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Abstract
Cameras are the prevalent sensors used for perception in autonomous robotic systems, but their initial calibration may 
degrade over time due to dynamic factors. This may lead to a failure of downstream tasks, such as simultaneous localization 
and mapping (SLAM) or object recognition. Hence, a computationally lightweight process that detects the decalibration is 
of interest. We describe a modification of StOCaMo, an online calibration monitoring procedure for a stereoscopic system. 
The method uses robust kernel correlation based on epipolar constraints; it validates extrinsic calibration parameters on a 
single frame with no temporal tracking. In this paper, we present a modified StOCaMo with an improved recall rate on small 
decalibrations through a confirmation technique based on resampled variance. With fixed parameters learned on a realistic 
synthetic dataset from CARLA, StOCaMo and its proposed modification were tested on multiple sequences from two real-
world datasets: KITTI and EuRoC MAV. The modification improved the recall of StOCaMo by 25 % (to 91 % and 82 %, 
respectively), and the accuracy by 12 % (to 94.7 % and 87.5 %, respectively), while labeling at most one-third of the input 
data as uninformative. The upgraded method achieved the rank correlation between StOCaMo V-index and downstream 
SLAM error of 0.78 (Spearman).

Keywords Autonomous robots · Stereo cameras · Calibration monitoring

1 Introduction

Visual perception of robotic vehicle platforms such as self-
driving cars or aerial vehicles relies on the knowledge of 
inter-sensor calibrations, especially in systems based on 
visual stereo matching. Although many accurate camera 
calibration methods have been developed [1], the accuracy 
of the calibration parameters can gradually deteriorate over 
time as the sensors are exposed to environmental conditions 
and external stresses. A decalibration may degrade the per-
formance of a downstream visual task [2]. In an extreme 
case, an autonomous vehicle may need to shut down the 
downstream visual data processing system for critical 
safety when the sensors fail or decalibrate. However, fre-
quent false alarms, causing operational delays, should be 

avoided. Therefore, the sensor system should include a self-
assessment mechanism that monitors the calibration qual-
ity. The most important performance metrics are low false 
positive (false decalibration alarms) and false negative (not 
reporting actual decalibration) rates. The self-assessment 
algorithm should also run in real-time with low demand for 
computational resources and be optimized for the sequential 
character of data acquisition, with a short time to detection.

Other use cases include visual algorithm verification and 
testing or deep learning of perception modules. This is a 
frequent task in the automotive industry. These procedures 
employ big data but should avoid uncalibrated inputs while 
keeping as much data available for testing or learning as pos-
sible. Again, false positive and false negative performance 
metrics are essential, but real-time and online processing is 
not necessarily required.

By decalibration, we mean the mismatch between a refer-
ence calibration and the current data. This mismatch could 
be expressed as an error in some calibration parameters, 
such as the relative translation and rotation between a pair 
of stereo cameras. Unlike in automatic calibration, when all 
parameters need to be found, it is not crucial to monitor all 
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the parameters, as the decalibration typically manifests in 
several degrees of freedom.

It is unnecessary to recalibrate or track the values of 
these parameters explicitly when the goal is purely to detect 
a decalibration, not to correct it as in online infrastructure-
based calibration methods. In this paper, we expand on this 
idea, introduced in [3], and develop a calibration monitoring 
method, an online statistical verification method for a spe-
cific sensor setup. Specifically, we focus on a stereoscopic 
camera pair used in stereoscopic vision or visual odometry 
(structure-from-motion, SfM) and Simultaneous Localiza-
tion and Mapping (SLAM) algorithms. Decalibration affects 
the methods in two ways: (1) sparse correspondences and 
disparity map quality degrade with epipolar geometry error 
because the local image descriptors do not align with the 
epipolar lines, resulting in erroneous matches [4], (2) the 
disparity value does not correspond to the true (inverse) 
depth, leading to a distance estimation bias [5] that can 
quickly accumulate via the incremental character of the 
visual odometry [6].

2  Related work

The standard approach to camera calibration uses prede-
fined targets of known dimensions, e.g. [1]. The targets are 
captured from various viewing angles, and parametric con-
straints are derived from the geometric relationships of the 
corresponding points. These methods offer high precision 
at the cost of longer and/or inconvenient execution and are 
suitable for obtaining the reference calibration. In this work, 
we focus on monitoring the extrinsic calibration parameters 
(the relative camera position and orientation [7]).

2.1  Automatic targetless calibration

In contrast to the above mentioned approaches, targetless 
(or self-) calibrations obtain calibration information from 
unstructured data. We divide the methods into several 
groups.

2.1.1  Correspondence‑based

These methods use detected (or hand-picked) matched fea-
tures to optimise the calibration parameters either alone 
(e.g., by utilising epipolar geometry) [8] or together with 
the 3D structure of the scene (calibration from infrastruc-
ture) [9]. The former is very fast but lacks precision. On the 
other hand, the latter is very precise, but the optimisation 
over thousands of parameters (using bundle adjustment [7]) 
can be computationally costly. Thus, some combination of 
the two is often used [10].

2.1.2  Odometry‑based

These methods employ visual odometry estimation in each 
sensor separately, and then they find the transformation 
between them by solving the hand-eye (HE) calibration 
problem [11]. Although it does not require any common field 
of view of the sensors or any initial guess, the precision 
of the parameters is usually low. HE methods require suffi-
ciently complex motions in 6D [12]. This is often infeasible 
in the automotive domain, where the vehicle is bound to the 
ground (plane).

2.1.3  End‑to‑end learning‑based

The fast development of deep learning (DL) also consider-
ably impacts the stereo self-calibration task. These methods 
differ in the way they employ the DL. For example, they 
can estimate the fundamental matrix [13] or optimise the 
consistency between monocular depth and inferred stereo 
depth [14]. They achieve good results at the cost of long 
training and inference and/or the need for high-performance 
hardware.

