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Abstract
International Organizations urge the protection of our oceans and their ecosystems due to their immeasurable importance 
to humankind. Since illegal fishing activities, commonly known as IUU fishing, cause irreparable damage to these ecosys-
tems, concerned organisms are pushing to detect and combat IUU fishing practices. The automatic identification system 
allows to locate the position and trajectory of fishing vessels. In this study we address the task of detecting vessels’ fishing 
gears based on the trajectory behavior defined by GPS position data, a useful task to prevent the proliferation of IUU fishing 
practices. We present a new database including trajectories that span 7 different fishing gears and analyze these as in a time 
sequence analysis problem. We leverage from feature extraction techniques from the online signature verification domain to 
model vessel trajectories, and extract relevant information in the form of both local and global feature sets. We show how, 
based on these sets of features, the kinematics of vessels according to different fishing gears can be effectively classified 
using common supervised learning algorithms with accuracies up to 90% . Furthermore, motivated by the concerns raised 
by several organizations on the adverse impact of bottom trawling on marine biodiversity, we present a binary classification 
experiment in which we were able to distinguish this kind of fishing gear with an accuracy of 99% . We also illustrate in an 
ablation study the relevance of factors such as data availability and the sampling period to perform fishing gear classifica-
tion. Compared to existing works, we highlight these factors, especially the importance of using sampling periods in the 
order of minutes instead of hours.

Keywords Fishing gear classification · Database · Illegal fishing · Spatio-temporal trajectory data modeling · AI for social 
good · Biodiversity · Climate change
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1 Introduction

The Food and Agriculture Organization (FAO) of the United 
Nations,1 Illegal, Unreported, and Unregulated (IUU) fish-
ing is defined as a “broad term that encompasses a wide 
variety of fishing activities” that violate applicable laws and 
regulations, either nationally or internationally. IUU fishing 
practices can be found in all types and extents of fishing, and 
can sometimes be associated with the organized crime [1]. 
Hence, activities considered as IUU fishing poses several 
threats, including environmental, social, and economical 
challenges. From an environmental perspective, IUU fishing 
contributes to over-fishing, and may operate with vulnerable 
populations, ultimately disrupting marine biodiversity and 
undermining the efforts to accomplish long-term sustainabil-
ity goals. Furthermore, IUU fishing threatens not only the 
subsistence of the sector, but the fish stocks and the whole 
food supply. According to some estimates from FAO,23 IUU 
fishing involves around 11–26 million tonnes of fish per year 
in the whole world, which is equivalent to more than 15% of 
the total annual number of fish products [2]. In the US, some 
studies have suggested that the percentage of illegal seafood 
imports could be as high as 32% [3].

Marine sediments are the largest pool of organic carbon 
on the planet, and a crucial reservoir for long-term storage. 
However, disturbance of these carbon stores by bottom trawl-
ing can re-mineralize sedimentary carbon to CO

2
 , which is 

likely to increase ocean acidification, reduce the buffering 
capacity of the ocean, and potentially add to the build-up of 
atmospheric CO

2
 . Thus, protecting the carbon-rich seabed 

is a potentially important nature-based solution to climate 
change [4]. Owing to these ecological concerns, and in line 
with the Regulation 2016/2336 4 on deep-sea fisheries (i.e., 
the Deep-sea Access Regulation), the European Commission 
adopted an implementing act on September 20225 closing 87 
sensitive zones to all bottom fishing gear in the EU waters 
of the North-East Atlantic. The Deep-sea Access Regulation 
already banned bottom trawling below 800 meters in 2016 
and, with the new act, the Commission implemented Article 
9 of that regulation to protect Vulnerable Marine Ecosys-
tems (VMEs) at depths of between 800 and 400 metres [5]. 
However, given the previous exposition on IUU fishing, one 
can understand how these practices suppose a challenge to 
accomplish the goals pursued by these regulations.

