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Abstract
Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurodegenerative disorders. Numerous genes
linked to HSPs, overlapping phenotypes between HSP subtypes and other neurodegenerative disorders and the HSPs’ dual mode
of inheritance (both dominant and recessive) make the genetic diagnosis of HSPs complex and difficult. Out of the original HSP
cohort comprising 306 index cases (familial and isolated) who had been tested according to Btraditional workflow/guidelines^ by
Multiplex Ligation-dependent Probe Amplification (MLPA) and Sanger sequencing, 30 unrelated patients (all familial cases)
with unsolved genetic diagnoses were tested using next-generation sequencing (NGS). One hundred thirty-two genes associated
with spastic paraplegias, hereditary ataxias and related movement disorders were analysed using the Illumina TruSight™ One
Sequencing Panel. The targeted NGS data showed pathogenic variants, likely pathogenic variants and those of uncertain
significance (VUS) in the following genes: SPAST (spastin, SPG4), ATL1 (atlastin 1, SPG3), WASHC5 (SPG8), KIF5A
(SPG10), KIF1A (SPG30), SPG11 (spatacsin), CYP27A1, SETX and ITPR1. Out of the nine genes mentioned above, three have
not been directly associated with the HSP phenotype to date. Considering the phenotypic overlap and joint cellular pathways of
the HSP, spinocerebellar ataxia (SCA) and amyotrophic lateral sclerosis (ALS) genes, our findings provide further evidence that
common genetic testing may improve the diagnostics of movement disorders with a spectrum of ataxia-spasticity signs.
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Introduction

Hereditary spastic paraplegias (HSPs) comprise a group of
genetic disorders resulting from neurodegeneration of the
corticospinal tracts. The HSPs’ main clinical feature is a pro-
gressive spasticity and weakness of the lower limbs. HSP is
classified as a pure form when symptoms are limited to: pro-
gressive spasticity and weakness of the lower limbs, bladder
dysfunction and mild somatosensory deficits. In case of any
additional neurological symptoms, a complicated HSP form is
recognised. To date, over 70 different SPG loci have been
identified, and over 60 corresponding genes have been inves-
tigated [1–3]. All modes of HSP inheritance have already been
described: autosomal dominant (ADHSP), autosomal reces-
sive (ARHSP), X-linked (XLHSP) and less frequently, mito-
chondrial. Among 20 different ADHSP subtypes, SPG4 is the
most common one, accounting for approximately 40% of the
cases. The frequency of other ADHSP subtypes ranges from
1% to 10%. The main ARHSPs identified to date are SPG5,
SPG7, SPG11 and SPG15 [4].
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According to population studies, the proportion of families
without genetic diagnosis ranged from 45% to 67% in the
ADHSP and from 71% to 82% in the ARHSP groups [5].
Recently reported dual-transmission of some HSP subtypes
makes their molecular characterisation even more complicat-
ed. Due to the HSP heterogeneity, next-generation sequencing
(NGS) became a highly useful screening tool in HSP investi-
gations and differential diagnosis. Broad NGS studies have
revealed a clinical and genetic overlap between different
HSP subtypes, as well as between other neurodegenerative
disorders, such as hereditary spinocerebellar ataxias (SCAs),
amyotrophic lateral sclerosis (ALS) and neuropathies [6].

In the present study, we analysed familial HSP patients
through spastic-ataxia spectrum disease genes according to
the approach suggested by Synofzik et al. [6].

Materials and methods

The study was approved by the Bioethics Committee of the
Institute of Psychiatry and Neurology in Warsaw. All of the
participants provided informed consent.

