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Abstract
Human interaction recognition (HIR) is a significant challenge in computer vision that focuses on identifying human 
interactions in images and videos. HIR presents a great complexity due to factors such as pose diversity, varying scene 
conditions, or the presence of multiple individuals. Recent research has explored different approaches to address it, with an 
increasing emphasis on human pose estimation. In this work, we propose Proxemics-Net++, an extension of the Proxemics-
Net model, capable of addressing the problem of recognizing human interactions in images through two different tasks: the 
identification of the types of “touch codes” or proxemics and the identification of the type of social relationship between 
pairs. To achieve this, we use RGB and body pose information together with the state-of-the-art deep learning architecture, 
ConvNeXt, as the backbone. We performed an ablative analysis to understand how the combination of RGB and body 
pose information affects these two tasks. Experimental results show that body pose information contributes significantly to 
proxemic recognition (first task) as it allows to improve the existing state of the art, while its contribution in the classification 
of social relations (second task) is limited due to the ambiguity of labelling in this problem, resulting in RGB information 
being more influential in this task.
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1  Introduction

Human activity recognition (HAR) is one of the most impor-
tant and challenging problems in computer vision, which 
aims to recognize activities present in images or videos 
automatically. In particular, Human Interaction Recog-
nition (HIR) constitutes a subset of HAR and focuses on 
distinguishing human-to-human interactions within visual 
data [1], such as handshakes, hugs, conversations or even 
what types of physical contact or Proxemics  [2] exist 

between pairs of people (hand-hand, hand-shoulder, etc.). 
The latter provides very relevant information to determine 
the type of social interaction and the interpersonal relation-
ships between the members present in the interaction since 
the type of physical contact will vary greatly depending on 
whether they are acquaintances, friends or co-workers.

Recognizing human-human interactions in images and 
videos is a fundamental challenge in computer vision and 
deep learning. Its importance extends to numerous real-
world applications, including human-computer interac-
tion, surveillance systems, autonomous vehicles, and other 
fields [3–6].

HIR is challenging due to the complex postures of human 
beings, the number of people in the scene, and specific chal-
lenges, such as illumination variations, clutter, occlusions, 
and background diversity. For example, if we look at Fig. 1, 
which shows people interacting differently, how would the 
reader classify these interactions? In the first two, we can see 
two couples interacting physically, but what kind of physical 
contact can we clearly observe: hand-hand, hand-shoulder, 
etc.? In the following two images, can the reader determine 
with complete certainty from visual information alone 
whether the pairs of people are friends, family members, or 
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co-workers? Which of those tasks is easier for the reader? 
As we can see, these images reflect the great complexity of 
the problem of recognizing human interactions in images 
and videos.

In recent years, the HIR problem has been addressed 
from different perspectives. For example, Yang et al. [2] 
address this problem by making use of Proxemics, a branch 
of anthropology that studies interactions between people 
by analyzing their proximity and how they physically touch 
each other (hand-hand, hand-shoulder, etc.). On the other 
hand, in [7], the authors address the problem by focusing 
on the visual recognition of social relationships in images 
(family, friends, professionals, etc.).

Human interactions are characterized by several key 
elements, such as context, scene, and pose [8]. Of these 
elements, it can be argued that human poses are central to 
identifying an interaction, as context and scene can change 
considerably, while pose must remain constant as members 
of a recognizable set of interaction categories.

Human pose estimation has become an increasingly 
popular research topic in the last decade due to its 
application in various areas, including human interaction 
recognition in images. This has led to recent work 
demonstrating the important contribution of human pose to 
this problem [8–10].

In addition, the growing popularity of Computer Vision 
and the rapid advancement of powerful Deep Learning 
techniques have given rise to much newer methods 
and approaches such as Vision Transformers  [11] or 
ConvNeXt [12].

The main objective of this work is to address the problem 
of detecting human interactions in images from two 
different tasks. From a lower level task in which we focus 
on the detection and classification of the type of physical 
interactions between individuals (proxemics) to a higher 
level task in which we focus on the classification of the type 

of social interaction between pairs of people in which there 
may or may not be physical interaction.

In a preliminary version of this work [13], we proposed 
a new model, coined Proxemics-Net, and investigated 
the performance of two state-of-the-art deep learning 
architectures, ConvNeXt [12] and Visual Transformers [11] 
(as backbones) on the problem of proxemic recognition 
using only RGB information (not pose information). We 
showed experimental results that outperformed the existing 
state-of-the-art and demonstrated that the two state-of-the-
art deep learning models help in the proxemics recognition 
problem using only RGB information, with the ConvNeXt 
architecture being the best-performing backbone.

The main new contributions of this work are as follows:

•	 We propose Proxemics-Net++, an extension of the 
Proxemics-Net model that combines the ConvNeXt 
architecture with RGB and body pose information to 
address our two proposed tasks for recognizing human 
interactions in images: categorizing physical interactions 
(proxemics) and social interactions between pairs.

•	 We propose a body pose representation from the 
information obtained by the 3D pose estimator 
DensePose [14] after being applied to our datasets.

•	 We perform an ablative study to analyze how the type 
of information employed (RGB and Pose) and their 
combination influence the human interaction recognition 
problem.

•	 We show experimental results that outperform the 
existing state of the art on the Proxemics dataset. This 
indicates that body pose information and state-of-the-
art deep learning architectures contribute significantly 
to our first task, which focuses on proxemics recognition 
in images.

•	 Our experiments reveal that, unlike RGB data, body 
pose information is insufficient for our second task, 

(b) PICS dataset examples(a) Proxemics dataset examples

Fig. 1   Examples of human-human interactions. Could the reader indi-
cate what kind of contact exists between the pairs in the examples 
in (a)? What kind of relationship exists between the people in (b)? 
These images illustrate the great complexity inherent in the problem 
of recognizing human interactions in images. The images in (a) high-
light situations where it is confusing to determine the type of physi-

cal contact (hand-elbow, hand-shoulder, elbow-shoulder, etc.) due to 
clothing and partial occlusion. In (b), the images show ambiguity in 
determining the type of social relationship between individuals (fam-
ily, friends, co-workers, etc.) in the absence of additional context
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which aims to identify social relationships between pairs 
where there may or may not be physical contact. As seen 
in the results (Sect. 5.2), the inherent complexity and 
ambiguity of the problem indicate the need for a different 
architecture and additional information.

The remainder of this paper is structured as follows. 
Section 2 presents the related work, and then, in Sect. 3, we 
describe the proposed new Proxemics-Net++ model. Later, 
we will explain all the experiments’ characteristics and the 
implementation details (Sect. 4). Then, we will show and 
comment on the results of all the experiments performed 
(Sect. 5), and finally, we will finish with some conclusions 
and future work (Sect. 6).

2 � Related work

Over the last few years, human interaction recognition in 
images has received increasing attention from the research 
community.

This is a difficult problem due to several reasons. First, 
some interactions, such as kissing or shaking hands, involve 
only two people, while others, such as dining or partying, 
may involve a larger number of individuals. Second, there 
is no restriction on the characteristics of the images, such 
as camera position, lighting, or clutter, which can vary 
considerably and lead to ambiguity or occlusions of the 
people involved. Finally, the presence of unrelated people 
in the scene complicates the identification of the actual 
interaction.