2.2  Online calibration tracking

Precise and stable approaches for targetless calibration are 
usually computationally expensive and can hardly be run 
during the operation of the sensor system. Hence, online cal-
ibration tracking methods that follow unpredictable changes 
in calibration parameters were proposed.

Following up on their previous work [10], the authors 
of [15] studied three geometric constraints for calibra-
tion parameters tracking with robust iterated extended 
Kalman Filter (IEKF). Using a reduced bundle adjustment, 
they achieved very accurate results in real-time, although 
dynamic objects hurt the stability of the approach in some 
environments. They found that combining epipolar con-
straints for instantaneous coarse calibration with their 
reduced bundle adjustment method yields stable and accu-
rate results.

Lowering the effect of the dynamic objects in the scene 
was then studied in [16], where they used CNN to segment 
the pixels. Only static points were used in the optimisation. 
Besides epipolar geometry, the homographies induced by 
the ground plane also provide calibration information [17]. 
This requires image segmentation, too. Such segmentation 
could be obtained as a by-product of the downstream task 
preprocessing.

Online calibration of epipolar geometry parameters was 
considered in [18]. Detected image keypoints (possibly 
aggregated over several frames) were used to estimate the 
parameters by epipolar error minimization. The Kalman 
filter was then used to track the parameters. Hence, in 
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contrast to [15], they did not require temporal matching 
of features. They show that the epipolar error is sufficient 
for accurate online recalibration (tested downstream for 
visual odometry and reconstruction).

2.3  Online calibration monitoring

Online calibration tracking methods provide good results, 
but changing the calibration during the system operation 
might be unsafe. For example, in the automotive domain, if 
the data fusion stops working due to a loss of multi-sensor 
calibration, the vehicle should undergo some authorised 
service rather than rely on parameters tracked during the 
drive. Online tracking is also quite expensive and cannot 
be run constantly as the computing resources are needed 
elsewhere. A more lightweight system could instead detect 
a miscalibration and trigger the calibration procedure only 
when needed.

Calibration monitoring as a research problem (specifi-
cally in the automotive domain) was introduced in [3]. 
They detected the LiDAR-Camera system extrinsic miscal-
ibration by examining the alignment between image edges 
and projected LiDAR corners (points with large radial dis-
tance differences with neighbours). As the method had 
no memory, it could validate the calibration parameters 
on a single frame without any temporal tracking of the 
parameters.

The detection of decalibration for intrinsic parameters 
of a single camera was studied in [19]. They employed 
end-to-end learning of the average pixel position differ-
ence (APPD) using convolutional neural networks (CNN). 
A similar method for extrinsic calibration monitoring of 
stereo cameras was introduced in [20]. They trained CNN 
to output the extrinsic parameters’ actual miscalibration. 
They presented the effectiveness of their monitoring system 
on ORB-SLAM2 [21] failure detection. Even though the 
method showed promising results, it had a low recall (many 
undetected SLAM failures). We use this method as a base-
line in our downstream experiment (see Sect. 4.4).

2.4  Contributions and structure of the paper

This paper is an extended version of [22], describing the 
StOCaMo method for online calibration monitoring for ste-
reo cameras. It is a single-frame approach that minimizes 
the epipolar error with robust kernel correlation [23]. This 
paper proposes an additional confirmation technique for the 
StOCaMo output, significantly improving recall on small 
(borderline) decalibrations. In addition to the conventional 
statistical performance metrics, which we enrich for the 
specificity results, we also measure and report the confir-
mation efficiency. This metric reflects the percentage of 
input data labelled uninformative at a given precision level. 
To evaluate the performance of our method, we conducted 
experiments on a larger subset of the two real-world datasets. 
These datasets have been chosen for their reproducibility 
and comparability.

The rest of the paper is organized as follows: Section 3 
gives a detailed description of the StOCaMo method, includ-
ing a new resampling mechanism designed to improve the 
algorithm’s recall. The experimental Sect. 4 starts with dis-
cussing the shape of the proposed loss function in compari-
son with a previous approach. In Sect. 4.2, we discuss the 
behaviour of the intermediate robustification function called 
the F-index. Sect. 4.3 reports calibration monitoring results 
on synthetic decalibrations of two real-world datasets. A 
comparison with the results from [20] is done in Sect. 4.4. 
Section 5 summarizes the results and outlines some topics 
for further research.

3  Methods

StOCaMo is based on the examination of epipolar error 
between similar keypoints. Instead of using some robust 
optimisation technique (RANSAC [24], LMedS [25]), we 
employ the kernel correlation principle, which is implicitly 
robust [23]. Because of the low time-to-detection require-
ment, we use the method from [3] to validate the calibra-
tion on a single frame. Figure 1 summarises the method: 

Fig. 1  A diagram of the StO-
CaMo method, which reports 
whether the visual system is 
decalibrated. A modification, 
which adds a confirmation step 
for the StOCaMo output, is in 
green. This confirmation is the 
main topic of this paper (color 
figure online)
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First, we extract keypoints [26] and their descriptors [27] 
from each stereo image. Second, we find tentative left-to-
right and right-to-left matches guided by the descriptor 
similarity, which we then use in the kernel-based epipolar 
error [23]. Third, we evaluate the error function over a 
grid of small parameter perturbations around the reference. 
These are the primary measurements for the monitoring 
task. A probability distribution maps the primary measure-
ments to the probabilities of correct and incorrect calibra-
tion. These are combined into what we term the calibration 
validity index (V-index in short), as in [3]. In this paper, 
we add one more step: A confirmation of the binary sta-
tistical decision at StOCaMo ’s output, with the possibil-
ity of giving an ‘unconfirmed’ answer. The output is then 
one of three outcomes: ‘calibrated system’, ‘unconfirmed’, 
‘decalibrated system’. The ‘unconfirmed’ label is meant 
for low-quality data that contains too weak information on 
the system’s calibration status. The proposed modification 
thus implements a data rejection mechanism.