In the presented study, we aimed to test a group of 30
unrelated hereditary spastic paraplegia patients using the
targeted Illumina TruSight™ One Sequencing Panel
(Illumina). The original HSP cohort comprised 306 probands
in which Multiplex Ligation-dependent Probe Amplification
(MLPA) and Sanger Sequencing had been performed to diag-
nose five HSP subtypes (SPG3, SPG4, SPG6, SPG11 and
SPG31) in 62 families [7–10]. Out of the remaining 244 pro-
bands, 30 familial HSP index cases were selected for NGS
testing. The major inclusion criteria comprise: (i) spastic para-
plegia as a main clinical feature, (ii) positive family history
and (iii) availability of DNA sample for more than one affect-
ed family member and/or potential carriers. The families’ his-
tory suggested AD inheritance in 18 and AR in 12 families. In
three probands, SPG11 deletions and duplication had been
identified in one allele, and NGS sequencing focused on
searching for the second causative variant to confirm the AR
SPG11. One identified carrier of the SPAST pathogenic variant
was used as a positive control in the NGS screening (Fig. 1).

All studied patients were evaluated according to the Fink
criteria for HSP [11]. The HSP pure form was observed in 16
probands, and the complicated form was observed in 14
probands.

The Illumina TruSight™ One Sequencing Panel cover-
ing the coding regions of the 4813 genes associated with
the known clinical phenotypes was used (https://www.
illumina.com/products/by-type/clinical-research-products/
trusight-one.html). The panel includes over 125,000 80-mer
probes constructed according to the human NCBI37/hg19
reference genome. The probe set was designed for enrich-
ment of approximately 62,000 exons spanning 4813 genes

(https://www.illumina.com/products/by-type/clinical-
research-products/trusight-one.html). The library
preparation, labelling and enrichment were performed
according to the protocol using 50 ng of DNA input. The
coding regions of 132 genes linked to spastic paraplegias,
hereditary ataxias and related movement disorders were
analysed. The data were analysed using Illumina
VariantStudio 2.2 and visualised in Integrated Genomics
Viewer (IGV) (Broad Institute). To investigate the evolu-
tionary conservation score (PhyloP) and functional predic-
tion of identified mutations, we used SIFT (http://sift.jcvi.
org/), Polyphen2 (http://genetics.bwh.harvard.edu/pph2/),
MutationTaster (http://www.mutationtaster.org/) and
Alamut software (http://www.interactive-biosoftware.com/),
as well as the dbSNP (https://www.ncbi.nlm.nih.gov/
projects/SNP/) and ClinVar databases (https://www.ncbi.
nlm.nih.gov/clinvar/).

NGS data were filtered according to the following criteria:
(i) read depth higher than 20 reads and variant frequency
higher than 25%; (ii) variants reported less frequently than
0.005 in the Exome Aggregation Consortium database
(http://exac.broadinstitute.org/); and (iii) exclusion of all the
synonymous and deep intronic variants.

The bioinformatically analysed 132 ataxia-spasticity panel
genes involved the following: (1) 37 genes directly linked
with HSP: 12-ADHSP, 22-ARHSP and 3-XLHSP; (2) 25
genes linked with hereditary ataxias: 12 AD spinocerebellar
ataxia (SCA), 11 ARSCA (SCAR) and four spastic-ataxia
(SPAX) genes; (3) three leucodystrophy genes; (4) 14 amyo-
trophic lateral sclerosis (ALS) genes; (5) 16 genes linked with
different neuropathies, including five hereditary motor neu-
ropathies (HMN) and six Charcot Marie-Tooth neuropathies;
and (6) other complex movement or multisystem disorders
with prominent gait disturbances, comprising 42 genes
(Supplementary Table 1). Because certain genes are linked
with more than one phenotype, the number of genes and con-
ditions are not equal. The classification and interpretation of
the identified variants were performed according to recom-
mendations of the American College of Medical Genetics
and Genomic and the Association for Molecular Pathology
(ACMGG&AMP) (Table 1) [12]. Variants selected through
filtering were confirmed by Sanger sequencing in the pro-
bands and their family members.