To address the problem of human-to-human interaction 
detection, the anthropologist Hall  [15] introduced the 
concept of proxemics, a categorization of human individual 
interactions based on spatial distances. In 2012, Yang 
et  al.   [2] characterized Proxemics as the problem of 
recognizing how people physically touch each other and 
called “touch codes” to each type of interaction or proxemics. 
Yang et al. identified six dominant “touch codes”: Hand-
Hand, Hand-Shoulder, Shoulder-Shoulder, Hand-Torso, 
Hand-Elbow, and Elbow-Shoulder. The authors of this 
study claimed that using specific detection models was the 
best way to address the problem of proxemics recognition 
because other alternatives, such as pose estimation, were 
significantly affected by ambiguity and occlusion when there 
was physical interaction between people.

To address the challenges arising from ambiguity and 
occlusion during physical interactions between individuals, 
Xiao et al. [16] expanded the concept of the “touch code” 
by incorporating additional information. Specifically, 
they introduced a complete set of “immediacy” cues, 
encompassing physical contact, relative distances, body 
leaning direction, eye contact, and standing orientation. 

The authors developed a Deep Multi-task Recurrent 
Neural Network (RNN). This neural network was 
designed to model the intricate correlations between these 
immediacy cues and human pose estimation. This novel 
model demonstrated significant advancements over the 
state-of-the-art results achieved by [2].

In 2017, motivated by the limitations of existing 
people detection methods related to speed, efficiency, and 
performance, particularly in scenarios involving unknown 
scales and orientations, occlusion, and ambiguity in 
identifying body parts, Jiang et al. [17] proposed a new 
approach. This new method aimed to segment individual 
humans and label their body parts, including arms, legs, 
torso, and head, by assembling regions. Consequently, this 
new approach improved the state of the art on proxemics 
recognition.

The problem of human interaction recognition can 
also be addressed from other approaches. For example, Li 
et al. [7] focus on visual recognition of social relationships 
in images. They proposed a Dual-glance model for social 
relationship recognition, where the first glance fixates on 
the person of interest, and the second glance deploys an 
attention mechanism to exploit contextual cues.

Several notable approaches have been introduced 
in recent years to address the problem of recognizing 
social relations from images, mainly focusing on graph-
based models. In 2019, the Multi-Granularity Reasoning 
(MGR) framework was proposed by Zhang et al.  [18]. 
MGR emphasizes the importance of capturing social 
relationships through a combination of different sources of 
information, including the Person-Object Graph (POG) to 
model actions between people and objects and the Person-
Position Graph (PPG) to represent interactions between 
matched individuals. Thus, this framework combines 
global knowledge, regional features, and interactions 
between people and objects to improve the recognition of 
social relationships.

Goel et al. [19] presented a Social Relationship Graph 
Generation Network (SRG-GN). SRG-GN stands out as an 
end-to-end trainable neural network capable of generating 
a Social Relationship Graph from input images. This 
innovation, which uses memory cells as Gated Recurrent 
Units (GRUs), offers a dynamic approach to iteratively 
update social relationship states in a graph. In this case, 
the network integrates scene context and attributes, which 
provides additional information on social relationships and 
their attributes. Li et al. [20] proposed a graph relational 
reasoning network (GRN) for social relation recognition 
in images. Unlike other methods developed to date, 
it considered all social relations in an image together 
by constructing a graph of social relations, rather than 
independently. This approach not only improved accuracy 
and efficiency, but also managed the logical constraints 
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between different types of social relations by constructing 
several virtual relation graphs.

In 2021, to address the limitations of previous methods 
based on multiple relationship graphs, Li et  al.  [21] 
introduced a novel method known as Hybrid-Features 
Social Relation Graph Reasoning (HF-SRGR). Their 
approach focuses on capturing dependencies among 
multiple relationships while incorporating contextual 
information. In particular, HF-SRGR constructs a graph 
in which each node represents a relationship, with the 
addition of a scene node.

Yang et  al.  [22] proposed a Gaze-Aware Graph 
Convolutional Network (GA-GCN) for social relation 
recognition, which aims to discover context-aware social 
relation inference with gaze-aware attention. Finally, Sousa 
et al. [23] proposed a novel approach based on a Social 
Graph Network (SGN) capable of interpreting relationships 
from three different domains (individual, relative, and 
general information). Additionally, prior knowledge was also 
considered since how humans differentiate relationships is 
deeply associated with appearance attributes such as age, 
gender, clothing, emotion, and pose. This new approach 
improved the state of the art on social relation recognition.

In this work, we focus on the two tasks mentioned above 
related to human-to-human interaction in still images: 
proxemics recognition based on the classification of touch 
codes and high-level social interaction classification. Instead 
of using elaborated graph-based models, we are interested 
in studying how feed-forward neural architectures based 
on Convolutional Neural Networks can be applied to those 
tasks.

On the other hand, in the last decade, human pose 
estimation has also become an increasingly popular research 
topic due to its application in various areas, including 
human interaction recognition in images. That is why, 
recently, several researchers have addressed the problem of 
human interaction recognition using body pose estimation, 
demonstrating a significant contribution to this problem.

In [24], the authors presented a method for recognizing 
human interactions from videos by combining high-level 
features computed by a Convolutional Neural Network pre-
trained on Imagenet, with articulated body joints as low-
level features. Gokhan et al.’s work [8] proposed a Multi-
stream Convolutional Neural Network architecture, mainly 
focused on pose information. Specifically, several pose-
based representations were formulated, showing that paying 
more attention to poses positively affects human interaction 
recognition. In [9], a novel framework for human interaction 
recognition, which considers both the implicit and explicit 
representations of human behavior, is presented. In [25], the 
authors propose a deep learning approach that recognizes 
humans and their social interactions in a 3D space from 
visual cues.

In the early version of this work  [13], we presented 
Proxemics-Net, a model that uses RGB image information 
and advanced deep learning architectures, particularly 
ConvNeXt and Visual Transformers, for proxemic 
classification. Experiments on the existing Proxemics dataset 
showed that these architectures significantly improved 
performance on this task, with ConvNeXt being the most 
effective.

Therefore, in this new work, we propose Proxemics-
Net++, an extension of the Proxemics-Net model, able to 
address the problem of human interaction recognition in 
images from two different tasks: by identifying the type of 
proxemics as well as the identification of the type of social 
relationship between couples. For this purpose, we combine 
RGB and body pose information with the ConvNeXt 
architecture (best backbone obtained). In this way, we also 
analyze how the human pose information contributes to each 
task and whether it reduces the ambiguity present in the 
images.

3 � Proposed method

In this section, we will first introduce the original model 
proposed in our previous work (Sect. 3.1) and briefly discuss 
the ConvNeXt architecture that we have used as a backbone 
(Sect. 3.2). Then, we will summarize DensePose, the pose 
estimator we have selected, and the body pose representa-
tion we generate from its output (Sect. 3.3). Finally, we will 
explain the new Proxemics-Net++ model proposed in this 
work (Sect. 3.4).

3.1 � Overview of the base model: Proxemics‑Net

In our previous work [13], a new model called Proxemics-
Net was proposed (see blue branches in Fig.  2). This 
model was based on two different deep networks that had 
been previously pre-trained: ConvNeXt [12] and Vision 
Transformers (ViT) [11].

The Proxemics-Net model has three inputs. Two inputs 
corresponding to the RGB clipping of each of the individuals 
composing a pair (p0_branch) and (p1_branch) and a third 
input corresponding to the RGB clipping showing the pair to 
be classified (pair_branch). The three input branches receive 
RGB images of 224 × 224 resolution.