Given the critical consequences of IUU fishing, and the 
lack of resources to reliably identify such activities, some 

works have started to develop AI-based systems to detect 
illegal fishing practices [6–10]. These works mainly focus 
on detecting IUU fishing through the identification of fish-
ing vessels based on tracking data. Concretely, trajectory 
data obtained from GPS systems such as Vessel Monitor-
ing Systems (VMS) or Automatic Identification Systems 
(AIS) are leveraged for this task. These methods are based 
on the idea that spatio-temporal sequences extracted from 
vessel behavior (e.g., positional data, velocity profiles) 
have specific patterns that depend on the fishing gear, and 
therefore, they can be classified using traditional supervised 
learning approaches. As shown in Fig. 1, different fishing 
gears exhibit trajectories and velocity profiles with peculiar 
characteristics, which further corroborates the fundamental 
hypothesis of such studies. The application of AI to detect 
and prevent IUU fishing can be framed in what is known 
as AI for Social Good (AI4SG) [11–14], that is, the use 
of AI technology to address social challenges and provide 
solutions to improve the well-being of communities. AI4SG 
involves several areas where traditional approaches have 
been less efficient or even unfeasible, such as tracking dis-
eases [15–18], monitoring environmental risks and disasters 
[19–22], or social problems mitigation [23–29]. In this work, 
we address the problem of classifying fishing gears based on 
vessel trajectory data, with the purpose of monitoring activi-
ties that may suppose IUU fishing practices. As we have 
seen, preventing such activities is not only a matter of com-
plying with the law, but also of achieving the goals of con-
serving marine biodiversity and combating climate change. 
We had processed the records provided by the Management 
of Agricultural and Fisheries Information Systems (MAFIS) 
of Tragsatec, a Spanish Government-associated company, on 
the fishing activities carried out by 828 fishing vessels leav-
ing the ports of Spain. Such records contained information 
about GPS position, speed, and direction of the vessels over 
time, along with detailed description of the fishing gears 
transported. We processed this dataset to obtain a clean cor-
pus for fishing gear classification into 7 different classes. We 
use the resulting database to extract both local and global 
features from the data, and explore their use for fishing gear 
classification using different classification methods under 
different scenarios. Our feature extraction approach abstracts 
the concept of vessel trajectory as an ensemble of positional 
and speed signals over time, and establish a parallelism 
between these and those obtained from online signatures 
to leverage from the literature on online signature modeling 
and verification [30, 31]. Our experiments assess the useful-
ness of the proposed features to identify fishing gears from 
vessel trajectory data.

The main contributions of this study are the following:
1 fao.org/home/en.
2 fao.org/iuu-fishing/en/
3 shorturl.at/emLX5.
4 eur-lex.europa.eu/eli/reg/2016/2336/oj.
5 eur-lex.europa.eu/eli/reg_impl/2022/1614/oj.
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Fig. 1  Spatio-temporal kinematics of vessel trajectories: a Visual examples of the trajectories for different fishing gears, namely Purse seine fish-
ing (above), longline fishing (bottom-left), and trawling (bottom-right); b Velocity profiles for the previous fishing gears
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• A new database6 containing more than nine thousand 
trajectories recorded from 828 fishing vessels with a sam-
pling period of 5 min, to overcome some limitations of 
previous study based on hourly sampling periods. This 
database reduce by more than 10 the Nyquist band-limit 
of existing databases.

• We present comprehensive experiments including spatio-
temporal features. These features were extracted using 
two different approaches: one based on local analysis and 
the other on global analysis of the trajectories.

• A novel method based on the fusion of global and local 
features to classify the trajectories of vessels according 
to their fishing gear with high reliability.

• We present a model specifically trained to detect Trawl 
Fishing Gear, achieving classification accuracies of over 
99%.

A preliminary version of this paper was published in [32]. 
This article significantly improves [32] in the following 
aspects:

• We extend the Tragsatec database by increasing the 
number of fishing vessels. Whilst 357 different fishing 
vessels were included in [32], here we present informa-
tion on 828, an increase of almost 2.5 times the previous 
database.. Furthermore, compared to the 5 fishing gear 
classes of [32], the database presented here spans 7 dif-
ferent classes. Nevertheless, only 5 classes are included 
in the multi-classification experimental section due to the 
limited number of samples for the two new classes.

• We expand our experiments (see Sect. 4.3) by training 
and evaluating specific trawl detection models, an use-
ful application to prevent IUU fishing. We also provide 
and ablation study to understand how factors such as 
data availability or sampling period influence the per-
formance.