Results

The NGS TruSight™ One output data reached approximately
97% of the aligned reads. Amean number of 16,752,119 reads
with 259 base pair length fragments per sample was obtained.
An average of 91.2% of targeted reads passed the Q score,
whereas 88% were covered at least 30 times.
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In this study, we identified 18 pathogenic and likely patho-
genic variants in 16 spastic paraplegia probands, as well as six
variants of uncertain significance (Table 2; Table 3). The most
frequent HSP genetic types, SPG4 and SPG3, were identified in
five probands: SPAST (SPG4) pathogenic variants in three pro-
bands and ATL1 (SPG3) in two probands. In four of the men-
tioned probands, a previous study involved only the MLPA
screening, and one of the SPG4 patients was known to carry a
pathogenic variant. In 11 out of 22 individuals, in whom SPAST,
ATL1 and REEP1 gene single nucleotide variants (SNV) were
previously excluded by Sanger sequencing, we identified three
HSP subtypes with AD transmission:WASHC5 (SPG8),KIF5A
(SPG10) and KIF1A (SPG30) and SPG11 (SPG11) as the only
ARHSPs. Moreover, in one case, a homozygous variant in the
CYP27A1 gene, known as pathogenic in cerebrotendinous
xanthomatosis (CTX), was identified. Among six variants of
uncertain significance we detected: WASHC5, KIF5A, SETX
and ITPR1 variants in families with AD mode of inheritance.
We were not able to detect any variant corresponding to phe-
notype in 27% of the examined cohort (four cases with AD and
four with AR mode of inheritance).

Autosomal dominant HSPs

ATL1 (SPG3)

One known pathogenic ATL1 variant : c .715C>T
(p.Arg239Cys) and one novel: c.1064A>C (p.Asn355Thr)
were identified in two HSP probands. The variants presented
pure HSP with the age of onset at the first and second years of
life.

SPAST (SPG4)

In the SPAST gene, the variants were identified in three pro-
bands: a missense (c.1378C>T-p.Arg460Cys), nonsense
(c.1597G>T-p.Glu533*) and splice site (c.1617-2A>G) muta-
tion. SPASTc.1378C>T is a known pathogenic variant, a mod-
erately conserved nucleotide and highly conserved amino acid
position. The two other SPAST gene variants (c.1597G>T and
c.1617-2A>G) have not been previously described, neither in
the patient cohorts nor in population studies. The ages at onset
in the three SPG4 patients were 35, 42 and 28 years,

Fig. 1 Analysed cohort and methods used during HSP diagnostics. Detailed description of the identified variants is presented in tables
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Table 1 Interpretation of all variants identified in HSP probands according to the ACMGG&AMP guidelines [Richards and others 2015]

Patient ID Gene cDNA change ACMG criteria ACMG classification

SPG0902 ATL1 NM_015915.4:c.715C>T PM1 + PM2+ PP1 + PP3 + PP4 + PP5 Likely pathogenic
NP_056999.2:p.(Arg239Cys)

SPG0901 ATL1 NM_015915.4:c.1064A>C PM1 + PM2+ PP3 + PP4 Likely pathogenic
NP_056999.2:p.(Asn355Thr)

SPG1301 SPAST NM_014946.3:c.1378C>T PM1 + PM2+ PP4 + PP3 + PP5 Likely pathogenic
NP_055761.2:p.(Arg460Cys)

SPG0102 SPAST NM_014946.3:c.1597G>T PVS1 + PM2 + PM4 + PM5+ PP4 Pathogenic
NP_055761.2:p.(Glu533*)

SPG1401 SPAST NM_014946.3:c.1617-2A>G PVS1 + PM2 + PP4 Pathogenic
SPG0403 WASHC5 NM_014846.3:c.647C>T PP1 + PP3 + PP4 Uncertain significance

NP_055661.3:p.(Pro216Leu)
SPG0302 WASHC5 NM_014846.3:c.1859T>C PM2 + PP1 + PP3 + PP4 + PP5 Likely pathogenic

NP_055661.3:p.(Val620Ala)
SPG0201 KIF5A NM_004984.2:c.484C>T PM1 + PP3 + PP4 + PP5 Likely pathogenic