All three branches of this base model used a common 
backbone to process the inputs (ConvNeXt [12] or Vision 
Transformers (ViT) [11]). The results of the three branches 
are merged through a concatenation layer and then passed 
through a fully connected layer, which predicts the proxemic 
classification of the input samples.
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3.2 � ConvNeXt‑based backbone

The ConvNeXt model was proposed by Liu et al. [12] and is 
a pure convolutional model (ConvNet) constructed entirely 
from standard ConvNet modules and inspired by the design 
of Vision Transformers [11].

ConvNeXt models are built on a foundation of 
conventional neural network components, including 
depthwise convolutions and layer normalization. Unlike 
recent architectures such as Vision Transformers (ViT), 
ConvNeXt models do not incorporate self-attention 
mechanisms or hybrid approaches. Instead, in their 
development, the authors adopt a stepwise approach, starting 
with a basic architecture and progressively enhancing it. 
This process aligns with certain design principles observed 
in ViT, such as the emphasis on layer normalization and 
a deep and scalable network structure (network capable 
of managing different types and sizes of data), which are 
crucial for performance and efficiency. In the process, they 
developed a family of models named ConvNeXt, achieving 
high performance on the ImageNet-1k and ImageNet-21k 
datasets [26].

However, it should be noted that the ConvNeXt model 
has not been developed in isolation, but rather as an 
evolution of other transformers, in particular the Sliding 
Window Transformer (Swin) [27]. The Swin Transformer 

distinguishes itself by processing images at a higher level 
of granularity thanks to its self-attention mechanism, which 
effectively solves the scalability problems present in the 
vanilla Vision Transformers.

In our previous work  [13], a comparison was made 
between the ConvNeXt and ViT architectures, resulting 
in ConvNeXt as the best backbone for our proxemics 
recognition problem. However, since ConvNeXt is an 
adaptation of Swin, we have extended our comparison and 
included the Swin Transformer as a possible backbone, in 
order to provide a fairer and more complete comparison 
between these state-of-the-art architectures and to be able 
to conclude with certainty which architecture is better for 
our problem.

Table 1 shows the comparison between the best results 
obtained with the selected Swin Transformer variants and 
the results obtained in our previous work [13]. Specifically, 
we have conducted a series of experiments using the Swin 
Transformer in two variants (Tiny 1 and Base 2) with the 
Proxemics dataset and RGB information, similar to what 
we did in [13].

Fig. 2   Our Proxemics-Net++ model. It consists of six inputs: three 
branches for the RGB information of the couple and the individu-
als that compose it (blue branches) and another three branches for 
the body pose representation of the two individuals and the couple 
(green branches). All branches have the same type of backbone (Base 

or Large). The outputs of these six branches are passed to a Fusion 
Block, which can be of two types: Concatenation fusion or Cros-
sAttention fusion (see Fig. 4). Finally, the type of human interaction 
(proxemics or social relationship) of the input samples is predicted 
(best viewed in colour) (color figure online)

1  microsoft/swin-tiny-patch4-window7-224: https://huggingface.co/
microsoft/swin-tiny-patch4-window7-224.
2  microsoft/swin-base-patch4-window7-224-in22k: https://hugging-
face.co/microsoft/swin-base-patch4-window7-224-in22k.
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Our results indicate that while the Swin Transformer 
models perform better than ViT, they do not outperform the 
results of ConvNeXt, thus confirming ConvNeXt as the best 
backbone for our problem.

3.3 � Body pose representation: DensePose

DensePose [14] is a human pose estimator that aims to map 
all human pixels in a 2D RGB image to the 3D surface of 
the human body.

Within the DensePose project, two main approaches are 
used: chart-based dense pose estimation and continuous 
surface embeddings.

The goal of chart-based DensePose methods is to 
establish dense correspondences between image pixels and 
the 3D object mesh by splitting the latter into charts and 
estimating, for each pixel, the corresponding chart index (I) 
and local chart coordinates (U, V). Specifically, the human 
body is divided into 24 parts.

For each detected human, the model predicts its coarse 
segmentation S (with 2 or 15 channels representing 
foreground/background or background plus 14 predefined 
body parts), fine segmentation I (with 25 channels 
representing background plus 24 predefined body parts), 
and local chart coordinates U and V.

For this work, we have used the DensePose estimator to 
obtain the pose of all the persons present in the images of 
our datasets. However, we have selected only the returned 
I-map of each detected person and made some changes. 
First, of the 24 predefined body parts, we have discarded 
the parts corresponding to the legs and kept only the parts 
corresponding to the head, torso, and arms since the char-
acteristic details of physical interactions and social relation-
ships are most often visually located in the upper body, with 
the lower body being unnecessary. Once the lower part of the 
human body has been discarded, we have grouped the differ-
ent body parts in a 224 × 224 TLR map (Torso, Left_arm, 
Right_arm). Specifically, the T channel corresponds to the 
Red channel of the map and includes pixels of the head and 
torso. Meanwhile, the L and R channels correspond to Blue 

and Green, respectively. The L channel contains pixels of the 
left arm (arm, forearm, and hand), and the R channel con-
tains pixels of the right arm (arm, forearm, and hand). Spe-
cificallWithin each channel, we differentiate each grouped 
subpart with a different pixel value (see green box in Fig. 3). 
In this way, we obtain a body pose representation of each 
detected person’s parts and the pair to be evaluated.

3.4 � Our proposed model: Proxemics‑Net++

In this work, we propose Proxemics-Net++, a model that 
extends Proxemics-Net with some variations. In particular, 
we have added three new inputs for the body pose repre-
sentation we obtained from the pose estimator DensePose.

Thus, this new model has six inputs, the three inputs it 
already had for RGB and three new inputs for pose (see 
Fig. 2).

These three new inputs maintain the same structure 
and format as the three RGB inputs. That is, two inputs 
corresponding to the body pose of each of the individuals 
composing a pair (pose_p0 branch) and (pose_p1 branch) 
and a third input corresponding to the clipping showing the 
body pose of the pair to be classified (pose_pair branch). 
These three input branches receive images of 224 × 224 
resolution.

The six branches of the model have the same type 
of backbone. In this case, we have only made use of the 
ConvNeXt pre-trained deep network as a backbone since 
it was the one that obtained the best results in the previous 
work [13]. The backbone of each branch is responsible for 
extracting the characteristics of the corresponding input.

The results of the six branches are combined in a 
Fusion Block consisting of a Concatenation Fusion or a 
CrossAttention Fusion (see Fig. 4).

In the Concatenation Fusion Block (see Fig. 4–left image), 
the input branches are combined through a concatenation 
layer and passed through a fully connected layer that 
predicts the type of human interaction (proxemics or social 
relationship, depending on the particular task) of the input 
samples.

Table 1   Results of the best 
models obtained for each of the 
three proposed backbone types 
on the Proxemics dataset with 
RGB information

The results (average of set1 and set2) show that the model incorporating the ConvNeXt network as a 
backbone obtains the best results. The %AP results for each type of proxemics and the %mAP are shown.
Bold values represent the best result obtained in each of the six labels and in mAP (among allthe models 
compared)

Backbone HH HS SS HT HE ES mAP
(Set1-Set2)

ViT 45.5 55.7 46.4 76.6 56 51.9 55.7
SwinTransformer_Tiny 51.9 50.5 46.1 73.8 52.3 48.3 53.8
SwinTransformer_Base 59.3 54.1 45.0 83.5 54.4 52.7 58.2
ConvNeXt_Base 54.1 51.7 59.3 82.3 57.2 54.2 59.8
ConvNeXt_Large 57.7 54.9 59.3 85.3 60.3 64.9 63.7
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In the CrossAttention Fusion Block (see Fig. 4–right 
image), we have implemented the same CrossAttention 
fusion method described in [28]. Cross-attention allows 
to analyse and understand correlations between different 
inputs (RGB and Pose images, for example). This approach 
does not simply process each input in isolation, but also 
learns to identify patterns and correlations between them by 
“paying attention” to how they relate to each other. In tasks 
that demand a thorough comprehension of the data, such 
as Human Interactions Recognition, the model can capture 
complex relationships.

