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Slc20a2 is critical for maintaining a physiologic inorganic
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Abstract Mutations in the SLC20A2-gene encoding the inor-
ganic phosphate (Pi) transporter PiT2 can explain approxi-
mately 40 % of the familial cases of the rare neurodegenera-
tive disorder primary familial brain calcification (Fahr’s dis-
ease). The disease characteristic, cerebrovascular-associated
calcifications, is also present in Slc20a2-knockout (KO) mice.
Little is known about the specific role(s) of PiT2 in the brain.
Recent in vitro studies, however, suggest a role in regulation
of the [Pi] in cerebrospinal fluid (CSF). We here show that
Slc20a2-KO mice indeed have a high CSF [Pi] in agreement
with a role of PiT2 in Pi export from the CSF. The implica-
tions in relation to disease mechanism are discussed.
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Introduction

Primary familial brain calcification (PFBC), formerly Fahr’s
disease, is a rare autosomal dominantly inherited neurodegen-
erative disorder with neuropsychiatric and motor symptoms. It
is characterized by calcifications in the basal ganglia and other
brain regions. At least 40 % of the cases of PFBC are linked to
deleterious mutations in the gene SLC20A2, which encodes

the type III Na+-dependent inorganic phosphate (NaPi)
symporter PiT2 [1–3], and recently, also a de novo mutation
in SLC20A2 was identified in a patient presenting with brain
calcifications [4]. The mutations are predicted to result in lack
of PiT2 protein or in PiT2 proteins, which are shown or pre-
dicted to be unable to transport Pi [1–17]. Both types of mu-
tations have been suggested to result in haplo-insufficiency of
Pi transport in affected cells [1]. Calcifications in PFBC have
been found associated with the brain vasculature, from where
they are likely to arise [18, 19]. Slc20a2-knockout (KO) mice
present with a similar calcification phenotype [20].

A certain Pi level in the body is essential due to its buffer
function and role in basic cellular processes. Pi itself is, in
addition, emerging as a specific signaling molecule in mamma-
lian cells [21]. In humans, a Pi concentration in the blood (se-
rum phosphate) between 0.8 and 1.5 mM is considered within
the normal range. Serum Pi levels above 1.5 mM
(hyperphosphatemia), which are prevalent in chronic kidney
disease patients, are associated with peripheral vascular calcifi-
cation [22]. In vitro studies show that exposure of vascular
smooth muscle cells to hyperphosphatemic conditions leads
to trans-differentiation to a mineralizing cell-type [22].
In vivo, both pericytes and vascular smooth muscle cells are
suggested to play active roles in peripheral vascular calcifica-
tion by their trans-differentiation to mineralizing cell-types [22,
23]. Interestingly, based on studies of vascular smooth muscle
cells, a key step in the Pi-induced calcification process is
deregulated expression of type III NaPi symporters, which be-
sides SLC20A2 comprise the highly related SLC20A1 [24]. In-
dividuals with PFBC do, however, not show elevated serum
[Pi] [1, 5, 25], and the function and role of PiT2 in relation to
PFBC are not known.

There is increasing evidence that cerebrospinal fluid (CSF)
composition is important in brain development and in main-
tenance of the health of the adult brain [26]. Recent results
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suggest that during sleep, the CSF follows a para-arterial path-
way into the brain’s parenchyma via the so-called glymphatic
system [27]. This process mixes CSF and interstitial fluid
(ISF) and is suggested to lead to clearance of waste products
from the brain [26, 27]. In the CSF in mammals, the [Pi] is
maintained at a lower level than in the blood [28–31]. Thus, it
must be expected that the ISF [Pi] is also lower than blood
[Pi]. In humans, measurements on the blood and CSF taken at
the same time show approximately 0.4-fold lower [Pi] in CSF
[28–30]. It is not known how the CSF [Pi] is kept at a lower
level than the blood [Pi].