NP_004975.2:p.(Arg162Trp)
SPG1402 KIF5A NM_004984.2:c.1402C>T PP3 + PP4 Uncertain significance

NP_004975.2:p.(Arg468Trp)
SPG1101 KIF1A NM_001244008.1:c.962G>A PM1 + PM2+ PM4 + PP3 + PP4 Likely pathogenic

NP_001230937.1:p.(Gly321Asp)
SPG0601 SPG11 NM_025137.3:c.408_428del PM2 + PM4+ PP4 + PP5 Likely pathogenic

NP_079413.3:p.
(Glu136_Ile143del)

NM_025137.3:c.3075insA PVS1 + PM2 + PP5 Pathogenic
NP_079413.3:p.(Glu1026Argfs*4)

SPG1002 SPG11 NM_025137.3:c.733_734del PVS1 + PM2 + PM3 + PP5 Pathogenic
NP_079413.3:p.(Met245Valfs*2)
NM_025137.3:c.1471_1472del PVS1 + PM2 + PM3 + PP5 Pathogenic
NP_

079413.3:p.(Leu491Aspfs*66)
NM_025137.3:c.6632G>A PP2 Uncertain significance
NP_079413.3:p.(Arg2211His)

SPG1003 SPG11 NM_025137.3:c.1471_1472del PVS1 + PM2 + PM3 + PP5 Pathogenic
NP_

079413.3:p.(Leu491Aspfs*66)
NM_025137.3:c.3075insA PVS1 + PM2 + PM3 + PP5 Pathogenic
NP_079413.3:p.(Glu1026Argfs*4)

SPG0702 SPG11 NM_025137.3:c.1275insA PVS1 + PM2 + PP4 Pathogenic
NP_079413.3:p.(Glu426Argfs*3)

SPG0502 SPG11 NM_025137.3:c.1457-2A>G PVS1 + PM2 + PM3 + PP5 Pathogenic
NM_025137.3:c.5623C>T PVS1 + PM2 + PM3 + PP5 Pathogenic
NP_079413.3:p.(Gln1875*)

SPG0301 SPG11 NM_025137.3:c.2849delT PVS1 + PM2 + PM4 Pathogenic
NP_079413.3:p.(Leu950Trpfs*13)

SPG0103 SPG11 NM_025137.3:c.2987_2989del PM2 + PM4+ PP3 + PP4 Likely pathogenic
SPG0701 CYP27A1 NM_000784.3:c.379C>T PM2 + PM3+ PP3 + PP5 Likely pathogenic

NP_000775.1:p.(Arg127Trp)
SPG0303 ITPR1 NM_001168272.1:c.2687C>T PP1 + PP3 Uncertain significance

NP_001161744.1:p.(Ala896Val)
SPG0401 ITPR1 NM_001168272.1:c.2687C>T PP1 + PP3 Uncertain significance

NP_001161744.1:p.(Ala896Val)
SPG1203 ITPR1 NM_001168272.1:c.3412A>G PP3 Uncertain significance

NP_001161744.1:p.(Met1138Val)
NM_001168272.1c.6304G>T PP3 Uncertain significance
NP_001161744.1:p.(Ala2102Ser)

SPG0503 SETX NM_015046.5:c.7417C>G PP1 + PP3 Uncertain significance
NP_055861.3:p.(Leu2473Val)

PVS very strong evidence of pathogenicity, PS strong evidence of pathogenicity, PM moderate evidence of pathogenicity, PP supporting evidence of
pathogenicity

30 Neurogenetics (2019) 20:27–38
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respectively. Two probands had pure HSP, while in one with
the nonsense variant, a complicated HSP phenotype with neu-
ropathy as an additional symptom was observed.