The method is designed for a stereoscopic camera pair 
that relies on an overlap in the field of view to perform 
tasks based on inter-image correspondences. Therefore, 
our method assumes such a camera configuration. We fur-
ther assume that sensors are global-shutter and that both 
cameras’ intrinsic parameters (calibration matrices and 
distortion coefficients) and the reference extrinsic calibra-
tion [7] are known. The sensors should also be synchro-
nized well so that there is a minimal effect of the relative 
latency in the data.

3.1  The StOCaMo method

Let us assume we are given two undistorted images, Il and 
Ir , captured by two cameras with known camera matrices, 
Kl and Kr . Our goal is to decide whether the given extrinsic 
calibration parameters �ref are correct.

3.1.1  Keypoint detection and feature extraction

As already stated, our method minimises the epipolar distance 
of tentative matches. Therefore, we need to detect suitable key-
points and extract descriptors for matching.

Let Il be the set of keypoint indices in the left image and Ir 
be the set of keypoints in the right image. Each left-image 
keypoint i ∈ I

l has a location pl
i
∈ ℙ

2 (hence, it has three 
‘homogeneous’ coordinates in the projective space ℙ2 ) and 
descriptor fl

i
∈ ℝ

c . Analogically, we have pr
j
 , fr

j
 for j ∈ I

r in 
the right image.

In our experiments, we use the STAR keypoint detector 
[26] and the BRIEF descriptor [27], which provides descriptor 
vectors of dimension c = 32 . These choices are not critical for 
the statistical performance of StOCaMo.

3.1.2  Epipolar geometry

As intrinsically calibrated cameras capture both images, we 
first transform the keypoints by the 3 × 3 calibration matrices 
Kl , Kr:

Let now R ∈ ℝ
3×3 be the matrix of the relative rotation 

between the cameras, and t ∈ ℝ
3 be the relative translation 

vector. The rotation matrix is represented via Rodrigues’ 
formula by the axis-angle vector � ∈ ℝ

3 , which describes a 
rotation by angle ||�|| around the rotation axis � . The extrin-
sic parameters of dimension six are then composed of two 
three-element vectors � = (t,�).

Due to the epipolar constraint [7], given a left-image key-
point i ∈ I

l , the corresponding right-image keypoint j ∈ I
r 

needs to lie on the epipolar line er
i
 in the right image Ir , xr

j
∈ er

i
 

(see Fig. 2b), such that

(1)xl
i
= K−1

l
pl
i

and xr
j
= K−1

r
pr
j
, xl

i
, xr

j
∈ ℙ

2 .

Fig. 2  Coordinate system (a) 
and epipolar geometry (b) for a 
pair of cameras



Pattern Analysis and Applications           (2024) 27:41  Page 5 of 13    41 

and, analogically, given the right-image keypoint j ∈ I
r , the 

left-image keypoint i ∈ I
l must lie on the line

where (⋅)⊤ is matrix transposition. As the intrinsic param-
eters are known, the map E(�) is given by a 3 × 3 rank-defi-
cient essential matrix

in which [⋅]× is the 3 × 3 skew-symmetric matrix composed 
of the elements t [7].

If the locations xl
i
 , xr

j
 are imprecise, one expresses a pair 

of epipolar errors, each defined as the distance of a point 
from the corresponding epipolar line it belongs to:

where a⊤b stands for the dot product of two vectors. Note 
that the numerators are the same, but the denominators dif-
fer.1 Note also, that due to the calibration (1), this error is 
essentially expressed in angular units.

3.1.3  Average epipolar error

The standard approach to estimate the quality of a calibra-
tion (used also as a baseline in [20]) would minimise the 
average epipolar error over the nearest neighbours in the 
descriptor space:

er
i
= E(�)xl

i
, er

i
=
(
er
i,1
, er

i,2
, er

i,3

)
∈ ℙ

2,

el
j
= E⊤(�)xr

j
, el

j
=
(
el
j,1
, el

j,2
, el

j,3

)
∈ ℙ

2,

(2)E(�) = [t]×R,

(3)

d
(
xr
j
∣ xl

i
,�
)
=

||
(
xr
j

)⊤

E(�) xl
i
||

√(
er
i,1

)2

+
(
er
i,2

)2

,

d
(
xl
i
∣ xr

j
,�
)
=

||
(
xl
i

)⊤
E⊤(�) xr

j
||√(

el
j,1

)2

+
(
el
j,2

)2

.

(4)

AEE (�) =
1

n

∑
i∈Il

∑
j∈NN r

i

d
(
xr
j
∣ xl

i
,�
)

+
1

n

∑
j∈Ir

∑
i∈NN l

j

d
(
xl
i
∣ xr

j
,�
)
,

where n = |Il| + |Ir| and NN r
i
 is the nearest neighbour of fl

i
 

in the set {fr
j
}j∈Ir and NN l

j
 is the nearest neighbour of fr

j
 in 

{fl
i
}j∈Il . Lower AEE (�) is better.
To reduce false matches, one can use the so-called Lowe’s 

ratio [28]: The descriptor distance to two nearest neighbours 
is computed, and the match (i, j) is removed from (4) if their 
ratio is lower than a given threshold.

3.1.4  Robust loss function

Even though Lowe’s ratio lowers the number of outliers to 
the epipolar geometry, there may still be undetected false 
matches (e.g., due to repetitive objects in the scene). Hence, 
we use a different model, which considers the uncertainty 
of a particular match. Specifically, we employ the kernel 
correlation principle, studied in the context of registration 
problems, e. g. in [23].

