy for the rendering mode, vivid 3D model 
(20.0%) and semi-transparent 3D model (25.0%). How-
ever, the health science background group performed 
better with the vivid 3D model (37.5%) than the semi-
transparent model (15.6%, p < 0.05). This result is further 
supported with their preference for the vivid 3D model, 
instead of the semi-transparent 3D model, as shown in 
Fig. 8. In general, accuracy performance for both groups 
is equivalent (χ2(2) = 1.629, p > 0.05). This suggests that 
non-health science background participants were able to 
estimate the portion sizes of food with the same accu-
racy as health science background participants when 
using VAPS, although non-health science background 
did not had any formal food portion size training. Using 
the strict criteria for correct estimation, our preliminary 
findings are promising when compared to those reported 

Table 1   Accuracy of food 
portion size estimation by 
dinnerware and rendering mode

Type Underestimated n (%) Correct n (%) Overestimated n (%) Significance

Plate 7 (9.7%) 10 (13.9%) 55(76.4%) χ2(2) = 52.692, p < 0.01
Bowl 35 (48.6%) 25 (34.7%) 12 (16.7%)
Semi-transparent 31 (43.1%) 15 (20.8%) 26 (36.1%) χ2(2) = 13.596, p < 0.01
Vivid 11 (15.3%) 20 (27.8%) 41 (56.9%)
Subtotal 42 (29.2%) 35 (24.3%) 67 (46.5%)
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in a recent study (Nikolić et al. 2018) which reported 
a wide range of correct estimations, ranging from 2.9% 
(lettuce) to 82.9% (spinach) for 20 selected food items in 
a sample of nutritional professionals and layperson. Our 
results demonstrate the potential for an improved version 
of VAPS to aid portion size estimation, after taking into 
account users’ feedback as discussed in the subjective 
feedback section.

The preferences of participants were split in half 
between the two rendering modes, whereby 17 (47%) 
participants preferred the semi-transparent 3D food 
model and 19 (53%) participants preferred the vivid 3D 
food model. There are no outstanding preferences in the 
rendering mode (χ2(2) = 0.111, p > 0.05). However, it is 
noted that non-health science background participants 
favoured the semi-transparent models, while health sci-
ence background participants favoured the vivid 3D food 
models, as shown in Fig. 8.

5.3 � Task completion time

Wilcoxon signed rank test was used to determine the sig-
nificance of the task completion time within the same back-
ground group because the data are continuous, paired sample 
and not in normal distribution. The data are not normally 
distributed as the sample size is small, and this is confirmed 
by the Shapiro–Wilk test with p value less than 0.05. Mean-
while, Mann–Whitney U test was used to test the task com-
pletion time between different background group (Johnson 
and Karunakaran 2014). On average, the participants took 
2 min 35 s to complete the portion size estimation task with 
a standard deviation of 1 min 6 s. Table 3 shows the results 
of task completion time for the non-health science and health 
science background groups. The non-health science back-
ground group performed faster with bowl (02:52 ± 00:57) 
and vivid (02:49 ± 00:57) settings. Similarly, the health 
science background group also performed the portion size 
estimation faster with the bowl setting (01:35 ± 00:22). How-
ever, for the rendering mode, the health science background 
group performed at similar speed for both semi-transpar-
ent and vivid settings, in which Wilcoxon signed rank test 
showed Z = − 0.944, p > 0.05.

As shown in Fig. 9, the health science background partici-
pants performed faster, compared with non-health science 
background participants. While the health science back-
ground group required only 1 min 49 s to complete the task, 
the non-health science background group took 3 min 11 s. 
From the tests result, it can be concluded that difference 
in task completion time between health science and non-
health science background group was statistically significant 
(U = 543.5, p < 0.01). This probably because participants in 
the health science background group, which included par-
ticipants with a nutrition or dietetics background, have some 

Table 2   Food portion size 
estimation accuracy for 
dinnerware and rendering for 
non-health science and health 
science background groups

