Skip to main content
Log in

An intronic GNAO1 variant leading to in-frame insertion cause movement disorder controlled by deep brain stimulation

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

GNAO1 variants are associated with a wide range of neurodevelopmental disorders including epileptic encephalopathies and movement disorders. It has been reported that some GNAO1 variants are associated with movement disorders, and the 207–246 amino acid region was proposed as a mutational hotspot. Here, we report an intronic variant (NM_020988.3:c.724-8G>A) in GNAO1 in a Japanese girl who showed mild developmental delay and movement disorders including dystonia and myoclonus. Her movement disorders were improved by deep brain stimulation treatment as previously reported. This variant has been recurrently reported in four patients and was transmitted from her mother who possessed the variant as low-prevalent mosaicism. Using RNA extracted from lymphoblastoid cells derived from the patient, we demonstrated that the variant caused abnormal splicing of in-frame 6-bp intronic retention, leading to 2 amino acid insertion (p.Thr241_Asn242insProGln). Immunoblotting and immunostaining using WT and mutant GNAO1 vectors showed no significant differences in protein expression levels, but the cellular localization pattern of this mutant was partially shifted to the cytoplasm whereas WT was exclusively localized in the cellular membrane. Our report first clarified abnormal splicing and resulting mutant protein caused by the c.724-8G>A variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data accessibility statement

Genetic data is not available.

References

  1. Feng H, Khalil S, Neubig RR, Sidiropoulos C (2018) A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis 08(116):131–141. https://doi.org/10.1016/j.nbd.2018.05.005

    Article  CAS  Google Scholar 

  2. Worley PF, Baraban JM, Van Dop C et al (1986) Go, a guanine nucleotide-binding protein: immunohistochemical localization in rat brain resembles distribution of second messenger systems. Proc Natl Acad Sci U S A 83(12):4561–4565. https://doi.org/10.1073/pnas.83.12.4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Solis GP, Bilousov O, Koval A, Lüchtenborg AM, Lin C, Katanaev VL (2017) Golgi-resident gαo promotes protrusive membrane dynamics. Cell 170(5):939-955.e24. https://doi.org/10.1016/j.cell.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  4. Abela L, Kurian MA (2018) Postsynaptic movement disorders: clinical phenotypes, genotypes, and disease mechanisms. J Inherit Metab Dis 41(6):1077–1091. https://doi.org/10.1007/s10545-018-0205-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feng H, Sjögren B, Karaj B et al (2017) Movement disorder in gnao1 encephalopathy associated with gain-of-function mutations. Neurology 89(8):762–770. https://doi.org/10.1212/wnl.0000000000004262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamura K, Kodera H, Akita T et al (2013) De novo mutations in GNAO1, encoding a gαo subunit of heterotrimeric g proteins, cause epileptic encephalopathy. Am J Hum Genet 93(3):496–505. https://doi.org/10.1016/j.ajhg.2013.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelly M, Park M, Mihalek I et al (2019) Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region. Epilepsia 60(3):406–418. https://doi.org/10.1111/epi.14653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schirinzi T, Garone G, Travaglini L et al (2019) Phenomenology and clinical course of movement disorder in GNAO1 variants: results from an analytical review. Parkinsonism Relat Disord 04(61):19–25. https://doi.org/10.1016/j.parkreldis.2018.11.019

    Article  Google Scholar 

  9. Danti FR, Galosi S, Romani M et al (2017) GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet 3(2):e143. https://doi.org/10.1212/nxg.0000000000000143

    Article  PubMed  PubMed Central  Google Scholar 

  10. Muntean BS, Masuho I, Dao M et al (2021) Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep 34(5):108718. https://doi.org/10.1016/j.celrep.2021.108718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Rocco M, Galosi S, Lanza E et al (2021) Caenorhabditis elegans provides an efficient drug screening platform for GNAO1-related disorders and highlights the potential role of caffeine in controlling dyskinesia. Hum Mol Genet. https://doi.org/10.1093/hmg/ddab296 (ahead of print)