The choroid plexus (ChP) localized at the lateral, the third,
and the fourth ventricles produces most of the CSF, which has
a high daily turnover rate [32]. In situ hybridization shows
high expression of Slc20a2 in mouse ChP [33]. Recently,
Guerreiro and coworkers addressed the Pi transport character-
istics of isolated ChP from the spiny dogfish shark, Squalaus
acanthias, which also maintains its CSF [Pi] lower than its
blood [Pi] [34]. Their results suggest that Pi is actively re-
moved from the CSF by PiT2. Thus, analysis of the
transepithelial Pi flux of ChP from the spiny dogfish shark
using an Ussing chamber, identified a Na+-dependent Pi flux
from CSF to the blood. The Pi transport characteristics were in
agreement with those of PiT2 [34], e.g., it showed lithium-
dependent Pi transport [7]. Only two Na+-dependent Pi
symporters, the type III NaPi symporters PiT2 and PiT1
(encoded by SLC20A1), were found to be expressed in ChP
from spiny dogfish sharks. PiT2 was predominantly localized
to the ChP apical microvillar membranes, which faces the CSF,
while PiT1 localized predominantly to the vascular endothelial
cells. The localizations were confirmed on sections of rat lateral
ChPs [34]. These results suggest that PiT2 plays a major role in
maintaining the low [Pi] in the CSF by exporting Pi from the
CSF to the blood. We hypothesized that if PiT2 is important in
Pi export from the CSF, Slc20a2-KO mice should present with
an increased CSF [Pi] compared to wild-type (WT) mice.

Materials and methods

The breeding pairs, C57BL/6NTac-Slc20a2tm1a(EUCOMM)Wtsi/
Ieg (EM:05549), were obtained from the European Mouse
Mutant Archive, Germany; the strain has been described pre-
viously [20]. All mice were fed with the same standard diet ad
libitum. The mice were anesthetized with an initial dose of
medetomidine (0.3 mg/kg), midazolam (4 mg/kg), and
butorphanol (5 mg/kg), and after 15–20 min, an additional
dose was given to reach a surgical plane of anesthesia. When
anesthetized, the mice were positioned in a stereotaxic frame,
and CSF was drawn from the cisterna magna using a glass
capillary. The mice were sacrificed, and the blood was imme-
diately sampled by cardiac puncture. The [Pi] in CSF and
serum was determined using a malachite green-based assay

as described previously [35]. Data were analyzed by aWelch’s
t test using R version 3.2.2 [36]. Mean values were considered
different when P<0.05.

Results

To address whether Slc20a2-KOmice have an elevated [Pi] in
the CSF, we measured the [Pi] in CSF and blood drawn from
3-week-old Slc20a2-KO mice and WT litter mates. In aver-
age, the WT mice showed a serum [Pi] of 4.79±0.65 mM
(standard deviation) and a CSF [Pi] of 0.90±0.25 mM
(Fig. 1). The average CSF [Pi]/serum [Pi] ratio was 0.19
(range 0.11–0.32) (Table 1). To our knowledge, the [Pi] of
CSF of mice has not previously been published; for compar-
ison, the corresponding ratio reported in 3-week-old rats is
approximately 0.17 [31].

The average serum [Pi] of the Slc20a2-KO mice was
4.01±0.67 mM, which was 0.84-fold lower than the
average serum [Pi] in WT mice (p<0.01) (Fig. 1). How-
ever, the average CSF [Pi] of the Slc20a2-KO mice was
2.19±0.41 mM, i.e., 2.4-fold higher than the average
CSF [Pi] at 0.90 mM of WT mice (p<0.000001)
(Fig. 1). Correspondingly, the average CSF [Pi]/serum
[Pi] ratio of the Slc20a2-KO mice was 0.57 (range
0.41–0.99) (Table 1). Thus, Slc20a2-KO mice were un-
able to sustain their CSF [Pi] at the same low level as
the WT mice.

Discussion

It is now well-established that deleterious mutations in the
gene SLC20A2 are linked to PFBC [1–17], which is charac-
terized by cerebrovascular-associated calcifications [18, 19].
A similar calcification phenotype is present in Slc20a2-KO
mice [20]. The disease mechanism is unknown, but recent in
vitro results [34] suggested a role of PiT2 in maintaining the
low CSF [Pi] observed in healthy individuals. The here
observed inability of Slc20a2-KO mice to sustain the same
low CSF [Pi] as found in WTmice is in agreement with a role
of PiT2 as an exporter of Pi from the CSF. The elevated CSF
[Pi] likely also leads to an elevation of ISF [Pi]. With reference
to hyperphosphatemia, we suggest an introduction of the term
CSF hyperphosphate to describe Pi levels in the CSF above
the highest concentration occurring in the non-pathologic
situation.