Type Underestimated n (%) Correct n (%) Overestimated n (%) Significance

Non-health science background group
Plate 0 (0%) 3 (7.5%) 37 (92.5%) χ2(2) = 55.561, p < 0.01
Bowl 21 (52.5%) 15 (37.5%) 4 (10.0%)
Semi-transparent 11 (27.5%) 10 (25.0%) 19 (47.5%) χ2(2) = 0.489, p = 0.78
Vivid 10 (25.0%) 8 (20.0%) 22 (55.0%)
Subtotal 21 (26.3%) 18 (22.5%) 41 (51.2%)
Health science background group
Plate 7 (21.9%) 7 (21.9%) 18 (56.3%) χ2(2) = 6.709, p = 0.04
Bowl 14 (43.8%) 10 (31.2%) 8 (25.0%)
Semi-Transparent 20 (62.5%) 5 (15.6%) 7 (21.9%) χ2(2) = 25.611, p < 0.01
Vivid 1 (3.1%) 12 (37.5%) 19 (59.4%)
Subtotal 21 (32.8%) 17 (26.6%) 26 (40.6%)
Non-health science background group compared with health science background group
Non-health science 21 (26.3%) 18 (22.5%) 41 (51.2%) χ2(2) = 1.629, p = 0.44
Health science 21 (32.8%) 17 (26.6%) 26 (40.6%)
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experience judging portion sizes using such methods as food 
photograph album. Hence, participants in the health science 
background group can decide portion sizes faster than those 
in the non-health science background group.

Participants with health science background preferred 
vivid food models because they looked highly detailed and 
real. They found vivid models easier to observe and relate to 
real food portions as some of the participants had previously 
used real food and 2D photographs to estimate food portion 
sizes. They also acted differently from the non-health sci-
ence background group. Nutritionists from the health sci-
ence background group, for the most part, were satisfied 
with just sitting or standing and to immediately observe the 
food model without attempting to view the food model from 
another position during the experiment. They were familiar 
with printed food atlas books, where food models are often 
shown in 45° angles. Hence, they seemed to stick to angles 
they had been most often exposed to (45°). It could also be 
because they were not very well-versed with AR technology. 
They only physically zoomed in to match the size of the 
food portion by moving the smartphone towards the food. 
They rarely resized the 3D model using the app’s zoom to 
ensure the size of the 3D model stayed relatively the same in 
relation to the size of the real food portion. This helps them 

to quickly choose the food model they think most closely 
resemble the real food.

The non-health science background group took longer to 
complete the tasks because they were unfamiliar with food 
portion sizes. Therefore, to estimate the portion sizes, they 
had to try viewing the models at various angles, e.g. chang-
ing position from standing to sitting, zooming in and out 
of the model several times before they came up with their 
answers. This behaviour during the experiment contributed 
to the longer time taken to complete the experiment.

5.4 � Subjective feedback

Among participants who preferred semi-transparent mode 
(n = 17), 11 of them thought that the comparison of foods 
was easier using semi-transparent mode, as exemplified by 
the quotes, “it is easier for me to see and compare the actual 
food with the 3D food model in the application” and “it is 
feasible to use only semi-transparent mode for food in a bowl 
because we can’t actually estimate the amount of food in the 
bowl when using vivid mode”. Some also mentioned “semi-
transparent model can overlay the food onto the bowl, so we 
can see the exact amount when using the device. However, 
in vivid model, we have to guess, and it will not be more 
accurate than semi-transparent model”.

For participants who preferred vivid rendering mode, 
their reasons were also related to ease of use for portion 
comparison and more accurate, real, and clearer displays. 
Six participants expressed that it was easier to compare: 
“closest appearance to the real food so we can estimate eas-
ily”; “vivid model is easier to be compared with the real 
food because it has solid colour. However, semi-transparent 
model is also helpful and complements the vivid model 
because it can partly show the real food under the model, so 
we can confirm the portion of the food”; “because it is more 
accurate in visualizations when choosing the correct food 
portion size”; “easier to do assumptions”. Participants also 
commended the 3D food models in the vivid mode which 
appeared real: “can see the real dimension of the food item 
in detail, thus easier to estimate food portion”; “It looks cool 
and clear. Its appearance mimics the real food”.