WASHC5 (SPG8)

The WASHC5 missense variants were found in two HSP pro-
bands and at least one affected individual within their families.
Patient SPG0302 was found to have WASHC5 c.1859C>T
(p.Val620Ala). The female proband and her affected sibling—
aged 39 and 37 years at onset—had frontal cortex atrophy.
Moreover, in patient SPG0302, white matter and thoracic spinal
cord lesions were present. The male proband SPG0403, with
WASHC5 c.647C>T (p.Pro216Leu), presented a complex HSP
with dysarthria. His brother with the same variant had intellec-
tual disability in addition to HSP (but he had a verified birth
asphyxia—a possible cause of the brain damage).

KIF5A (SPG10)

Two KIF5A variants were identified in two probands. One of
them, KIF5A c.484C>T (p.Arg162Trp), which localised in
motor domain of the kinesin protein was present in a proband
with pure HSP and onset of symptoms at age 41. The second,
KIF5A variant c.1402C>T (p.Arg468Trp), which altered the
stalk part of the protein, was identified in a female proband
with pyramidal signs, ataxia, dysdiachokinesia, bradykinesia,
titubation, ophthalmoparesis and dementia, in whom first
symptoms appeared after turning 40. In MRI, marked atrophy
of the cerebellum and cerebral cortex (predominantly tempo-
ral and parietal) was observed.

KIF1A (SPG30)

A heterozygous KIF1A c.962G>A (p.Gly321Asp) variant,
localised in the motor domain of the protein, was found in
an AD pedigree. The female proband and her mother had
childhood onset, complex hereditary spastic paraplegia and
cognitive decline.

Autosomal recessive HSPs

SPG11 (SPG11)

The NGS analysis enabled us to identify ten different SPG11
variants (with the ExAC frequency below 0.005) in seven
probands. In all of them, the variants were present in both
alleles. In the SPG1002 proband, three different variants were
detected. In three other patients with single variants found in
this study, SPG0103, SPG0301 and SPG0702, the
microrearrangements: duplication of exons 28–29, deletions
of exons 9–11 and exon 29, respectively, were localised in
trans. Five of the variants were frameshift deletions orT
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insertions, two were in-frame deletions, one was in the splice-
site, one was nonsense and one was a missense change. In
SPG1002, the missense variant was identified in cis with the
frameshift one.

All of the seven SPG11 probands had a complicated form
of HSP and showed cognitive impairment: dysarthria 5/7;
dysphagia 2/7; nystagmus 3/7; ophthalmoparesis (horizontal
gaze) 2/7; cervical dystonia 1/7 and mild ataxia 3/7. In neuro-
imaging performed in six probands, thin corpus callosum was
found in 5/6, periventricular white matter lesions were found
in 4/6, and mild cortical and subcortical atrophy was identified
in 2/6. EMGprovided evidence of polyneuropathy in three out
of five examined probands.

CYP27A1 (CTX)

In one proband, NGS revealed a homozygous variant,
c.379C>T (p.Arg127Trp) in the CYP27A1 gene, known as
pathogenic in cerebrotendinous xanthomatosis (CTX). The
carrier status (heterozygosity) was confirmed in the proband’s
father. The patient, with pyramidal and cerebellar signs, petit
mal seizures, bilateral cataract and retinal degeneration in the
right eye, was classified as a case of the complicated HSP.
Mild cortical and subcortical atrophy were present in brain
MRI. Furthermore, in the patient’s medical history, vitamin
B12 deficiency and nephrolithiasis were documented. To date,
neither xanthomas nor other signs characteristic for CTXwere
not observed in the patient.

Genes with uncertain significance in HSPs

ITPR1 (GLSP/SCA15/SCA29)

Three different variants of uncertain significance were identi-
fied in the ADHSP patients. ITPR1: c.2687C>T (p.Ala896Val)
was identified in seven individuals from two unrelated families
with pure HSP. In the SPG1203 proband, two different ITPR1
variants (c.3412A>G-p.Met1138Val and c.6304G>T-
p.Ala2102Ser) were found. A female patient with weakness
and spasticity of her lower limbs, balance disturbances and
polyneuropathy had onset of symptoms at age 50. Genetic test-
ing in her relatives was impossible; however, her family history
may indicate AD inheritance. All the pedigrees and localization
of identified ITPR1 variants are shown in Fig. 2.