Let us define a kernel loss function for a point and a line 
(between subspaces of dimension zero and one). As the dis-
tance between these is symmetric, the kernel will also be a 
symmetric function of the distance. The uncertainty of the 
keypoint location is expressed through a predefined variance 
of the kernel. Hence, keypoints that have a large distance 
from their corresponding epipolar line (see (3)) will have 
a small effect on the resulting loss. Specifically, we use the 
Gaussian kernel and evaluate the loss function on the k n 
tentative matches in the feature space:

where kNN r
i
 are k nearest neighbours of fl

i
 in the set {fr

j
}j∈Ir 

and kNN l
j
 are the k nearest neighbours of fr

j
 in {fl

i
}j∈Il and n 

is as in (4). Again, lower KC(�) is better due to the negative 
sign.

There are two model hyper-parameters: k and � . Using 
k > 1 nearest neighbours helps the performance, as non-
matching descriptors usually have larger distances and do 
not contribute to the loss too much. We set k = 5 in our 
experiments. The � parameter depends on the calibration 
tolerance � and we set � = � . In this work, we assume

in the rotation around the x axis (Fig. 2a). In general, this 
value should be provided by the user of the monitoring 

(5)

KC(�) = −
1

n

�
i∈Il

�
j∈ kNN r

i

exp

⎡
⎢⎢⎢⎣
−

d2
�
xr
j
∣ xl

i
,�
�

2�2

⎤⎥⎥⎥⎦

−
1

n

�
j∈Ir

�
i∈ kNN l

j

exp

⎡
⎢⎢⎢⎣
−

d2
�
xl
i
∣ xr

j
,�
�

2�2

⎤⎥⎥⎥⎦
,

(6)� = 0.005 rad1 Alternatively, we could use a single (symmetric) distance of a cor-
respondence 

(
x
l, xr

)
 from the epipolar manifold xrExl = 0 . Since 

there is no closed-form solution for this distance, it can be approxi-
mated with the Sampson error [7]. We prefer the epipolar error that 
needs no approximation.
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system, and it should represent the tolerable deviation of 
the calibration parameters from the true ones.

3.1.5  Calibration monitoring

As the percentage of inlier correspondences changes from 
frame to frame (not to say from dataset to dataset), we can-
not simply decide the calibration validity based on the loss 
function value (5) itself. The time-to-detection requirement 
also prefers to make the decision on a single frame, without 
any previous memory needed, as in [20]. Therefore, we use 
the approach introduced in [3], based on examining the loss 
function around the reference in a small perturbation grid 
defined in the parameter space.

Each of the six extrinsic parameters will have its own 1D 
grid step constant. For example, in the case of the translation 
in x it is defined as follows:

where etx is the grid constant; it is defined analogically 
for the remaining parameters. The loss function (5) will 
then be evaluated on the Cartesian product of such 6D 
decalibrations:

which we call the perturbation grid. This can yield up to 
36 = 729 evaluations when all the parameters are perturbed. 
If the calibration is correct, the decalibrations should yield 
a higher loss value than in �ref . Hence, inspired by [3], we 
define a quality measure called an F-index:

where 1[⋅] ∈ {0, 1} is the indicator function. If the calibra-
tion parameters are correct, the F-index should be close to 
the unit value and smaller (about 0.5) otherwise.

The authors of [3] proposed to learn two different prob-
ability distributions over the F

(
�
ref
)
 random values for: 

(1) small noise within the calibration tolerance �ref ± � , 
denoted as pc , and (2) large decalibration well behind the 
tolerance �ref ± Δ , denoted as pd , with Δ > 𝛿 > 0 . Then, 
they defined a validity index (called V-index here) as a pos-
terior probability with equal priors:

In the original paper [3], the authors suggested using the 
normal distribution for pc and pd . This selection is not 
optimal, as the random values F are from the (discretised) 

(7)�
pert

tx =
{
�
ref
tx

− etx, �
ref
tx
, �ref

tx
+ etx

}
,

(8)�
pert = �

pert

tx ×�
pert

ty ×�
pert

tz ×�
pert
rx

×�
pert
ry

×�
pert
rz

,

(9)F
(
�
ref
)
=

1

|�pert|
∑

�∈�pert

1
[
KC

(
�
ref
)
≤ KC(�)

]
,

(10)V
(
�
ref
)
=

pc
(
�
ref
)

pc
(
�
ref
)
+ pd

(
�
ref
) .

interval [0, 1]. Instead, we use the empirical distributions 
(histograms) of F for pc and pd . As the V-index is the pos-
terior probability, we set the threshold for the StOCaMo 
outcome to 0.5. The standard StOCaMo [22] output is then:

3.1.6  Increasing StOCaMo recall

The standard StOCaMo method [22] suffers from low recall 
(correctly detected decalibration) on borderline (small) dec-
alibrations. Hence, in this work, we propose a confirmation 
method for the ‘calibrated’ decision of StOCaMo.

After some experimentation, we chose a resampling 
method that proved effective for variance estimation. If the 
system is calibrated, then the F-index (9) should be very 
high. But this should hold for any (reasonable) subsample of 
the keypoints. Thus, we examine the variance of F-indices 
over subsets of keypoints. This has a negligible cost, as all 
the errors are already precomputed in (5).

We divide the permuted keypoint indices into m subsets 
for each image as follows:

where perm(⋅) is a random permutation of the index array. 
The loss function is then derived for the subsets pair 

(
Sl
k
, Sr

k

)
 

as follows:

Note that all the errors and their exponential function values 
are already pre-computed in (5). The F-index for the same 
subsets pair is then defined analogically to (9) as:

We estimate the variance of the F-index on the subsets:

(11)
{

‘decalibrated’ if V
(
�
ref
)
< 0.5,

‘calibrated’ if V
(
�
ref
)
≥ 0.5.