Table 3   Portion size estimation task completion time

Type Non-health science background: 
completion time (mean ± SD)

Significance Health science background: com-
pletion time (mean ± SD)

Significance

Plate 03:30 ± 01:07 Z =  − 2.593, p = 0.01 02:04 ± 00:28 Z =  − 4.044, p < 0.01
Bowl 02:52 ± 00:57 01:35 ± 00:22
Semi-transparent 03:32 ± 01:06 Z =  − 3.089, p < 0.01 01:51 ± 00:27 Z =  − 0.944, p = 0.35
Vivid 02:49 ± 00:57 01:48 ± 00:31
Overall 03:11 ± 01:05 01:49 ± 00:29 U = 543.5, p < 0.01
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The participants provided suggestions to improve the 
app at the end of the evaluation. Some of their sugges-
tions were directed at improving the user interface design, 
adjusting the semi-transparent model to become clearer, 
including calorie calculation, making the app more inter-
active and reducing lag. Participants also suggested the 
addition of a slider to adjust the model’s transparency—
“the app should allow the user to adjust the vividness or 
transparency of the AR model. This can improve the accu-
racy of the portion estimations by letting users adjust the 
model based of their preferred perspective”. The major-
ity of the participants suggested a more attractive user 
interface to motivate app use, such as “use green colour 
instead of red to show that the answer is correct”, and 
“user interface can be more interactive (animation) and 
make it more colourful”. Some participants also looked 
forward to the app having more functions, such as calo-
rie or food portion intake record function, which would 
allow them to monitor their daily dietary intakes. The app 
suffered from lag issues which stemmed from our use of 
highly detailed 3D models to visualize food. Therefore, 
it was recommended that VAPS should only be run on 
high-performance smartphones to enable stable tracking 
and visualization for a smooth AR experience. This lag 
issue can also be rectified by optimizing the 3D models 
for use in an AR environment.

Considering subjective feedback from the participants, 
the key areas to make the app easier to use are: (1) The 
user interface (UI) can be improved to facilitate smooth 
user navigation and interactivity (Nikou and Economides 
2017). As aesthetics affected user experience positively 
(Lynch 2009), VAPS could be designed with a clean 
and consistent colour scheme to increase its attractive-
ness and consequently encourage users to use the app. 
Correct answer choices should be indicated using green 
and positive ping sound effects, whereas wrong answer 
choices should be indicated using red colour and nega-
tive buzzer sounds. (2) A separate training module can 
be developed to train the user to use the app effectively 
to estimate food portion sizes. A user should complete 
the training module first before making a portion size 
estimation using the app. (3) In the training module, rein-
forcement can be used to enhance learning. (4) In the 
current app, the food models are presented in a bowl or 
plate only, without cutlery as a size reference. In future, 
commonly used cutlery, such as spoon and fork, should 
be augmented beside each food model. The addition of 
cutlery may enhance a user’s ability to estimate portion 
size more accurately by providing a relatable scale of food 
model in the AR environment with food present in reality 
(Nelson and Haraldsdóttir 1998).

6 � Conclusion

This study applied AR technology in the field of nutri-
tion to help with the estimation of food portion sizes. The 
main study outcome was the development of the VAPS app 
which presented virtual 3D food models and then blended 
them onto the real-world environment. The VAPS app har-
nesses AR technology to enable users to compare the real 
food portion size with the virtual 3D food portion size. In 
the evaluation, VAPS offered two rendering modes (vivid 
and semi-transparent) to determine which mode was pre-
ferred. The results showed both rendering modes receiving 
positive comments from the participants as each mode had 
its advantages. Hence, further development of the app will 
retain both rendering modes as they complemented each 
other in portion size estimation. All user feedback gath-
ered will be used to improve the design of the app. The 
improved version of VAPS will be evaluated for its validity 
in improving portion size estimation relative to other tools 
to estimate portion size aid during dietary assessment. We 
hypothesize that the VAPS app enhances visualization and 
perception of portion sizes, thereby reducing errors in por-
tion size estimation, which is an area of dietary assessment 
requiring much improvement. VAPS should also be pro-
moted as a learning tool to improve portion size estimation 
in order to encourage self-monitoring of portion control 
and healthy eating behaviour.

The VAPS app aims to aid in both prospective (dietary 
records) and retrospective (24-h dietary recalls) dietary 
assessment methods. At this stage, we have only tested 
two types of food as proof-of-concept to explore issues 
with using VAPS to improve it further. VAPS assumed 
superior to 2D photographs as the 3D food format provides 
additional size information. After future validation studies 
comparing the VAPS app with conventional methods, the 
generalizability of our findings can be ascertained.

Acknowledgements  This study was funded by Universiti Kebang-
saan Malaysia (DIP-2017-018). We would also like to acknowledge 
3DFLOW for providing a six-month 3DF Zephyr Aerial Education 
license.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


706	 Virtual Reality (2021) 25:695–707

1 3

References

3DFlow (2017) 3Dflow Academy—Videotutorial 1-Basic 3DF 
Zephyr workflow - photogrammetry basics. https​://youtu​
.be/17UTe​lgZqB​g. January 2019

3DFlow (2014) 3DF Zephyr. https​://www.3dflo​w.net/3df-zephy​
r-photo​gramm​etry-softw​are/. Accessed 28 Oct 2020.