SETX (ALS4/SCAR1)

One SETX missense variant of uncertain significance,
c.7417C>G (p.Leu2473Val), was detected in a 2-year-old pro-
band and the father, who has been affected since childhood.
The father’s neurological examination showed upper and low-
er limbweakness and spasticity with increased tendon reflexes
and clonus.

Discussion

Due to heterogeneity, the increasing number of involved genes
and varieties of phenotypes (disorders) linked to a single gene,
the classification and diagnostics of HSPs are challenging. To
overcome these difficulties, different NGS approaches have been
applied in a number of studies, mostly targeted sequencing but
also whole exome sequencing [13–17]. In the present study, we
analysed 30HSP index cases using the Illumina TruSight™One
NGS sequencing panel. Bioinfomatic analysis was performed
for 132 out of the 4813 genes included in the panel. This meth-
odology allowed us to identify 25 variants in nine genes. The
pathogenic and likely pathogenic variants were identified in 16
probands. In five of them, in whom only MLPA technique had
been used for microrearrangement searching, we identified three
SPAST and two ATL1 variants by NGS. It is an evidence that
MLPA is not sufficient for SPG4 testing alone, nonetheless to-
gether with NGS is now a standard in diagnostic approach. Less
frequent HSP subtypes were identified in a group of patients in
whom the SPAST, ATL1 and REEP1 pathogenic variants had
been previously excluded. Two different variants were identified
in WASHC5 (SPG8, OMIM #603563, previously known as
KIAA0196) and KIF5A (SPG10, OMIM #604187) genes, both
regarded as rare HSP subtypes (approximate frequency 1–2%)
that may be associated with pure or complicated HSP pheno-
types [4]. The WASHC5: c.1859T>C (p.Val620Ala) variant has
previously been detected in pure HSP patients but has not been
reported in either ExAC or the 1000 Genomes projects [18]. The
KIF5A:c.484C>T (p.Arg162Trp) variant has been reported in a
three-generation pedigree with spastic paraplegia as a primary
symptom [19].

KIF1A is a neuron-specific motor protein involved in intra-
cellular transport along microtubules. Variants in the KIF1A
gene have been described in patients with AR hereditary sen-
sory and autonomic neuropathy type 2 (HSAN2, OMIM
#614213) and subtype 30 of the hereditary spastic paraplegia
(SPG30, OMIM #610357) [20–23]. De novo KIF1A variants
with AD transmission have been identified in multiple cases
with childhood onset of intellectual disability and a number of
neurological signs, such as progressive spastic paraplegia, optic
nerve atrophy, peripheral neuropathy and cerebral and/or cere-
bellar atrophy, have been variously classified as autosomal
dominant mental retardation type 9 (MRD9, OMIM#614255)
[24–28] or complicated hereditary spastic paraplegia [25, 29,
30]. Finally, KIF1A mutations have been found in pure HSP
subjects [30–32]. In the present study, a dominant KIF1A vari-
ant localised in the motor domain of the protein was found in a
female proband and her mother with childhood onset complex
HSP and cognitive decline. Twenty-three out of 25 heterozy-
gous KIF1A variants (including the present study) alter the
highly conserved motor domain of the protein. However, two
out of four variants responsible for recessive HSP and any of
the variants identified in HSAN2 are localised in the motor
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domain. This suggests that localization of the KIF1A variants
within the gene is not adequate evidence for phenotype trans-
mission. Moreover, the latest data indicate that dominant con-
ditions, includingADHSP, linkedwithKIF1Avariants are more
frequent than recessive ones.

SPG11 (OMIM #604360) is the only known recessive HSP
subtype identified in this study. Contrary to other studies, we
have not detected any affected patient with CYP7B1 (SPG5,
OMIM #270800) or SPG7 (SPG7, OMIM #607259) muta-
tions, or any mutation carriers [13–17, 32].Moreover, variants
in ZFYVE26 (SPG15, OMIM #270700), which occur with
frequency below 0.005 in the ExAC database, were not de-
tected in our cohort.