Thus, following the fusion method described in [28], 
each of the six branches passes through a Projection module 

composed of a linear layer followed by batch normalisation, 
a tanH activation function and another linear layer. In this 
way, it takes the input features of each branch and maps them 
into a common 512 D feature space.

Once the features are projected, they are all stacked as 
F
U
∈ ℝ

6×512 , and six cross-attention modules (CA) are 
generated, one for each branch. These modules consist of a 
MultiHeadAttention layer. In this case, for each module, the 
“query” is the concatenation of all projected features ( F

U
 ), 

while the “key” and “value” are the individual projected 
features.

After CrossAttention, the results of the individual 
attention modules are summed ( F

S
 ) to integrate the 

Fig. 3   Input data for Proxemics-Net++. Given the target image, the 
first two image crops (‘Person 0’ and ‘Person 1’) correspond to the 
individual clippings of the members of the pair, and the third image 
crop (‘Pair’). Specifically, the blue rectangle shows the correspond-

ing RGB clippings and the green rectangle shows the corresponding 
clippings of the body pose representation. All clipping images have a 
resolution of 224 × 224 pixels (color figure online)
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Fig. 4   Fusion blocks types implemented in Proxemics-Net++. In 
the Concatenation Fusion Block (left image), the results of the six 
branches are combined through a concatenation layer and a fully con-
nected layer that predicts the human interaction type of the input sam-
ples. In the CrossAttention Fusion Block (right image), the outputs of 
the six branches pass through a Projection module that takes the fea-

tures of each branch and projects them into a common 512 D feature 
space. Subsequently, a CrossAttention Fusion, consisting of Cros-
sAttention (CA) and SelfAttention (SA) for feature fusion, is applied 
to all these outputs, following the same methodology implemented 
in [28]
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information from the different branches. This aggregation 
allows combining the essential features of each branch. 
The F

S
 result is then fed into a SelfAttention layer (SA), 

which processes the sum of the attention modules, 
allowing the model to refine and improve its internal 
interpretation of the data.

After the SelfAttention, a residual connection is made 
by summing the output of the Self-Attention layer with 
its original inputs ( F

S
 ), thus generating “ F

CAF
 tokens” 

(Contextual Attention Features). This helps preserve the 
original information between the model’s layers and adds 
refinements from the SelfAttention, improving training 
stability. Lastly, the F

CAF
 tokens are averaged and fed into 

a classification layer.
Finally, since the first task to be addressed is a multi-

label problem where each pair can be classified with more 
than one type of proxemics, the output layer is a 6-unit 
Sigmoid layer (one for each class). However, in the case 
of the second task, the problem is multi-class since a pair 
can only belong to one type of social relation. Thus, the 
output layer is a 6-unit Softmax layer in this case.

4 � Experimental setup

In this section, we will present the two datasets we have 
used for training our models (Sect.  4.1) and explain 
the metrics used for the evaluation of these models 
(Sect. 4.2). Finally, we will see the implementation details 
such as the preprocessing performed on the images, the 
partitions realized on the dataset samples, and the training 
details (Sect. 4.3).

4.1 � Datasets

4.1.1 � Proxemics

The Proxemics dataset [29] is an annotated database with 
body joint positions and “touch code” labels, introduced 
in  [2]. This dataset comprises 1,178 images, with 589 
being unique images and the other 589 being mirror-flipped 
versions of the original images.

These images consist of personal photos of family 
and friends collected from web searches on Flickr, Getty 
Images, and image search engines on Google and Bing. All 
images are in color (RGB) and contain two to six people 
(most images usually have only two) in various poses, scene 
arrangements, and scales.

For every image in this collection, the dataset creators 
labeled the positions (coordinates) of the ten major body 
joints of all the individuals present. These body joints 
include the head, neck, right and left shoulders, right and left 
elbows, right and left wrists, and right and left hands. They 
also labeled all types of proximity between pairs, which 
are denoted as Hand-Hand (HH), Hand-Shoulder (HS), 
Shoulder-Shoulder (SS), Hand-Torso (HT), Hand-Elbow 
(HE), and Elbow-Shoulder (ES) (see Fig. 5).

Finally, after analyzing all the proxemics labeled within 
the dataset, the researchers observed that most pairs of 
individuals exhibited either zero (indicating the absence 
of any of the six types of proxemics) or one “touch code”. 
However, many images also displayed two or more “touch 
codes." This could occur, for example, when a single 
person’s arm, including the elbow and hand, makes contact 
with another person’s body.

As in the previous work [13], we have approached the 
problem of proxemics classification at the pair level instead 
of at the image level as did the authors of the dataset [2]. In 

(f) Elbow-Shoulder(e) Hand-Elbow(d) Hand-Torso(c) Shoulder-Shoulder(b) Hand-Shoulder(a) Hand-Hand

Fig. 5   Touch codes in Proxemics. Images showing the six specific “touch codes” in the Proxemics Dataset
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this way, we have the different types of proxemics appearing 
in each pair that we can find in the original images.

4.1.2 � People in social context–PISC

The People in Social Context (PISC) dataset [7] is a dataset 
that focuses on social relationships. It consists of 22,670 
annotated images with nine types of social relationships. All 
images are in color (RGB) and present an average of 3.08 
persons per image.

In particular, the authors propose two different types of 
annotations. The first focuses on social domains, splitting 
the dataset into three types of coarse relationships: No 
Relation, Intimate Relation, and Non-Intimate Relation. 
The second considers fine-grained social relationships, 
represented by six classes: Friends, Family Members, 
Couples, Professional, Commercial, and No Relation.

Specifically, they provide the bounding box annotations 
of each person, image information (image source, image 
size, image ID), and the social relationship annotations 
(coarse and fine) of all pairs of people in the images.

In this work, we have only experimented with the fine-
grained annotations (see Fig. 6) as we have considered them 
more challenging than the other cases.

4.2 � Metrics

We have used the Average Precision (AP) metric to evaluate 
the proposed variants of our Proxemics-Net++ model.

Average Precision (AP) is a metric designed to evaluate 
the performance of a model within each class rather than 
providing a generalized assessment. This approach allows 
us to assess whether the model exhibits consistent behavior 
across all classes, indicating that it is a balanced model. On 
the other hand, a high degree of variability in AP values 
among different classes might suggest that the model excels 
in classifying specific classes while struggling with others.

The closer the value of this metric is to 1, the better our 
model performs within each class.

Finally, once we have obtained the average precision for 
each class, we calculate the mean Average Precision (mAP), 
which is the average of the AP values obtained with the six 
classes.

4.3 � Implementation details

4.3.1 � Image preprocessing

To work with both datasets, we have applied the same 
image preprocessing proposed in our previous work [13]. 
Specifically, we have made clippings of all the pairs and 
the individuals that compose it in all the RGB images. To 
perform the clippings, we have used Detectron2 [30], an 
object and person detector that returns the bounding boxes 
of each person present in an image. Thus, we have obtained 
three clippings for each pair in an image: one for each person 
in the pair and a third clipping with both members of the pair 
(see the blue box in Fig. 3).