Ainaa Fatehah A, Poh B, Nik Shanita S, Wong J (2018) Feasibil-
ity of reviewing digital food images for dietary assessment 
among nutrition professionals. Nutrients 10:984. https​://doi.
org/10.3390/nu100​80984​

Almiron-Roig E, Solis-Trapala I, Dodd J, Jebb SA (2013) Estimating 
food portions Influence of unit number, meal type and energy 
density. Appetite 71:95–103. https​://doi.org/10.1016/j.appet​
.2013.07.012

Bangor A, Kortum PT, Miller JT (2008) An empirical evaluation 
of the system usability scale. Int J Human-Computer Interact 
24:574–594. https​://doi.org/10.1080/10447​31080​22057​76

Blender (2017) Blender 2.79. https​://www.blend​er.org/downl​oad/
relea​ses/2-79/. Accessed 15 June 2018

Brooke J (1996) SUS-A quick and dirty usability scale. Usability 
Evaluation Industry 189:4–7

Ch’ng E, Cai S, Zhang TE, Leow F-T (2019) Crowdsourcing 3D cul-
tural heritage: best practice for mass photogrammetry. J Cultural 
Heritage Manag Sustain Dev 9:24–42. https​://doi.org/10.1108/
JCHMS​D-03-2018-0018

Chandler JH, Buckley S (2016) Structure from motion (SFM) pho-
togrammetry vs terrestrial laser scanning. IN: Carpenter, M.B. 
and Keane, CM (eds.) Geoscience Handbook 2016: AGI Data 
Sheets, 5th ed. Alexandria, VA: American Geosciences Insti-
tute, Section 20.1. https​://hdl.handl​e.net/2134/21673​

Chanlin L-J, Chan K-C (2018) Augmented reality applied in dietary 
monitoring. Libri 68:137–147. https​://doi.org/10.1515/libri​
-2017-0024

Cheng H-M (2012) The workflows of 3D digitizing heritage monu-
ments. In: Apolinar Munoz J (ed) Laser scanner technology. 
IntechOpen, London

Daneshmand M et al. (2018) 3D scanning: a comprehensive survey 
arXiv preprint arXiv:180108863

Dinic R, Stütz T  (2017) EatAR tango: results on the accuracy of 
portion estimation. In: 2017 IEEE international symposium 
on mixed and augmented reality (ISMAR-Adjunct), IEEE, pp 
284–287

Domhardt M et al (2015) Training of carbohydrate estimation for 
people with diabetes using mobile augmented reality. J Dia-
betes Sci Technol 9:516–524. https​://doi.org/10.1177/19322​
96815​57888​0

Fang S, Zhu F, Jiang C, Zhang S, Boushey CJ, Delp EJ (2016) A com-
parison of food portion size estimation using geometric models 
and depth images. Proceedings international conference on image 
processing 2016:26-30 doi:10.1109/ICIP.2016.7532312

Foster E, Matthews JN, Nelson M, Harris JM, Mathers JC, Adamson 
AJ (2006) Accuracy of estimates of food portion size using food 
photographs–the importance of using age-appropriate tools. Pub-
lic Health Nutr 9:509–514. https​://doi.org/10.1079/PHN20​05872​

Frobisher C, Maxwell S (2003) The estimation of food portion sizes: 
a comparison between using descriptions of portion sizes and a 
photographic food atlas by children and adults. J Hum Nutr Diet 
16:181–188. https​://doi.org/10.1046/j.1365-277X.2003.00434​.x

Gibson RS (2005) Principles of nutritional assessment. Oxford Uni-
versity Press, USA

Havemann S, Fellner DW (2005) Generative mesh modeling. Libri 
68:137–147

Hernandez A, Lemaire E (2017) A smartphone photogrammetry 
method for digitizing prosthetic socket interiors. Prosthet Orthot 
Int 41:210–214. https​://doi.org/10.1016/j.jfca.2006.02.010

Hernández T et al (2006) Portion size estimation and expectation 
of accuracy. J Food Compos Anal 19:S14–S21. https​://doi.
org/10.1016/j.jfca.2006.02.010