The remaining of the paper is organized as follows: Sect. 2 
reviews several works related with our work here. Section 3 
describes the proposed database, along with the features 
extracted, and the methodology. Then, Sect. 4 presents the 
experiments carried out in this work on fishing gear clas-
sification, and analyzes the results obtained. Finally, Sect. 5 
summarizes the main conclusions of this study.

2  Related works

The use of satellite-based data to provide automatic tools for 
the management, control, and surveillance (MCS) of ves-
sels has increased in recent years. Concretely, two different 

systems have proven to be extremely useful to extract rich 
information about vessel activity, including the detection 
of illegal fishing. The Vessel Monitoring System (VMS) is 
a proprietary system integrated with a vessel-s GPS. This 
system transmits detailed, coded information about the ves-
sel to the Regional Fishing Management Organization (i.e., 
the fishing regulatory authority operating in the seas where 
the vessel is operating) with high spatial resolution. While 
it was originally designed to transmit messages with low 
frequency (e.g., every 2 hours), it has evolved to higher sam-
pling frequencies that can even reach 30 to 15 min. On the 
other hand, the Automatic Identification System (AIS) is an 
ITU-standardized system [33] that is also linked to a ves-
sel’s GPS, and transmits information such as the identity, the 
current position, or the course in a broadcast fashion to any-
one with a VHF receiver. This means that AIS beacons, as 
opposed to VMS encoded signals, can be received by other 
ships. In addition, the AIS system has a significantly higher 
temporal resolution, with signals transmitted down to a few 
seconds. While VMS systems were originally designed as a 
fishing surveillance tool, AIS was intended to prevent colli-
sions and increase safety at sea. For more than 15 years now, 
the International Maritime Organization (IMO) requires that 
any vessel with a load higher than 300 tons traveling in inter-
national waters, all passenger ships, or cargo ships with a 
load higher than 500 tons operating in national waters to 
have an AIS system integrated and turned on [34]. Further-
more, in the EU the AIS system is mandatory for any fishing 
vessel with an overall length greater than 15 meters from 
2014, as noted in the EU Directive 2011/15/EU.7

Thus, several studies based on any of these systems have 
been developed in recent years. In this sense, Dunn et al. 
argued on the potential that systems based on VMS and 
AIS have to increase the coverage of vessel management 
programs, including the visualization of gaps in sea gov-
ernance, the understanding of fishing activities, or vessel 
tracking and management [8]. In order to illustrate some 
of these points, they provide examples using the method 
proposed in [35]. Concretely, in the latter work Kroodsma 
et al. introduced two CNN systems, one of them to detect 
vessel characteristics (e.g., vessel length or engine power), 
and the other to identify potential fishing activity positions 
[35]. The first one was trained with 45 K trajectory data 
points and achieved an accuracy of 95% in fishing/non-fish-
ing classification. The latter was trained with data from 503 
vessels, and obtained an accuracy of 90% in fishing activity 
detection They analyzed more than 22 billion AIS messages 
from more than 70 K industrial fishing vessels, resulting 
in a spatio-temporal footprint map of fishing activity, from 
which they concluded that fishing occurs in more than 55% 
of oceanic areas. In a closely related work [36], the authors 

6 github.com/BiDAlab/TrFGdb. 7 shorturl.at/pvHKV.



Pattern Analysis and Applications           (2024) 27:42  Page 5 of 19    42 

proposed to generate high-resolution fishing activity maps 
from speed profiles obtained from AIS data. They proposed 
a case study using data on 156 vessels from the Swedish 
fleet, fitting a bimodal distribution of speed histograms for 
each vessel with a Gaussian Mixture Model (GMM) with 
two Gaussians. By fitting these GMMs, they were able to 
compute the confidence intervals of speed and identify 
steaming from trawling fishing activity. They validated the 
proposal on another 112 vessels, and generated fishing effort 
maps for the case study area. Other works explored as well 
the use of AIS data to detect fishing activities within a vessel 
trip [37], or tried to identify behavioral patterns of vessels 
suspicious of performing dark fishing [10].