Since the ConvNeXt model works with 224 × 224 
resolution input images, we have preprocessed the clippings 
by adding padding to make them square and resizing them 
to 224 × 224 resolution without changing the aspect ratio.

In the case of the body pose representation, we also 
obtained three clippings per pair (one for each individual and 
one for the pair). However, since when generating our body 
pose representation from the DensePose output, we only 
kept the body parts referring to the torso, head, and arms, 
we centered the cropping of the body pose representation on 
this area of the body (see green box in Fig. 3).

Subsequently, as in the case of the RGB images, we have 
preprocessed the clippings by adding padding to make them 
square and resizing them to 224 × 224 resolution.

4.3.2 � Dataset partitions

We have used the same train, test, and validation partitions 
proposed by the authors of the datasets.

(a) Friends (b) Family (c) Couple (d) Professional (e) Commercial (f) No relation

Fig. 6   Types of fine social relationships in PISC. Images showing the six types of fine relationships in the People in Social Context (PISC) Data-
set
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In the case of the Proxemics dataset  [2], the authors 
only propose the train and test partitions, so we have taken 
approximately 10% of the samples from the training set to 
use for validation.

In the case of the PISC dataset [7], the train, test, and 
validation sets have 49,017, 15,497, and 14,536 images.

In particular, a two-fold cross-validation method (set1/
set2) has been employed in all our models, as was done by 
the authors in [2, 7]. In this way, we can directly compare 
our results with those of the reference papers under the same 
experimental conditions and see how the model performs 
on average.

In addition, during training and before merging the 
information from the different branches, we applied data 
augmentation techniques to each branch to train our models 
with a wider variety of samples. Specifically, for RGB 
images, our augmentation strategies included horizontal 
flipping, zooming and brightness adjustment. In contrast, 
for the body pose representation, data augmentation just 
included horizontal flipping. It is important to note that when 
horizontal flipping is applied to the RGB images, the same 
flip is simultaneously applied to the corresponding body 
pose representations to ensure alignment and consistency.

4.3.3 � Training details

As in the previous work, we have used the ConvNeXt 
architecture as the backbone of our model since it was 
the one that obtained the best results. Specifically, we 
have selected two pre-trained ConvNeXt models (without 
freezing weights) of different complexity, a “Base” model 3 
and a “Large” model 4.

Thus, we will have two variants of our Proxemics-Net++ 
model (Base and Large). It should be noted that pre-trained 
models are not combined between branches within the same 
variant.

In order to train and obtain the best results, we have 
tested different batch sizes (6, 12, and 18) and used the 
Adam optimizers. Regarding the learning rate, we have 
varied between 1 ⋅ 10−2 , 1 ⋅ 10−3 , 1 ⋅ 10−4 , 5 ⋅ 10−5 . It is 
worth noting that in all training, we use the Keras function 
“keras.callbacks.ReduceLROnPlateau” 5 to automatically 
adjust the learning rate of the model in case the validation 
results do not improve in successive epochs. Specifically, 
we reduce the learning rate if no improvement in validation 

is observed after six consecutive epochs. Finally, we have 
selected binary_crossentropy as the loss function.

5 � Experimental results

In this section, we will show and discuss the best results 
obtained for the three types of Proxemics-Net++ models 
we propose (RGB, Pose, and RGB+Pose) in their two 
variants (Base and Large) and with the two types of fusion 
implemented (Concatenation and CrossAttention). In 
addition, we will compare the current state of the art of the 
two tasks we want to address in this paper (proxemics and 
social interactions). First, we will show the results obtained 
on the Proxemics dataset (Sect. 5.1) and then on the PISC 
dataset (Sect. 5.2).

5.1 � Results on the Proxemics dataset

Table 2 shows the best results obtained on the Proxemics 
dataset for each of the three types of models proposed with 
Proxemics-Net++: i) RGB models using only the RGB 
information of the images (first two rows), ii) Pose models 
using as input only the body pose representation obtained 
from DensePose (rows three and four) and iii) RGB+Pose 
models combining both RGB and Pose information (last four 
rows).

In addition, we also show, for each of these three models, 
the results obtained when we use the full model (the three 
branches in the case of the RGB and Pose models or the 
six branches in the case of the RGB+Pose model) versus 
when we disable the individual branches (RGB-Individuals 
and Pose-Individuals). In this way, we can analyze how the 
additional information of the individuals of a pair contributes 
to each type of model. These results are presented for both 
variants of Proxemics-Net++: Base and Large, with each 
Fusion Block: Concatenation and CrossAttention.

First, we focus on the results obtained with the RGB 
model, highlighting that those corresponding to the Con-
catenation fusion were already obtained and shown in our 
previous work [13]. Upon analysing the model inputs, it is 
observed that in both Fusion Blocks, the %mAP results for 
both variants show a significant improvement when incorpo-
rating the RGB information of the individual members (sec-
ond row). This underlines the importance of the RGB infor-
mation of each pair member (RGB-Individuals branches) in 
the context of proxemic recognition problem, as it provides 
additional details about the members of a pair, allowing the 
model to focus more effectively on task-relevant aspects. On 
the other hand, when evaluating fusion type, the CrossAt-
tention Fusion Block outperforms Concatenation, showing 
a decrease in standard deviation and a notable increase from 

3  The pre-trained Base model is located in: https://​dl.​fbaip​ublic​files.​
com/​convn​ext/​convn​ext_​base_​22k_​224.​pth
4  The pre-trained Large model is located in: https://​dl.​fbaip​ublic​files.​
com/​convn​ext/​convn​ext_​large_​22k_​224.​pth
5  keras.callbacks.ReduceLROnPlateau function: https://keras.io/api/
callbacks/reduce_lr_on_plateau/

https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
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63.3 ± 2.4 to 67.5 ± 2.1 in the Base variant and from 63.9 ± 
2.9 to 68.4 ± 1.4 in the Large variant, reflecting greater con-
sistency and effectiveness of the model with CrossAttention.

In the Pose model, an increase in %mAP is observed for 
all cases compared to the RGB model. This indicates that 
the body pose representation provides relevant information 
for proxemic recognition in images, achieving good results 
without the need to incorporate RGB information. It is 
worth noting in the Pose model, unlike the RGB model, 
the inclusion of the pose information of the individuals of 
the pair (fourth row) only improves the results in the Large 
variant (for both Fusion Blocks), being the model with 
the best results for this variant among the three types of 
models proposed. Once again, an improvement in results 
with CrossAttention fusion compared to Concatenation is 
observed in both variants.

In the RGB+Pose model, we observe that the use of the 
Base variant as backbone in both Fusion Blocks produces 
the highest values of %mAP in all cases compared to the 
other two proposed models. In particular, in the Concatena-
tion fusion, the RGB+Pose model with only the RGB-Pair 
and Pose-Pair branches active (row five) achieves the best 
results with 70.0 ± 1.5 mAP. In the CrossAttention fusion, 
the RGB+Pose model with all active branches (last row) 
shows the highest mAP with 71.6 ± 1.7 and the lowest 
standard deviation. In the case of the Large variant, in both 
Fusion Blocks, all cases of the RGB+Pose model outper-
form the RGB model but but not the Pose model. However, 
it is worth noting that in the CrossAttention fusion, the 
results of RGB+Pose are much closer to those of the Pose 
model. For example, the RGB+Pose model with all active 

branches (last row) achieves a mAP of 69.9 ± 2.2 compared 
to 70.8 ± 4.7 for the Pose model (row four). Once again, in 
both variants, an improvement in results is observed with 
the CrossAttention fusion compared to the Concatenation, 
highlighting the effectiveness of the CrossAttention fusion 
in integrating RGB and Pose information in the RGB+Pose 
model.