To our knowledge, the CSF [Pi] in individual carriers of
SLC20A2-associated PFBC has not been investigated, and it
remains to be seen whether they also present with CSF
hyperphosphate. The here presented new insight in the role
of PiT2 in maintaining CSF normophosphate in mice, howev-
er, points at a potential mechanism, or contributing
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mechanism, behind the cerebral vessel disease present in
SLC20A2-associated PFBC and sporadic cases, i.e., CSF

hyperphosphate. Specifically, pericytes/vascular smooth mus-
cle cells in the brain might react in a similar manner to CSF

Fig. 1 [Pi] in serum and CSF
from 3-week-oldWTand Slc20a2-
KO mice. a CSF sampled from 11
WT (8 females, 3 males) and 10
KO (8 females, 2 males). b Serum
sampled from 14 WT (10 females,
4 males) and 12 KO (9 females, 3
males). KO compared toWT: CSF
[Pi] (p<0.000001) and
serum [Pi]
(p<0.01)

Table 1 [Pi] in serum and CSF
from 3-week-old WT and
Slc20a2-KO mice

Genotype Sex [Pi]a serum [Pi] CSF [Pi] CSF/[Pi] serum

WT Female 5.07 1.20 0.24

WT Female 5.69 ND –

WT Female 5.56 1.04 0.19

WT Female 4.71 0.54 0.11

WT Female 3.48 0.84 0.24

WT Female 4.96 0.67 0.14

WT Female 4.91 0.77 0.16

WT Female 5.29 ND –

WT Female 3.86 0.58 0.15

WT Female 4.87 0.89 0.18

WT Male 4.87 1.17 0.24

WT Male 3.98 1.26 0.32

WT Male 5.42 0.90 0.17

WT Male 4.45 ND –

KO Female 4.63 ND –

KO Female 4.25 1.93 0.45

KO Female 4.96 ND –

KO Female 4.02 1.70 0.42

KO Female 4.74 1.95 0.41

KO Female 2.81 2.09 0.74

KO Female ND 2.63 –

KO Female 4.01 2.13 0.53

KO Female 2.92 2.90 0.99

KO Female 3.75 1.85 0.49

KO Male 4.44 2.70 0.61

KO Male 4.01 ND –

KO Male 3.54 2.01 0.57

Average for WT mice with CSF sample 4.70 0.90 0.19

Average for all WT mice 4.79 – –

Average for KO mice with CSF sample 3.83 2.19 0.57

Average for all KO mice 4.01 – –

ND not done
a [Pi] in millimolar
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hyperphosphate, as the peripheral vascular cells are
suggested to react to hyperphosphatemia [22, 23], i.e.,
by shifting phenotype and being actively involved in the cal-
cification of the blood vessels. This hypothesis does not exclude
that impaired PiT2 function in specific cell types in the brain
outside the ChP, e.g., in the pericytes/vascular smooth muscle
cells, also directly contributes to the disease development. The
presented results, however, provide the first insight into PiT2’s
function in normal brain physiology in an animal model pre-
senting with a similar calcification phenotype as found in
PFBC.

Recently, mutations in another gene encoding a protein
associated with cellular Pi homeostasis, XPR1, were also
found associated with PFBC [37]. However, while
SLC20A2 encodes an importer of Pi into cells [38, 39],
XPR1 encodes a protein exporting Pi out of cells [40].
XPR1 proteins harboring damaging mutations associated
with PFBC showed severely reduced membrane localiza-
tion and/or impaired ability to export Pi out of cells to var-
ious degrees [37]. Interestingly, in situ hybridization shows
expression of Xpr1 in mouse ChP [33]. Albeit the exact
position of XPR1 in the ChP is not clear, it is tempting to
speculate that it could be positioned in the basolateral mem-
brane of the choroidal ependymal cells and be involved in
Pi export from the cells to the blood side. Accordingly,
impaired XPR1 transport could lead to increased intracel-
lular Pi accumulation. Results on non-polarized mammali-
an cells in culture suggest that increased intracellular [Pi]
might downregulate PiT2 expression in a cell-line specific
manner [38, 41]. Thus, a potential increase in intracellular [Pi],
due to impaired XPR1 function, might result in downregulation
of PiT2-mediated apical Pi transport from the CSF into the
ependymal cells. If the hypothesis is correct, damaging XPR1
mutations could potentially also result in CSF hyperphosphate.
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