A number of works have devised interesting applica-
tions for maritime surveillance beyond fishing activity 
detection. For instance, Nguyen et al. [38] proposed a 
multi-task framework based on AIS data to simultane-
ously reconstruct trajectories, detect abnormal behavior, 
and identify the vessel type (e.g. cargo, passenger ves-
sel). Their framework is built on a Variational Recur-
rent Neural Network [39], which assumes that the AIS 
data are noisy, irregular representations of a true, latent 
data stream. The VRNN allows the model to obtain the 
regular latent data stream with a sampling period of 10 
minutes through an embedding layer, and to detect abnor-
mal behavior by marginalizing the hidden states. Finally, 
a CNN model is employed to identify the type of vessel. 
They also introduced a bucketization approach to encode 
the AIS data as a four-hot coded vector. The approach 
was tested on data from both the Brittany coast and 
from the Gulf of Mexico. Huang et al. also focused on 
vessel type identification, extracting a set of 14-dimen-
sional features reflecting both geometric and trajectory 
characteristics from nearly 10 K ships operating in the 
Changhua Wind Farm Channel [40]. They compared the 
performance of 8 different classifiers, including Ran-
dom Forests (RF), SVM, or k-NN, among others, and 
concluded that good results could be achieved with only 
4 of the proposed features. They considered this task to 
be particularly relevant to hinder illicit practices, since 
the type of ship can be intentionally manipulated in AIS 
beacons. Another interesting application is the trajec-
tory prediction, i.e., predicting future trajectories based 
on past samples in order to prevent potential hazards. 
Here we can cite the work of [41], where a LSTM-based 
sequence-to-sequence model with attention was pro-
posed for this task. One key advantage of the model is to 
extend the input information (i.e., past ship’s records), 
with prior information on the ship’s long-term intention 
(e.g., departure and arrival ports), which was explored 
in some previous works as a way to improve the per-
formance [42]. They tested the approach on data from 
the Danish Maritime Authority. Capobianco et al. then 

improved their approach to compute a predictive uncer-
tainty confidence [43]. They argued that most of tra-
jectory prediction models do not provide a confidence 
value to understand how reliable the predicted trajectory 
actually is. They included the uncertainty prediction in 
their previous work via Bayesian learning, and tested the 
approach on the same data from the Danish Maritime 
Authority.

Regarding the classification of fishing gear based 
on satellite data (i.e., the objective of this manuscript), 
this task has been addressed as well using both VMS [6, 
44–49] and AIS [7, 9, 50–52] data samples to extract 
trajectory information. Marzuki et al. [44] proposed to 
characterize each fishing gear motion by training an 
independent GMM per gear type, which models both 
speed and turning angle. They then used the resulting 
GMMs to extract features from the entire VMS trajec-
tory, and train both RF and SVM models, which combine 
the GMM-features with position and sinuosity features. 
They achieved an accuracy of 94.59% in classifying 
between trawling, purse seine, longline and pole-line in 
a dataset of more than 3K vessels operating in Indonesian 
waters in 2012 (i.e., one of the countries with the high-
est rate of IUU fishing). They extended their previous 
work in [6], in which the behavioral feature extraction 
was conducted with a variant of the GMM, namely the 
Gaussian-Von Mises Mixture Model [53]. They evalu-
ated the same Indonesian VMS dataset using both RF 
and SVM classifier, increasing the accuracy up to 97.6% . 
Other proposals is that of Zheng et al. [48], which relies 
on Neural Network classifiers based on speed profiles to 
obtain similar accuracies (i.e., 96.6% ) on data from Chi-
na’s offshore. On the other hand, among systems using 
AIS data, we have, for example, the work of [9], which 
proposes a 3-staged process to classify among 4 differ-
ent fishing gears. In this framework, trajectories are first 
reconstructed and divided into segments, which are then 
fed into a 1D-CNN to perform the final classification. 
The best performance on Danish data was obtained for 
the trawl class, with an accuracy of 98.27%.The authors 
of [7] extracted local and global features from AIS and 
VMS data of Thai fishing vessels, and classified the fish-
ing gear with a shallow neural network. However, they 
found that the low sampling period of their data was 
not enough to obtain sufficient information for certain 
classes (e.g., purse seine). Xing et al. presented a case 
study on the East China Sea, combining a grid-based 
approach with the use of the NLP technique CBOW for 
feature extraction [52]. The final classification was done 
with a LightGBM classifier, a variant of the XGBoost 
classifier. Note that all these proposals agreed on the 
motivation of their work, that is, the prevention of IUU 
fishing practices.
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3  Database and methodology