Thus, as a summary of this comparison, we can state 
that the best results have been obtained in all cases with 
the CrossAttention fusion, demonstrating its effectiveness in 
the problem of proxemic recognition. For the Base variant, 
the RGB+Pose model incorporating all branches (pairs and 
individuals) achieved the highest results with a 71.6 ± 1.7 
% mAP, while in the Large variant, the best performance 
was observed in the Pose model, which includes both Pose-
Individuals and Pose-Pair branches, achieving a 70.8 ± 
4.7 % mAP. This indicates that the inclusion of body pose 
information helps significantly in the problem of proxemic 
recognition in images, as its incorporation allows us to 
improve the results considerably with respect to only using 
RGB. This makes sense since we are classifying proxemics 
or “touch-codes” in which there is always physical contact, 
and the body pose plays an important role.

5.1.1 � Comparison to the state of the art

Table 3 compares our best model with the existing state-
of-the-art in the proxemics recognition problem. Since the 
existing works addressing the problem of proxemic rec-
ognition in images are not very recent, with the exception 

Table 2   Best results obtained on the Proxemics dataset for each of the three proposed model types, using the two variants of Proxemics-Net++ 
and the two proposed Fusion Blocks

 Best results of %mAP (together with their standard deviation) obtained when using only RGB information (first two rows), pose information 
(rows three and four) or the combination of RGB+Pose (last four rows). In addition, for each of these three models, we show the results obtained 
when we disable the individual branches (RGB-Individuals or Pose-individuals). These results are shown for the two variants of Proxemics-
Net++ (Base and Large) with the two proposed Fusion Blocks: Concatenation and CrossAttention
Bold values represent the best result obtained in each of the four variants of Proxemics-Net++ (Concatenation with Base and Large and 
CrossAttention with Base and Large)

Model Concatenation
mAP(Set1-Set2)

CrossAttention
mAP(Set1-Set2)

RGB pair RGB 
individuals

Pose pair Pose 
individuals

ConvNeXt base ConvNeXt large ConvNeXt base ConvNeXt large

✓ 62.3 ± 3.3 61.5 ± 2.5 66.1 ± 1.5 63.6 ± 0.2
✓ ✓ 63.3 ± 2.4 63.9 ± 2.9 67.5 ± 2.1 68.4 ± 1.4

✓ 67.7 ± 3.2 64.4 ± 4.4 69.8 ± 1.2 68.4 ± 1.4
✓ ✓ 64.8 ± 0.7 67.1 ± 4.1 69.4 ± 2.0 70.8 ± 4.7

✓ ✓ 70.0 ± 1.5 65.5 ± 3.5 71.3 ± 4.2 68.5 ± 3.2
✓ ✓ ✓ 68.5 ± 3.4 65.0 ± 3.6 70.2 ± 2.1 66.7 ± 2.5
✓ ✓ ✓ 68.4 ± 3.5 64.4 ± 2.2 71.5 ± 3.7 69.4 ± 2.8
✓ ✓ ✓ ✓ 67.8 ± 2.4 64.3 ± 2.1 71.6 ± 1.7 69.9 ± 2.2
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of our previous work [13], we update our comparison by 
incorporating two more recent methods that do not directly 
address the proxemic recognition problem but do address the 
Human Interaction Recognition problem. Specifically, we 
have selected the works  [20, 23], which consist of methods 
applied to the PISC dataset and which are considered the 
current state of the art for that dataset, as reflected in the 
results presented in Table 5. For this experimental study, 
we adapted the Proxemics dataset to the input specifications 
required by these methods and slightly modified the meth-
ods to handle a multi-label classification problem, as the 
PISC dataset presents a multi-class problem. This change 
included adjusting the output layer of the models and the 
way labels were handled so that the new methods could 
work efficiently with multiple labels simultaneously, thus 
adapting to the specific challenge presented by Proxemics. 
Once these changes were made, a series of experiments were 
conducted to evaluate the performance of both methods. The 
best results obtained for both methods are detailed in Table 3 
(see fourth and fifth rows). In this way, we not only compare 
our proposed method with the existing state of the art on 
Proxemics, but also evaluate its effectiveness against more 
recent methods, following its application in the context of 
Proxemics.

In this Table, two values of %mAP are compared: mAP(a) 
is the value of mAP explained in the previous sections (the 
mean of the AP values of the six types of proxemics), and 
mAP(b) is the mean of the AP values but excluding the 
Hand-Torso (HT) class as done in [16].

Since our %mAP results are obtained at the pair level 
rather than at the image level, we had to re-evaluate our 
best model obtained in the previous Table (see Table 2) to 
compare our results with the state of the art. For each image 
in the Proxemics dataset, the Proxemics-Net++ network pro-
cesses all possible pairs. The image-level result is calculated 

as the maximum classification score obtained among all 
image pairs in each proxemics class.

Looking at Table 3, we observe that our best model 
(RGB+Pose with all individual and pair branches activated 
(full model), with Base variant and CrossAttention Fusion 
Block) obtains the best %mAP results in almost all types 
of proxemics to be classified and in both comparisons 
(mAP(a-b)). Specifically, 73.8% vs. 67.4% of mAP(a) 
and 72.4% vs. 64.9% of mAP(b)). Thus, we outperform 
the current state of the art by a significant margin, with 
improvements of up to 6.4% for mAP(a) and 7.5% for 
mAP(b).

Therefore, these results show that RGB information 
combined with body pose information and a state-of-the-
art deep learning model such as ConvNeXt does help in the 
problem of proxemics recognition in images (the first task 
to be addressed in this paper) since it considerably improves 
the results obtained in the previous work [13] and by all 
competing models.

5.1.2 � Failure cases on the Proxemics dataset

Figure 7 shows some images, together with their correspond-
ing pose estimation, that have been misclassified by our best 
model. Based on our observation, the pose estimation in all 
three images seems inaccurate. This is because some body 
parts, such as arms, have not been correctly detected. As a 
result, our model may have classified the different types of 
proxemics in these images incorrectly. The poor pose esti-
mation may be due to the characteristics of the images since, 
as we can observe, the three images show pairs of people 
overlapping each other, with very similar clothing colors 
and in which there are occluded body parts, which may have 

Table 3   Comparison of our 
best model obtained on the 
Proxemics dataset with the state 
of the art

 The Table shows the average precision (%) in proxemic recognition: mAP(a) is the average of all classes 
(Set1 and Set2), and mAP(b) excludes the HT class. *These results have been computed by adapting the 
code released by the authors of the methods.
Bold values represent the best result obtained in each of the six labels and in mAP (among allthe models 
compared)

Model HH HS SS HT HE ES mAP
(a)

mAP
(b)

Yang et al. [2] 37 29 50 61 38 34 42 38
Chu et al. [16] 41.2 35.4 62.2 – 43.9 55 – 46.6
Jiang et al. [17] 59.7 52 53.9 33.2 36.1 36.2 45.2 47.5
Li W. et al. [20]* 56.7 55.1 52.8 78.4 65.0 65.5 62.3 59.1
Sousa et al. [23]* 66.2 55.1 69.5 78.8 65.6 68.1 67.2 64.9
Jiménez et al. [13] 62.4 56.7 62.4 86.4 68.8 67.9 67.4 63.8
Our ConvNeXt_Base (Cross)Model HH HS SS HT HE ES mAP

(a)
mAP
(b)

(RGB+Pose–full model) 71.5 63.2 80.5 80.7 75.6 71.3 73.8 72.4
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confused the DensePose pose estimator in distinguishing 
each individual in the image.