In addition to the recessive variants, in one case, we detected a
homozygous variant in the CYP27A1 gene. Pathogenic variants
in the cytochrome P450 CYP27A1 gene result in the production

of a defective sterol 27-hydrolase enzyme and have been linked
with cerebrotendinous xanthomatosis (CTX) (OMIM #213700).
Clinical manifestation of CTX includes neurological dysfunction
(e.g. cerebellar ataxia, pyramidal signs, and seizures), cataracts,
tendon xanthomas and chronic diarrhoea [33, 34]. However,
some atypical presentation of symptoms may occur. For exam-
ple, Verrips et al. described seven patients with CYP27A1 vari-
ants and slowly progressive spinal cord syndrome classified as
spinal xanthomatosis. Moreover, similar to our case, all of the
patients presented pyramidal signs, and in five of them, spinal
cord white matter lesion have been demonstrated. Six out of
seven cases studied by Verrips et al. did not have tendon
xanthomas [35]. Patients with CYP27A1 variants affected with
pure and complicated HSP but without xanthomas were also
described by Burguez et al. and Nicholls et al. [15, 36]. These
findings suggest that patients with CYP27A1 variants may

Fig. 2 A ITPR1 protein scheme. Localization of three identified variants
interrupting coupling/regulatory domain is showed by: B*^,
p.(Ala896Val); B♦^, p.(Met1138Val); B•^, p.(Ala2102Ser). IRBIT,
Inositol 1,4,5-trisphosphate (IP3) receptor binding domain; CARP,
Carbonic anhydrase–related protein (CA8) binding domain. B
Pedigrees of three families with ITPR1 variants. Families SPG0303 and

SPG0401 are marked with B*^ which indicates ITPR1: c. 2687C>T
(p.Ala896Val); family SPG1203 is marked with B♦^ and B•^ which indi-
cate ITPR1 : c .3412A>G (p.Met1138Val) and c.6304G>T
(p.Ala2102Ser), respectively. The B+^ points out family members, in
whom the DNA samples were tested; B-Baffected individuals without
DNA testing
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present the broader clinical spectrum including HSP phenotype,
nonetheless the lack of the typical symptoms of CTX, especially
xantomas, should not exclude the investigation of CYP27A1
gene mutations.

Variants of uncertain significance within ITPR1 and SETX
genes were detected in four cases. ITPR1 variants have al-
ready been described as possibly corresponding to four differ-
ent phenotypes: multi-exon deletions in ITPR1 gene to
spinocerebellar ataxia type 15 (SCA15, OMIM #606658),
single nucleotide variants to spinocerebellar ataxia type 29
(SCA29, OMIM #117360) or ataxic cerebral palsy (Ataxic
CP), and the truncated and splice-site variants in Gillespie
Syndrome (GLSP, OMIM #206700) also presented ataxia
and balance disturbances [37–42]. ITPR1 encodes a
homotetramer calcium channel protein that modulates intra-
cellular calcium signalling. Its primary structure consists of
three major domains [43]. In this study the ITPR1
c.2687C>T (p.Ala896Val) variant was detected in two unre-
lated families and segregates with pure HSP phenotype in
seven cases. We also identified two different ITPR1 variants
in a patient with pyramidal signs and polyneuropathy.
Although the three described variants were reported in the
ExAC database, their frequency was lower than 0.005
(Table 2b). The relatively mild HSP symptoms in our patients
were first observed in adulthood i.e. the age of onset was not
optimal for control studies. The segregation data in the fami-
lies with c.2687C>T (p.Ala896Val) supports its pathogenicity;
however, according to the ACMGG&AMP guidelines, this is
not adequate evidence to classify it as a pathogenic/probably
pathogenic variant. Variants identified in the present study are
localised in the coupling-domain and comprise the first report
assigning ITPR1 variants to HSP.