Hooper A, McMahon A, Probst Y (2019) The role of various forms of 
training on improved accuracy of food-portion estimation skills: 
a systematic review of the literature. Adv Nutr 10:43–50. https​://
doi.org/10.1093/advan​ces/nmy06​0

Johnson LR, Karunakaran UD (2014) How to choose the appropri-
ate statistical test using the free program “statistics open for 
all”(SOFA). Annal Commun Health 2:54–62

Lynch P (2009) Visual decision making. A List Apart: For People Who 
Make Websites, 286. http://www.alistapart.com/articles/visual, 
Accessed from 02 Feb 2017

Martin CK, Han H, Coulon SM, Allen HR, Champagne CM, Anton 
SD (2008) A novel method to remotely measure food intake of 
free-living individuals in real time: the remote food photography 
method. Br J Nutr 101:446–456. https​://doi.org/10.1017/S0007​
11450​80274​38

Mikhail EM, Bethel JS, McGlone JC (2001) Introduction to modern 
photogrammetry. Wiley, New York

Muhammad Nizam SS, Abidin RZ, Hashim NC, Lam MC, Arshad 
H, Abd Majid NA (2018) A review of multimodal interaction 
technique in augmented reality environment. Int J Adv Sci Eng 
Inf Technol 8:1460–1469

Muhammad Nizam SS, Lam MC, Arshad H, Suwadi NA (2018) A 
scoping review on tangible and spatial awareness interaction tech-
nique in mobile augmented reality-authoring tool in kitchen. Adv 
Multimed. https​://doi.org/10.1155/2018/53209​84

Narumi T, Ban Y, Kajinami T, Tanikawa T, Hirose M Augmented 
perception of satiety: controlling food consumption by changing 
apparent size of food with augmented reality. In: Proceedings of 
the SIGCHI conference on human factors in computing systems, 
2012. ACM, pp 109–118. doi:https​://doi.org/10.1145/22076​
76.22076​93

Nelson M, Atkinson M, Darbyshire S (1994) Food photography I: 
the perception of food portion size from photographs. Br J Nutr 
72:649–663. https​://doi.org/10.1079/bjn19​94006​9

Nelson M, Haraldsdóttir J (1998) Food photographs: practical guide-
lines II. Development and use of photographic atlases for assess-
ing food portion size. Public Health Nutr 1:231–237

Nikolić M, Milešević J, Zeković M, Gurinović M, Glibetić M (2018) 
The development and validation of food atlas for portion size esti-
mation in the Balkan region. Front Nutr. https​://doi.org/10.3389/
fnut.2018.00078​

Nikou SA, Economides AA (2017) Mobile-based assessment: Investi-
gating the factors that influence behavioral intention to use. Com-
put Educ 109:56–73

Ovaskainen M et al (2008) Accuracy in the estimation of food servings 
against the portions in food photographs. Eur J Clin Nutr 62:674. 
https​://doi.org/10.1038/sj.ejcn.16027​58

Owda A, Balsa-Barreiro J, Fritsch D (2018) Methodology for digital 
preservation of the cultural and patrimonial heritage: Generation 
of a 3D model of the church St. Peter and Paul (Calw, Germany) 
by using laser scanning and digital photogrammetry. Sens Rev 
38:282–288. https​://doi.org/10.1108/SR-06-2017-0106

Photogrammetry (2017) What is photogrammetry? https​://www.photo​
gramm​etry.com/. Accessed 25 April 2018

Remondino F (2011) Heritage recording and 3D modeling with pho-
togrammetry and 3D scanning. Remote Sens 3:1104–1138. https​
://doi.org/10.3390/rs306​1104

​Remondino F, Guarnieri A, Vettore A 3D modeling of close-range 
objects: photogrammetry or laser scanning? In: Proc. SPIE 5665, 
Videometrics VIII, San Jose, California, United States, 17 January 