Therefore, the performance of our model depends on 
the quality of the pose estimation. Future pose estimators 
may be able to solve this problem even better when there is 
excessive occlusion and confusion of the pairs.

5.2 � Results on the PISC dataset

Table  4 shows the best results obtained on the PISC 
dataset for each of the three types of models proposed with 
Proxemics-Net++: i) RGB models using only the RGB 
information of the images (first two rows), ii) Pose models 
using as input only the body pose representation obtained 
from DensePose (rows three and four) and iii) RGB+Pose 
models combining both RGB and Pose information (last four 
rows).

In addition, we also show, for each of these three models, 
the results obtained when we use the full model (the three 
branches in the case of the RGB and Pose models or the six 
branches in the case of the RGB+Pose model) versus when 
we disable the individual branches (RGB-Individuals and 
Pose-Individuals). In this way, we can analyze how the addi-
tional information of the individuals of a pair contributes 
to each type of model. These results are presented for both 
variants of Proxemics-Net++: Base and Large, with each 
Fusion Block: Concatenation and CrossAttention.

Focusing on the RGB model results, we notice that %mAP 
results for both fusion types improve when we include the 
RGB information of the individual member (second row). 
This suggests that RGB information from both individuals 
in a pair significantly contributes to the social relation rec-
ognition problem in images, as opposed to using only the 
RGB information of the pair. Additionally, comparing fusion 
types, the CrossAttention Fusion Block often yields similar 

Fig. 7   Failure cases on the Proxemics dataset. Images classified 
incorrectly by our model show a bad estimation of the pose. All the 
images present a great occlusion of the body parts and couple with 

similar clothing colors that could have caused a worse pose estima-
tion (color figure online)

Table 4   Best results obtained 
on the PISC dataset for each 
of the three proposed model 
types, using the two variants of 
Proxemics-Net++ and the two 
proposed Fusion Blocks

Best results of %mAP (together with their standard deviation) obtained when using only RGB information 
(first two rows), pose information (rows three and four) or the combination of RGB+Pose (last four 
rows). In addition, for each of these three models, we show the results obtained when we disable the 
individual branches (RGB-Individuals or Pose-individuals). These results are shown for the two variants 
of Proxemics-Net++ (Base and Large) with the two proposed Fusion Blocks: Concatenation and 
CrossAttention
Bold values represent the best result obtained in each of the four variants of Proxemics-Net++ 
(Concatenation with Base and Large and CrossAttention with Base and Large)

Model Concatenation
mAP(Set1-Set2)

CrossAttention
mAP(Set1-Set2)

RGB
pair

RGB
individuals

Pose
pair

Pose
individuals

ConvNeXt
base

ConvNeXt
large

ConvNeXt
base

ConvNeXt
large

✓ 58.4 ± 1.6 57.2 ± 1.3 64.4 ± 1.2 57.9 ± 1.3
✓ ✓ 70.1 ± 2.9 64.7 ± 1.6 69.6 ± 0.6 65.0 ± 0.7

✓ 43.3 ± 1.1 27.9 ± 0.5 51.2 ± 0.6 45.1 ± 0.2
✓ ✓ 42.0 ± 1.3 44.2 ± 0.1 50.9 ± 0.6 46.3 ± 2.1

✓ ✓ 55.3 ± 1.8 55.6 ± 2.5 56.6 ± 2.1 61.7 ± 1.1
✓ ✓ ✓ 61.8 ± 1.4 51.6 ± 0.6 63.9 ± 1.1 57.7 ± 0.4
✓ ✓ ✓ 57.5 ± 1.0 51.6 ± 0.5 62.6 ± 2.6 61.1 ± 2.2
✓ ✓ ✓ ✓ 55.1 ± 2.7 54.6 ± 0.4 55.4 ± 1.9 57.7 ± 0.6
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or better %mAP results, but with a notably reduced standard 
deviation, like in the RGB–Full model (second row). This 
reflects greater consistency and effectiveness with the Cros-
sAttention model.

In the Pose model, the results for both fusion types are 
inferior to those of the RGB model. This may indicate that 
our representation of the body pose (designed more for the 
proxemics problem and focused more on the detection of 
the different physical interactions) does not provide relevant 
information in the problem of the recognition of the type 
of social relationships in images, in which there may or 
may not be physical interaction. Notably, unlike the RGB 
model, including individual body pose information in the 
Pose model (fourth row) only enhances results in the Large 
variant for both fusion types. A notable improvement with 
CrossAttention over Concatenation is observed in both 
variants, as it consistently yields better %mAP results with 
lower standard deviation.

In the RGB+Pose model, %mAP results for both fusion 
types and variants show improvement over the Pose model 
but are still not as good as the RGB model. The combination 
of RGB and Pose information from pairs (RGB-Pair and 
Pose-Pair), along with individual RGB data (RGB-
Individuals) and CrossAttention fusion, performs best in 
the RGB+Pose model with a 63.9 ± 1.1% mAP (sixth row, 
Base variant). This suggests that appearance information is 
more significant for this problem. Again, in both variants, 
an improvement in results with CrossAttention over 
Concatenation is observed, highlighting the effectiveness 
of CrossAttention in integrating RGB and Pose information 
in the RGB+Pose model.

In summary, across both variants and fusion types, the 
full RGB model incorporating both individual (RGB-Indi-
viduals) and pair (RGB-Pairs) branches achieves the best 
results. Specifically, the Base variant with Concatenation 
fusion performs the best, achieving a 70.1 ± 2.9% mAP. It 
is important to highlight that while the RGB model with 
Concatenation fusion achieves the highest %mAP, the same 

model with CrossAttention fusion (second row) could also 
be considered as optimal as it has a similar %mAP result 
but a lower standard deviation (70.1 ± 2.9% mAP vs. 69.6 
± 0.6% mAP), indicating similar performance. Except for 
this case, CrossAttention fusion has significantly improved 
all proposed models in both variants with respect to Con-
catenation fusion, demonstrating its effectiveness in social 
relation recognition.

Given that in both cases, the incorporation of pose 
information has not improved the results, it could be stated 
that such information does not help recognize types of social 
relations in images. This may be due to several factors: 
(1) we are dealing with a problem in which there may or 
may not be physical interaction between pairs of people, 
so perhaps the pose is not a feature that contributes in the 
same way as in proxemics; (2) the same pose may appear in 
two different social relationships, for example, a boy eating 
with a friend or with a brother; and, (3) the mislabeling 
of the images. As we will see in Subsubsection 5.2.2, the 
dataset has mislabeled images both at the level of the type 
of interaction (they are very ambiguous) and at the level of 
labeling of the individuals of the couples since there are 
people labeled with only a small part of the body that is 
difficult to detect with the human eye, which has generated 
worse estimates of the pose in certain images and therefore, 
worse results when generalizing our models.

5.2.1 � Comparison to the state of the art

Table 5 compares our best model with the existing state-of-
the-art in the social interaction recognition problem.