(12)

Sl
i
=
{
perm(Il)j

}(i+1)⋅
|Il |
m

j=i⋅
|Il |
m

and Sr
i
=
{
perm(Ir)j

}(i+1)⋅
|Ir |
m

j=i⋅
|Ir |
m

,

(13)

KC
�
��Sl

k
, Sr

k

�
= −

1

n

�
i∈Sl

k

�
j∈ kNN r

i

exp

⎡
⎢⎢⎢⎣
−

d2
�
xr
j
∣ xl

i
,�
�

2�2

⎤⎥⎥⎥⎦

−
1

n

�
j∈Sr

k

�
i∈ kNN l

j

exp

⎡
⎢⎢⎢⎣
−

d2
�
xl
i
∣ xr

j
,�
�

2�2

⎤⎥⎥⎥⎦
.

(14)

F
(
�
ref|Sl

k
, Sr

k

)
=

1

|�pert|∑
�∈�pert

1
[
KC

(
�
ref|Sl

k
, Sr

k

)
≤ KC

(
�|Sl

k
, Sr

k

)]
.

(15)

�
2
F

(
�
ref
)
=

1

m

m∑
i=1

(
F
(
�
ref|Sl

i
, Sr

i

)
−

1

m

m∑
k=1

F
(
�
ref|Sl

k
, Sr

k

))2

.
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StOCaMo with confirmation then returns one of three 
outcomes:

where V(�ref) is computed as in (9) and (10). Besides the 
standard statistical accuracy of (16), we also examine the 
data loss this rule causes (i.e., the fraction of data that has 
the ‘unconfirmed’ outcome). We use m = 10 subsets in this 
work and learn the threshold �F on the synthetic dataset with 
other parameters. This value of m is a tradeoff dictated by 
the limited data available to us: It should not be too small to 
have good variance estimates in (15), and it should not be 
too large because then there would be too few samples in the 
subset from which the F-index (14) is computed.

3.2  Discussion

After we have described the proposed method, it calls for a 
comparison with the method proposed by Zhong et al. [20] 
and for a discussion of the algorithmic differences. First, 
Zhong et al. learned a function that maps the input image 
pair to the calibration error. The main contribution of their 
paper is the Weighted Overall Disturbance Effect (WODE), 
which acts as a ‘teacher’ used to learn the parameters of the 
neural network. Specifically, the weight wi(di) definition in 
their equation (1) is interesting. Instead of expressing the 
calibration error in rotation and translation parameters, the 
wi(di) expresses it as the rotation angle needed to re-rectify 
the images to a common image plane. In contrast, we use 
epipolar error expressed in the image plane, where the pri-
mary measurements occur. Second, unlike in the method 
of Zhong et al., we do not estimate error on any parameters 
but directly verify the reference parameters on data and then 
perform a statistical test on the calibration validity. Apriori, 
these two methods do not have clear advantages over each 
other, and an experimental evaluation (will be provided in 
Sect. 4.4) is needed.

4  Experiments

In this work, experiments are performed on one synthetic 
(CARLA [29]) and two real-world datasets (KITTI [30], 
EuRoC [31]). All the parameters are learned on the syn-
thetic dataset and then used on the real-world ones without 
any modification. This illustrates a good generalisation of 
StOCaMo.

CARLA is a simulator based on the Unreal Engine, hence 
it provides highly realistic scenes in several pre-created 

(16)

⎧
⎪⎨⎪⎩

‘decalibrated’ if V
�
�
ref
�
< 0.5,

‘calibrated’ if V
�
�
ref
�
≥ 0.5 ∧ 𝜎

2
F
(�ref) ≤ 𝜏

2
F
,

‘unconfirmed’ otherwise,

worlds [29]. Although we use it in this work to simulate the 
stereo pair of cameras, it provides a plethora of other sensors 
(LiDARs, depth cameras, Radars, etc.). We simulate a stereo 
pair of two cameras with 70◦ horizontal and 24◦ vertical 
fields of view with a resolution of 1241 × 376 pixels. Both 
cameras are front-facing with parallel optical axes (or, equiv-
alently, image planes) and have a baseline equal to 0.4 m. 
We use the default map Town10HD_Opt with 100 autopilot 
vehicles to simulate the traffic. We recorded 155 sequences 
(from different spawn points) with 200 frames each.

KITTI is one of the most popular public datasets in the 
automotive domain [30]. It contains data for several differ-
ent tasks, such as odometry estimation, optical flow esti-
mation, object recognition, or object tracking. We will use 
the rectified and synchronised data from the training part of 
the odometry evaluation dataset (Sequences 00-10). There 
are two grayscale, global-shutter cameras with 70◦ hori-
zontal and 29.5◦ vertical field of view and a resolution of 
1226 × 370 pixels.

EuRoC MAV dataset was captured on-board a micro 
aerial vehicle (MAV) [31]. Hence, it provides unique fast 
movements that are not present in the automotive data. In 
the experiments, we use ten sequences (all five from the 
Machine Hall and five from the Vicon Room,2) with the 
stereo, global-shutter cameras. The horizontal field of view 
of unrectified images is 79◦ , the vertical field of view is 55◦ , 
the resolution is 752 × 480 , and the baseline is 0.11 m.

4.1  Loss function shape

We first examined the shape of the proposed KC loss (5) 
in a similar way as in [20]. We took one sequence from 
the CARLA dataset (200 frames) and evaluated the average 
loss. The calibration perturbations were selected as in [20], 
from [−0.1, 0.1] rad in rotation and [−0.1, 0.1] m in transla-
tion. The loss function should be minimal for the reference 
parameters and quickly increase for large perturbations.

The result of the KC loss (5) is shown in Fig. 3a. All the 
parameters except translations in the x direction have clear 
minima in the reference, but some have a higher impact on 
the KC loss than others. Specifically, the x-axis rotation rx 
has the most prominent influence because it corrupts all the 
epipolar lines identically (either moves them up or down). 
The rotation rz around the z (optical) axis and the y-axis 
translation ty have a similar effect on the epipolar lines. 
One can see (black dashed line) that the decalibration of 
� = 0.005 rad (6) in rx has a similar effect on the KC loss 
as 0.012 rad decalibration in rz and 0.05 m decalibration 
in ty . The other two observable degrees of freedom (y-axis 

2 We did not use sequence Vicon Room 2 03 which contained too 
much motion blur.
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rotation ry and z-axis translation tz ) are less apparent than 
the others. To increase the sensitivity to those, one would 
probably need to control the distribution of keypoints in the 
image (preferring the periphery, for instance).