A variant classified as of uncertain significance was also
found in the senataxin gene. SETX variants are responsible for
AR spinocerebellar ataxia (SCAR1) and AD amyotrophic lateral
sclerosis (ALS4) [44–48]. The heterozygous variant of the SETX
gene has also been described as a cause of hereditary motor
neuropathy (dHMN) [49, 50]. Taniguchi et al. reported a family
with a SETX variant misdiagnosed as a hereditary spastic para-
plegia [51]. Thementioned variant (SETX:c.8C>T)was localised
in the N-terminal end of the protein, different than the SETX:
c.7417C>G (p.Leu2473Val), altering the C-terminal part of the
protein, which was identified during our study in father and son
with pure HSP. It is localised in the region of the helicase do-
main, where known pathogenic variants correlated with ALS4
and SCAR1 phenotypes had been reported as well [52].

Although the molecular investigation of rare heterogenic
disorders, such as hereditary spastic paraplegias, will soon be
based on massive NGS technology, their molecular aetiology
assessment still remains challenging. Twomajor difficulties to
face at present are: (1) interpretation of the detected variants
(pathogenic vs benign) and (2) classification of the identified
variant and its association with a specific disease. Unified and

reliable sequence variants interpretation guidelines were de-
veloped by the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology.
Each rare or novel variant should be evaluated in a patient’s
and family’s history context, and physical examination and
previous differential diagnosis should be performed. Such
clinical evaluation is supportive during the process of variants
classification as disease-causing, incidental or benign findings
[12]. Variants classified as pathogenic but also likely patho-
genic have sufficient evidence to be used in genetic counsel-
ling and clinical decision-making. In contrast, variants of un-
certain significance need further investigation that may result
in their reclassification [12].

Implementing NGS technologies in clinical practice also
brings problems due to the genotype-phenotype correlation
and variants’ classification. The classification systems were
designed according to a predominant disease phenotype and/
or a mode of inheritance. Currently, various genes correspond-
ing to numerous complex phenotypes, such as spinocerebellar
ataxias, spastic paraplegias and amyotrophic lateral sclerosis,
are associated with SPG7, SPG11, PNPLA6, KIF1C and
SETX, and they may be inherited as both autosomal dominant
and recessive traits (KIF1A, REEP2, AFG3L2, SETX). In clin-
ical practice, it becomes problematic whether the identified
gene variant should be classified as corresponding to a new
phenotype or if it Bfits^ the patient’s genotype consistent with
the previous clinical diagnosis. Synofzik et al. proposed intro-
ducing the unbiasedmodular phenotyping approach to replace
the ataxias and hereditary spastic paraplegia classification [6].
In parallel, we also recommend simultaneously testing and
analysing the HSP, SCA and ALS genes due to their overlap-
ping phenotype and common cellular pathways involved.

In this paper, we report 24 different variants of nine genes in
HSP patients. Seven of the variants are novel. They were clas-
sified according to the ACMGG&AMP guidelines, and nine
were classified as pathogenic, nine as likely pathogenic and
six as of uncertain significance. Among nine analysed genes,
five have already been known as directly associated with HSP.
NGS testing revealed genetic variants in 22 out of 30 tested
families. Altogether with the previous study [8], seven different
HSP subtypes have been diagnosed in the Polish group of pa-
tients to date. Our data also support the evidence that KIF1A
(SPG30) variants are more frequent in patients with ADHSP,
although they were primarily identified as ARHSP. Moreover,
we believe that CYP27A1 variants should be considered to be
complicated HSP phenotype cases, as well.

The overlapping phenotypes of HSP, SCA and ALS are
associated with multiple genes; therefore, NGS-based screen-
ing provides the best comprehensive genetic diagnostic ap-
proach. The most challenging interpretation of the novel var-
iants requires the entire body of clinical and molecular evi-
dence available in the entire studied group of patients sharing
a defined spectrum of clinical signs.
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