    Article  Google Scholar 

  12. Benabid A, Pollak P, Hoffmann D et al (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337(8738):403–406. https://doi.org/10.1016/0140-6736(91)91175-t

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues FB, Duarte GS, Prescott D, Ferreira J, Costa J (2019) Deep brain stimulation for dystonia. Cochrane Database Sys Rev 1(1):CD012405. https://doi.org/10.1002/14651858.cd012405.pub2

    Article  Google Scholar 

  14. Koy A, Cirak S, Gonzalez V et al (2018) Deep brain stimulation is effective in pediatric patients with GNAO1 associated severe hyperkinesia. J Neurol Sci 391:31–39. https://doi.org/10.1016/j.jns.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita Y, Ogawa T, Ogaki K et al (2020) Neuroimaging evaluation and successful treatment by using directional deep brain stimulation and levodopa in a patient with gnao1-associated movement disorder: a case report. J Neurol Sci 411:116710. https://doi.org/10.1016/j.jns.2020.116710

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe K, Nakashima M, Kumada S et al (2021) Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet 66(12):1193–1197. https://doi.org/10.1038/s10038-021-00956-4

    Article  CAS  PubMed  Google Scholar 

  17. Retterer K, Juusola J, Cho MT et al (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18(7):696–704. https://doi.org/10.1038/gim.2015.148

    Article  CAS  PubMed  Google Scholar 

  18. Monies D, Abouelhoda M, Assoum M et al (2019) Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 104(6):1182–1201. https://doi.org/10.1016/j.ajhg.2019.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang X, Niu X, Yang Y et al (2021) Phenotypes of GNAO1 variants in a Chinese cohort. Front Neurol 12:662162. https://doi.org/10.3389/fneur.2021.662162

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Marcos M, Ghosh P, Farquhar MG (2011) Molecular basis of a novel oncogenic mutation in GNAO1. Oncogene 30(23):2691–2696. https://doi.org/10.1038/onc.2010.645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B (2000) Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet 355(9222):2220–2221. https://doi.org/10.1016/s0140-6736(00)02410-7

    Article  CAS  PubMed  Google Scholar 

  22. Tisch S, Kumar KR (2021) Pallidal deep brain stimulation for monogenic dystonia: the effect of gene on outcome. Front Neurol 11:630391. https://doi.org/10.3389/fneur.2020.630391

    Article  PubMed  PubMed Central  Google Scholar 

  23. Møller RS, Liebmann N, Larsen LHG et al (2019) Parental mosaicism in epilepsies due to alleged de novo variants. Epilepsia 60(6):e63–e66. https://doi.org/10.1111/epi.15187

    Article  CAS  PubMed  Google Scholar 

  24. Myers CT, Hollingsworth G, Muir AM et al (2018) Parental mosaicism in “de novo” epileptic encephalopathies. N Engl J Med 378(17):1646–1648. https://doi.org/10.1056/nejmc1714579

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the patient’s family for participating in this work. We also thank K. Shibazaki, M. Tsujimura, and A. Kitamoto for their technical assistance. This work was supported by the Grants-in-Aid for Scientific Research (B) (JP20H03641), HUSM Grant-in-Aid from Hamamatsu University School of Medicine, and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

SM, MN, and HS contributed data analysis. SM performed RT-PCR, cell culture, transfection, and immunoblotting analysis; SF and SK evaluated the patient and provided samples. HS conceived and designed the study. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Hirotomo Saitsu.

Ethics declarations

Consent to participate

Informed consent was obtained from all individual participants included in the study and the participant has consented to the submission of the case report to the journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 532 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, S., Nakashima, M., Fukumura, S. et al. An intronic GNAO1 variant leading to in-frame insertion cause movement disorder controlled by deep brain stimulation. Neurogenetics 23, 129–135 (2022). https://doi.org/10.1007/s10048-022-00686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-022-00686-5

Keywords

Navigation