Note that the change in the baseline length (translation 
in x) and the focal length value of the intrinsic calibration 
have no impact: The translation length does not change the 
E(�) in (3). The scaling effect of the focal length or image 
resolution cancels out in the normalization of (3) when the 
optical axes are parallel.

Using the BRIEF descriptor, we also performed the 
same experiment with the average epipolar error (4) with 
Lowe’s ratio on matched STAR features. The result is shown 
in Fig. 3b, and it replicates the corresponding results from 
[20], where they used SIFT instead of our combination 
STAR+BRIEF. The KC loss (5) has a greater sensitivity 
to translation in y than the AEE loss (4). Moreover, the KC 
loss also exhibits robustness to larger errors in the rotation 
in the x axis (red).

In order to estimate the F-index (9), we need to set the 
grid step e in �pert (7). In this work, we will detect the 
decalibration on the three most observable degrees of 
freedom (DoFs) from Fig. 3a, i.e., rotations around the x 
and z axes and the translation in y. Decalibration in these 
parameters will have the largest impact on the epipolar 
geometry (and all downstream computer vision tasks). 
The choice of the grid step for rotations around x is based 
on the calibration tolerance � (6), so that it is outside of 
the basin of attraction: erx = 3 ⋅ � = 0.015 rad . The per-
turbations of the other two DoFs are set so that their 
relative change of the loss with respect to the rotation 
around the x axis is the same. Based on Fig. 3a, they are: 
ery = 3 ⋅ 0.012 = 0.036 rad and ety = 3 ⋅ 0.015 = 0.045m. 
With this rule, the corresponding decalibrations in the 
remaining DoFs would be unrealistically large to be 
considered.

4.2  Decalibration detection

By the derivations in Sect. 3.1, a decalibration should mani-
fest in the F-index (9). Nevertheless, the magnitude of the 
change is also important. A small perturbation should not 
deviate the F(�ref) values much from the unit value, while 
larger decalibrations should make it smaller, with high vari-
ance. This sensitivity depends on the selected calibration 
tolerance � and thus on the � and �pert (8).

In this experiment, we evaluate the F-index on all 155 
CARLA sequences (200 frames each) with random (uni-
form) extrinsic decalibration of several magnitudes:

meters or radians in all six degrees of freedom. Due to the 
selected calibration tolerance � , the F-index should be close 
to the unit value up to this decalibration magnitude. After 
that, it should quickly decrease to about 0.5. This behav-
iour can be seen in Fig. 4, where the bar corresponds to the 

(17){0, 0.0025, 0.005, 0.01, 0.02, 0.05, 0.075},

Fig. 3  Evaluation of the pro-
posed KC loss (5) (a) and the 
standard AEE loss (4) (b) on 
one sequence from the CARLA 
dataset. Translations in the x 
direction (blue) are unobserv-
able in epipolar error. The 
translation plot in the y direction 
(orange) (almost) coincides with 
the rotation around the y axis 
(purple) in (b). This com-
parison shows increased relative 
sensitivity in the translation in y 
by our proposed loss (a) (color 
figure online) (a) Proposed kernel correlation loss (b) Average epipolar error

Fig. 4  F-index (9) as a function of decalibration on the CARLA data-
set
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average F(�ref) over all frames and the errorbars show the 
15 % and 85 % quantiles for that decalibration magnitude. 
Small decalibrations up to 0.005 (m or rad) have high F(�ref) 
values around 0.98 of small variance. With increasing dec-
alibration magnitude, this value drops to 0.55 for the 0.05 
and 0.075 magnitudes with a large variance.

To estimate the posterior probability of the reference 
calibration parameters (see the V-index in (10)), we need 
to learn the distribution pc for a small noise within the 
calibration tolerance � around the reference and pd for 
large decalibrations Δ . We use the actual histograms (as 
opposed to the normal distribution in [3]) of the F-index 
values on two magnitudes. The pc is learned from the 
magnitude equal to the calibration tolerance, i.e. 0.005 
(m or rad). For the pd , we pick the magnitude

(18)Δ = 0.05,

as the 0.01 and 0.02 are too close to the reference, and 0.075 
yields similar values. One can see both histograms in Fig. 5.

We also learn the standard deviation of the F-index (9) 
on this data with the decalibration magnitude 0.005. The 
deviation equals �0.005

F
= 0.021 , which will be used for the 

deviation’s threshold �F.

4.3  Calibration monitoring on synthetic 
decalibration

In the following experiment, we evaluate the performance 
of StOCaMo in detecting extrinsic decalibrations on the 
two real-world datasets. Based on the results from Sect. 4.2, 
small decalibrations should be reported as valid and larger 
ones as decalibrated. Hence, we investigate two scenarios: 
(1) a small decalibration within the calibration tolerance � 
(6) from [−�, �]m or rad , and (2) a borderline decalibration 

from [−2�,−�] ∪ [�, 2�] m or rad. This borderline decalibra-
tion corresponds to about 5–9 px in the reprojection error for 
datasets used in this paper. The first decalibration is within 
the tolerance; hence, the monitoring method should label 
it as ‘calibrated’. Therefore, it examines the metrics of true 
negative (no decalibration) and false positive (false alarm). 
The second decalibration magnitude was chosen already large 
enough to be detected. We use it to estimate the true posi-
tive (detected decalibration) and false negative (undetected 
decalibration) rates of StOCaMo. This second decalibration 
magnitude is two times smaller than in [22] to investigate 
borderline decalibrations, with the aim to push the bound-
ary of detectable decalibrations. Unlike in [22], we do not 
consider larger decalibrations [2�, 4�] in this paper. Figure 6 
summarises the studied metrics for this synthetic decali-
bration experiment. We report recall, which represents the 
ratio of correctly detected decalibrations. The original StO-
CaMo method [22] suffered from low recall (high number of 