https://youtu.be/17UTelgZqBg
https://youtu.be/17UTelgZqBg
https://www.3dflow.net/3df-zephyr-photogrammetry-software/
https://www.3dflow.net/3df-zephyr-photogrammetry-software/
https://doi.org/10.3390/nu10080984
https://doi.org/10.3390/nu10080984
https://doi.org/10.1016/j.appet.2013.07.012
https://doi.org/10.1016/j.appet.2013.07.012
https://doi.org/10.1080/10447310802205776
https://www.blender.org/download/releases/2-79/
https://www.blender.org/download/releases/2-79/
https://doi.org/10.1108/JCHMSD-03-2018-0018
https://doi.org/10.1108/JCHMSD-03-2018-0018
https://hdl.handle.net/2134/21673
https://doi.org/10.1515/libri-2017-0024
https://doi.org/10.1515/libri-2017-0024
https://doi.org/10.1177/1932296815578880
https://doi.org/10.1177/1932296815578880
https://doi.org/10.1079/PHN2005872
https://doi.org/10.1046/j.1365-277X.2003.00434.x
https://doi.org/10.1016/j.jfca.2006.02.010
https://doi.org/10.1016/j.jfca.2006.02.010
https://doi.org/10.1016/j.jfca.2006.02.010
https://doi.org/10.1093/advances/nmy060
https://doi.org/10.1093/advances/nmy060
https://doi.org/10.1017/S0007114508027438
https://doi.org/10.1017/S0007114508027438
https://doi.org/10.1155/2018/5320984
https://doi.org/10.1145/2207676.2207693
https://doi.org/10.1145/2207676.2207693
https://doi.org/10.1079/bjn19940069
https://doi.org/10.3389/fnut.2018.00078
https://doi.org/10.3389/fnut.2018.00078
https://doi.org/10.1038/sj.ejcn.1602758
https://doi.org/10.1108/SR-06-2017-0106
http://www.photogrammetry.com/
http://www.photogrammetry.com/
https://doi.org/10.3390/rs3061104
https://doi.org/10.3390/rs3061104


707Virtual Reality (2021) 25:695–707	

1 3

2005. International Society for Optics and Photonics, p 56650M. 
https​://doi.org/10.1117/12.58629​4

Rollo ME, Bucher T, Smith SP, Collins CE (2017) ServAR: An aug-
mented reality tool to guide the serving of food. Int J Behav Nutr 
Phys Act. https​://doi.org/10.1186/s1296​6-017-0516-9

Sadik MJ, Lam MC (2017) Stereoscopic vision mobile augmented 
reality system architecture in assembly tasks. J Eng Appl Sci 
12:2098–2105. https​://doi.org/10.36478​/jeasc​i.2017.2098.2105

Stütz T, Dinic R, Domhardt M, Ginzinger S Can mobile augmented 
reality systems assist in portion estimation? A user study. In: 
2014 IEEE international symposium on mixed and augmented 
reality-media, art, social science, humanities and design (ISMAR-
MASH’D), 2014. IEEE, pp 51–57. doi:https​://doi.org/10.1109/
ISMAR​-AMH.2014.69354​38

Tan SY, Arshad H, Abdullah A (2018) An efficient and robust mobile 
augmented reality application. Int J Adv Sci Eng Inf Technol 
8:1672–1678. https​://doi.org/10.18517​/ijase​it.8.4-2.6810

Vuforia (2019) Designing a VuMark in Adobe Illustrator. https​://libra​
ry.vufor​ia.com/conte​nt/vufor​ia-libra​ry/en/artic​les/Solut​ion/Desig​
ning-a-VuMar​k-in-Adobe​-Illus​trato​r.html. July 2019

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1117/12.586294
https://doi.org/10.1186/s12966-017-0516-9
https://doi.org/10.36478/jeasci.2017.2098.2105
https://doi.org/10.1109/ISMAR-AMH.2014.6935438
https://doi.org/10.1109/ISMAR-AMH.2014.6935438
https://doi.org/10.18517/ijaseit.8.4-2.6810
https://library.vuforia.com/content/vuforia-library/en/articles/Solution/Designing-a-VuMark-in-Adobe-Illustrator.html
https://library.vuforia.com/content/vuforia-library/en/articles/Solution/Designing-a-VuMark-in-Adobe-Illustrator.html
https://library.vuforia.com/content/vuforia-library/en/articles/Solution/Designing-a-VuMark-in-Adobe-Illustrator.html

	An evaluation of a virtual atlas of portion sizes (VAPS) mobile augmented reality for portion size estimation
	Abstract
	1 Introduction
	2 Related work
	2.1 Augmented reality in nutrition
	2.2 3D model generating

	3 Methodology
	3.1 Creation of the 3D food model
	3.2 Refinement of 3D food model
	3.3 Creation of augmented reality environment

	4 Experimental design
	5 Results and discussion
	5.1 SUS score
	5.2 Accuracy and preference
	5.3 Task completion time
	5.4 Subjective feedback

	6 Conclusion
	Acknowledgements 
	References