Looking at the Table, we can see that our best model 
(RGB model incorporating both individual and pairs 
branches with Base variant and Concatenation Fusion 
Block) obtains the best results in the Family and No Relation 
categories but does not outperform on average the current 
state of the art (70.1% of mAP vs. 75.2% of mAP).

Table 5   Comparison of our best 
model obtained on the PISC 
dataset with the state of the art. 
The Table shows the average 
accuracy (%AP) of each type of 
social interaction recognition as 
well as the average of all classes 
(%mAP)

Bold values represent the best result obtained in each of the six labels and in mAP (among allthe models 
compared)

Model Friends Family Couple Prof. Comm. No rel. mAP

Li J. et al. [7] 60.6 64.9 54.7 82.2 58 70.6 65.2
Zhang et al. [18] 64.6 67.8 60.5 76.8 34.7 70.4 70.0
Goel et al. [19] – – – – – – 71.6
Li W. et al. [20] 60.8 65.9 84.8 73.0 51.7 70.4 72.7
Li L. et al. [21] 82.2 39.4 33.2 60.0 47.7 71.8 73.3
Yang et al. [22] 63.1 73.5 78.3 82.7 76.8 71.8 73.6
Sousa et al. [23] 49.4 70.5 74.6 76.5 59.6 74.6 75.2
Our ConvNeXt_

Base (Concat)
(RGB–full model)

56.2 83.9 77.6 61.0 59.0 82.9 70.1
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It should be noted that all the works shown in the Table, 
except for the work of the authors of the PISC dataset [7] 
(first row), use graph-based architectures to solve this 
problem, which is a significant difference between our model 
and those of the state of the art.

If we compare with [7], whose work does use a deep 
neural network, we can see that our model obtains better 
results using only the RGB information together with the 
ConvNeXt architecture as the backbone (70.1% of mAP 
vs. 65.2% of mAP). Therefore, comparing with similar 
architectures, we can affirm that the RGB information, unlike 
the pose information, can help significantly in recognizing 
social interactions in images.

Even so, seeing that in recent years, the problem of 
recognition of social interactions in images has been 
oriented more towards graph-based architectures, we could 
deduce that it is a problem that, by its nature and ambiguity, 
needs to be treated with another type of architecture more 
focused on the relationships between nodes, features, etc.

5.2.2 � Failure cases on the PISC dataset

The following are some failures encountered with respect 
to the problem of social relation recognition, which may 
have led to worse results, especially when incorporating 
pose information.

Ambiguous labeling of numerous images After evaluating 
our best model (see Sect. 5.2.1) we encountered some really 
ambiguous false positives. Figure 8a shows two examples 
of images misclassified by our model. The green rectangle 
shows the ground truth, and the red rectangle shows the 
incorrect prediction of our model. As we can see in the image 
on the left, the image is labeled as a friendship relationship, 
but with visual information alone, it is impossible to be 
100% sure that it is a friendship relationship rather than 
a family relationship, for example. In the image on the 
right, something similar happens. The actual relationship 

is professional, but it could be family or friendship at first 
glance. This shows that the dataset has ambiguously labeled 
images that can lead to a worse generalization of our models.

Labeling of individuals who are not very visible or 
relevant When we applied the DensePose estimator to the 
images of the PISC dataset, we found some images in which 
this estimator only estimated body parts of the people who 
were actually labeled in the dataset or even was not able to 
detect as many people as were labeled (in this second case, 
we had to lower the detection threshold of the DensePose 
estimates so that it would detect such people even though it 
returned worse results). In Fig. 8b, we show some images 
in which people are labeled in the dataset that are difficult 
to see because of their large occlusion or irrelevance in 
the image. Consequently, obtaining poor pose estimates in 
certain images due to mislabeling in some images may have 
caused us to obtain results showing that the pose information 
does not help in this problem when it may have.

Furthermore, since the PISC dataset includes ground-
truth bounding boxes (BBs) for all individuals in the images, 
we decided to evaluate the impact of using these perfect 
clippings of all individuals versus the clippings obtained 
using the object and person estimator, Detectron2 [30], in a 
dataset where person recognition is challenging. To this end, 
we trained a new model using the best previously obtained 
configuration (RGB model—full model with Concatenation 
fusion, see Table  5) and ground-truth clippings for all 
individuals. We observed a significant improvement, with 
a %mAP (set1-set2) of 77.2 ± 2.5, compared to 70.1 ± 2.9 
obtained using Detectron2 clippings. This result not only 
outperforms our best model, but also improves on the current 
state of the art, which stands at 75.2%.

The enhanced performance when using ground-truth 
BBs compared to those provided by Detectron2 indicates 
our model’s improved capability in recognizing social 
relationships. This outcome highlights the influence of 
the quality and accuracy of the clippings generated by 

Fig. 8   Failure cases on the PISC dataset. Failure cases encountered 
with the PISC dataset. a Images with ambiguous labeling and incor-
rectly classified by our best model. The green rectangle shows the 

ground truth, and the red rectangle shows the incorrect prediction 
of our model. b Images in which people are difficult to recognize, or 
only parts of people’s bodies are labeled
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Detectron2 in challenging datasets. Therefore, implementing 
a more accurate person detector could lead to significant 
improvements in the model’s results.

6 � Conclusion and future work

In this work, we have proposed Proxemics-Net++, an 
extension of the Proxemics-Net model  [13], capable of 
addressing the challenge of detecting human interactions 
in images from two different tasks and using both RGB 
and Pose information. One task, from a more detailed 
perspective, focused on detecting and classifying the types of 
physical interactions between people, known as proxemics, 
and the other, from a broader perspective, focused on 
detecting and classifying different social interactions 
between pairs of individuals in which there may or may not 
be physical interactions.

Proxemics-Net++ has six inputs: three for RGB 
information of the couple and the individuals that compose 
it, plus three inputs that have been added for representing 
the body pose of both the couple and the individuals. 
Additionally, this model has been evaluated using the state-
of-the-art deep architecture ConvNeXt as the backbone, 
specifically with two of its variants, Base and Large. In 
addition, we have implemented a CrossAttention fusion, 
which has improved the performance of our model compared 
to simple Concatenation fusion.

In the case of the first proposed task, our results on 
the Proxemics dataset have demonstrated that body pose 
information, combined with RGB information and state-of-
the-art deep architecture such as ConvNeXt, significantly 
contributes to the problem of proxemics recognition in 
images since, using it, we outperform the existing state of 
the art. Regarding the second task, our experiments on the 
PISC dataset show that due to the nature of the problem 
and the dataset’s ambiguity, body pose information does not 
contribute as significantly to this task, with the best results 
obtained using only RGB information. In addition, the Base 
variant has been the best backbone in both tasks.

Future work includes testing Proxemics-Net++ with the 
other type of annotation provided by the authors of PISC, 
which focuses on the social domain (no relation, intimate, 
and non-intimate relation). This will help analyze whether 
body pose information provides relevant insights into the 
problem of classifying social relationships at a more general 
level and not as fine-grained and ambiguous as we have seen 
in cases where a couple could belong to multiple categories 
(friends and family). In this context, the pose and proximity 
of individuals can help determine whether the relationship 
is intimate. We also plan to test our model with alternative 
representations of the pose that include the lower body, 
for example, and using other architectures as backbone. 

Furthermore, since we have observed a trend in using graph-
based architectures for the PISC dataset, another avenue 
for future work will be to test our pose representation with 
these architectures to determine if we can achieve improved 
results.
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