Fig. 5  Histograms of pc and pd from (10)

Fig. 6  Studied metrics for 
synthetic decalibration detec-
tion. The standard StOCaMo 
method had a problem detect-
ing borderline decalibrations, 
so we focused mainly on recall 
and accuracy improvement 
of the proposed modification. 
ALL = TP + FN + FP + TN + U

TP FN

FP TN
U

unconfirmed
reported

decalibration
reported
calibrated

state

True
decalibration

True
calibrated state

recall =
TP

TP + FN
correctly reported
decalibrations

specificity =
TN

TN+ FP
correctly reported
calibrated state

accuracy =
TP + TN
ALL−U

precision =
TP

TP + FP
data loss =

U
ALL
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undetected decalibrations) on borderline decalibrations; hence 
it is the main focus of this work. To show that the improve-
ment of the low recall is not achieved at the cost of labelling 
many truly calibrated states as ‘unconfirmed’ (i.e., decreas-
ing true negatives), we also report the specificity metric (the 
ratio of correctly reported calibrated states). Besides these 
statistical metrics, we investigate the data loss due to ‘uncon-
firmed’ outcomes and the error improvement ( 1 − accuracy ) 
with respect to standard StOCaMo.

On each frame of the KITTI and EuRoC sequences, we 
perform ten decalibrations of each of the kinds mentioned 
above. We then evaluated StOCaMo on these stereo images 
with perturbed parameters, as shown in Table 1. Results 
are averaged over all sequences for both datasets, and they 
also show the standard deviation for each metric over these 
sequences.

The recall of standard StOCaMo method is quite low on 
the smaller borderline decalibration magnitude used here 
(the first rows in Table 1a, b). This corresponds to our origi-
nal observation that StOCaMo has problems with borderline 
decalibrations. With the decreasing threshold of the confir-
mation rule in (16), both the recall and the accuracy increase 
considerably for both datasets (the other rows in Table 1a, 
b). An increase of ‘unconfirmed’ calibrated states (decrease 
in specificity) is visible with the decreasing threshold, but 
it is quite negligible compared to the boost in the recall. 
The statistical precision is 99.0% (±0.4) on KITTI and 
93.6% (±7.9) on EuRoC datasets (not shown in the table3). 
The data loss (the penultimate column) is similar for both 
datasets (about one-third of the data for the strongest thresh-
old), but the improvement (i.e., the accuracy and recall) is 
higher on the KITTI dataset. We attribute this behaviour 
to the different characteristics of each stereo system, as 

discussed in [22]. As all the parameters were learned on 
simulated data from CARLA [29], these are probably more 
suitable for the KITTI data with similar vertical and hori-
zontal fields of view. Still, these results show a good gener-
alization of the original StOCaMo method and of the pro-
posed confirmation technique, which has shown a substantial 
improvement in recall.

4.4  Long‑time SLAM stability with calibration 
monitoring

Incorrect calibration parameters may have a negative effect 
on the downstream computer vision tasks. In [20], they 
investigated the reliability of their calibration monitoring 
system in detecting the ORB-SLAM2 [21] failure. Given 
a sequence from a dataset, the SLAM was considered fail-
ing if the SLAM’s root mean squared error (RMSE) from 
the ground truth was higher than some threshold (or if the 
SLAM did not finish at all). To avoid the selection of an 
arbitrary threshold needed to calculate accuracy, only the 
correlation between the RMSE and our V-index (10) is 
estimated.

We performed a similar experiment to the one in [20], 
but used more sequences and synthetic decalibration of six 
magnitudes from (17) to fully investigate the monitoring 
method’s behaviour. All the studied sequences from both 
datasets were corrupted by 20 perturbations of each mag-
nitude, and these decalibrations were then given to the 
ORB-SLAM2 to perform trajectory estimation. This gave 
us RMSE (infinity if diverged) for each perturbation and 
magnitude (120 values) for each sequence. For StOCaMo, 
we randomly sampled ten frames (for more precise statistics) 
from each sequence to predict a validity index for each per-
turbation and each magnitude (1200 values). For StOCaMo 
with confirmation, we sampled frames until ten frames 
were confirmed as ‘calibrated’ or ‘decalibrated’. This gave 
us 1200 pairs of RMSE and V-indices per sequence, from 
which we estimated Spearman’s and Kendall’s correlation 

Table 1  Results of StOCaMo 
on the borderline synthetic 
decalibration detection without 
and with confirmations of 
decreasing threshold �

F
 (i.e., 

increasing strength)

Recall Specificity Accuracy Data loss Error improvement

(a) KITTI
w/o confirm 63.8% (±3.4) 99.33% (±0.28) 81.6% (±1.6) 0% –
�
F
= 3�0.005

F
69.7% (±3.2) 99.32% (±0.29) 85.0% (±1.4) 5.1% (±1.5) 23.1% (±7.6)

�
F
= 2�0.005

F
77.1% (±3.4) 99.28% (±0.31) 88.8% (±1.4) 12.1% (±2.8) 66.3% (±18.9)

�
F
= �

0.005

F
91.0% (±2.4) 98.75% (±0.73) 94.7% (±0.8) 35.4% (±6.4) 255.0% (±75.7)

(b) EuRoC
w/o confirm 56.6% (±3.6) 95.99% (±5.23) 76.3% (±4.3) 0% –
�
F
= 3�0.005

F
63.1% (±5.2) 95.57% (±5.91) 79.6% (±5.3) 8.6% (±3.7) 18.4% (±10.7)

�
F
= 2�0.005

F
69.1% (±5.6) 95.09% (±6.61) 82.4% (±5.8) 16.1% (±4.4) 40.8% (±20.3)

�
F
= �

0.005

F
82.0% (±5.5) 93.30% (±8.92) 87.5% (±6.7) 33.0% (±5.6) 123.3% (±68.2)

3 Note that the precision metric does not change with the proposed 
confirmation technique. Only ‘calibrated’ outcomes from the original 
StOCaMo can be labelled as ‘unconfirmed’ (compare (11) and (16)); 
hence it does not change the true and false positive rates in the preci-
sion.
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ranks that are shown in Table 2 with their standard devia-
tions over all sequences.

In our work, higher V-index (10) should result in lower 
RMSE; hence our correlation should be negative (lower is 
better), as opposed to [20], where they predict the decalibra-
tion magnitude. In other words, the sign does not matter in 
Table 2.

In [20], they achieved Spearman rank correlation of 0.59 
on one sequence from the EuRoC dataset and 0.44 on one 
sequence from the KITTI dataset. StOCaMo shows better 
correlations with ORB-SLAM2 RMSE, even when taking 
more sequences into account. These results demonstrate a 
better ability to predict SLAM error based on the V-index 
(10) on both datasets. Using the confirmation technique 
proposed in this work, we enhanced the predictions of the 
ORB-SLAM2 error given by StOCaMo by about 0.03 in 
both correlation coefficients and datasets. This improvement 
comes with no additional computational cost.

To better illustrate the effect of the proposed confirma-
tion (16) and to give an insight into the correlation results, 
we show the RMSE (clipped to 200 m) with respect to the 
StOCaMo V-index in Fig. 7 over all sequences from the 
KITTI dataset and three decalibration magnitudes without 
and with confirmation. The plots are multi-colour heatmaps, 
showing the Gaussian-smoothed density of the individual 
(RMSE, V-index) measurement points. For a small decali-
bration within the calibration tolerance � (blue), a method 
should report a high V-index with low RMSE (top-left 
corner), which holds for both StOCaMo versions without 
(Fig. 7a) and with (Fig. 7b) confirmation. In the case of larger 

borderline decalibration (green), the V-index should be low 
with high RMSE (bottom-right corner). The proposed confir-
mation has an edge in this scenario, as the original StOCaMo 
method (see Fig. 7a) has a much larger extent of green colour 
on the right side of the graph. This corresponds to a higher 
number of undetected decalibrations and, thus, lower recall 
in the original method (11). Results on a small borderline 
decalibration (red) are ambiguous. On the one hand, the con-
firmation (see Fig. 7b) has a higher recall, i.e., greater density 
in the bottom-right corner than in the top-right corner (w.r.t. 
Fig. 7a). On the other hand, it also exhibits more false alarms 
(bottom-left corner), which corresponds to a somewhat lower 
specificity (discussed in previous Sect. 4.3). Overall, StO-
CaMo with confirmation provides much better detection of 
these major (more than 200 m RMSE) odometry estimation 
failures. These results correspond to the improvement in rank 
correlations from Table 2.

4.5  Algorithmic efficiency

Our current implementation of StOCaMo runs on a laptop 
CPU,4 and our Python implementation needs only 70 ms 
per frame. The most time-consuming parts are the kNN 
search in the KDTree (30 ms) and the keypoint detection 
and descriptor construction (17 ms), which can be recycled 
from the image preprocessing for the SfM downstream task. 
A direct comparison with neuronal nets [20] is difficult to 
make because of the different hardware architecture.

Table 2  Evaluation of the 
correlation metrics of StOCaMo 
without and with confirmation 
on a downstream experiment on 
KITTI and EuRoC

KITTI EuRoC

Spearman Kendall Spearman Kendall

w/o confirm −0.75 (±0.05) −0.61 (±0.04) −0.75 (±0.03) −0.6 (±0.03)

�
F
= �

0.005

F
−0.78 (±0.04) −0.63 (±0.04) −0.78 (±0.04) −0.63 (±0.04)

[20] 0.44 N/A 0.59 N/A

Fig. 7  A heatmap visualiza-
tion of ORB-SLAM2 RMSE 
w.r.t. StOCaMo V-index on 
the KITTI dataset. The results 
are shown for three decalibra-
tion magnitudes as alternating 
vertical stripes in three colour 
channels: Within calibration 
tolerance � (in blue), and small 
(red) and large (green) border-
line decalibrations, respectively. 
Colour saturation corresponds 
to the density of outcomes. The 
numbers on the scale bar on 
the right give the percentage of 
outcomes (color figure online)

(a) w/o confirmation (b) τF = σ0.005
F

4 AMD Ryzen 7 5800 H.
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5  Conclusion

We have described an efficient, robust and single-frame 
method for assessing the calibration quality of a stereo-
scopic vision system, with particular emphasis on achiev-
ing a high recall rate, which signifies the system’s ability 
to detect decalibrations accurately. Our study demonstrates 
that the integration of F-index variance within the StO-
CaMo decision process resulted in a 25 % improvement in 
recall performance across two real-world datasets. Simul-
taneously, this modification led to a 12 % increase in the 
overall statistical accuracy, as detailed in Table 1.

The SLAM error prediction, expressed as a rank corre-
lation value, achieved 0.78 with confirmation (over several 
sequences from two datasets). This is a better result than 
in [20], by a margin of 0.26. Nevertheless, the WODE idea 
from [20] is interesting, and we plan to explore its possi-
ble combination with the KC definition. This could solve 
the problem of non-uniform observability of the calibra-
tion parameters apparent in Fig. 3a and could result in the 
design of an optimal calibration monitoring solution for 
stereoscopic perception systems.

Instead of resampling the variance, an alternative 
method would consider the resampled F-index distribu-
tions, for both classes (‘calibrated’ and ‘decalibrated’). 
Our experiments have shown that the variance estimate 
of the ‘uncalibrated’ class is unstable, the exact cause is 
unclear and more research on this topic is needed.
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