3.1  Database

We present in Table 1 the details of the Tragsatec data-
base presented in this work. Note that we included as 
well the information of similar databases employed in 
related works for comparison purposes. The Tragsatec 
database presents a Nyquist band-limit B of 1/600. The 
Nyquist theorem establishes that “If a function x(t) con-
tains no frequencies higher than B hertz, then it can be 
completely determined from its ordinates at a sequence 
of points spaced less than 1/(2B) seconds apart”. Thus, 
the Tragsatec database significantly outperforms the 
band-limit of existing databases (i.e., by 12 compared to 
the database of [6], and by 24 compared to the database 
employed in [7]. This band-limit is critical when imple-
menting frequency analysis used in time-based feature 
extraction methods (e.g., RNNs- or HMMs-based tech-
niques), as highlighted in the conclusions of [7]. Further-
more, Tragsatec database comprises 7 different fishing 
gear classes, whereas the other databases only consider 
4 classes.

The raw data collected to create the Tragsatec database 
were provided by Tragsatec’s Management of Agricultural 
and Fisheries Information Systems (MAFIS), with the 
authorization of the General Secretariat of Fisheries of the 
Spanish MAPA. As a consequence, a detailed data cura-
tion procedure was required to obtain the cleaned data cor-
pus presented in Table 1 with highly reliable labels [54], 
which we will detail in Sect. 3.2. The original raw data from 
MAFIS contain the information described in Table 2, and 
were collected over a capture period of about 2 months from 
December 2021 to February 2022. Raw data was mainly 
composed of tabular records, including information about 
the vessels, the fishing gears carried, GPS messages, or 
the ports of departure and destination. In addition to these 
records, we considered the expert knowledge provided by 
MAFIS, about the data format and the properties of the dif-
ferent fishing gears.

Given the high detail of “Fishing gears” available in 
MAFIS raw data, we decided to aggregate the fishing gears 
according to the Annex III of Regulation (EU) n ◦ 1379/2013 
[55]. The resulting classes of fishing gears that we consid-
ered for our study are the following8:

Table 1  Description of the information included in the Tragsatec database

We included as well information about some similar databases employed in related works for comparison purposes

Attributes Ours Indonesian VMS [6] Thai VMS/AIS [7]

Fishing vessels 828 1227 32
GPS positions 1.43 M 5.26 M 184.5 K
Trajectories 9.37 K – 771
Observed days 66 365 –
Sampling period (min) 5 ± 0.83 60 ± 15 120
Nyquist Band-limit (Hz) 1/600 1/7,200 1/14,400
Classes (Fishing Gears) Trawls, Purse seines, Trammel, Longline, Gill-

nets, Dredges, Pots and traps
Trawls, Longlines, Purse seines, 

Pole and line
Trawls, Purse 

Seines, 
Longlines, Reefer

Table 2  Description of the raw data provided by Tragsatec’s Management of Agricultural and Fisheries Information Systems used in this study. 
The data was collected over a capture period between the 15th December 2021 to the 19th February 2022

Info record Description Samples Fields

AIS messages Messages issued by the vessel’s AIS beacon 5 M Geom. position, date, hour, speed, course, vessel id
Vessels Basic data of a vessel 1647 Vessel id, usual fishing gears
Diary statements Info on when and where the vessels start/end 

their navigation
31.8 K Diary id, vessel id, departure date, return date, 

departure port id, return port id
Fishing gears carried Fishing gears carried on board 33.1 K Record id, diary id, fishing gear id
Fishing gears Information about fishing gears 157 Fishing gear id, name, details, code
Ports Information about ports 11.6 K Port id, geometric outline of the port, name

8 seafish.org/
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• Trawls: A fishing method that involves dragging a cone-
shaped net, usually known as trawl, along the ocean floor 
to capture the target species.

• Purse seines and surrounding nets: This technique con-
sists in encircling an entire area or school of fish with a 
surrounding wall of net (i.e. the seine) that hang verti-
cally. Then, the bottom is pulled close to trap the fish 
inside.

• Gillnets: A fishing method that hangs a wall of net, typi-
cally made of nylon, vertically in a water column. Fish 
swimming into the net are entangled, with a backward 
structure that prevents their escape.

• Trammel: A variation of the gillnets which employs up 
to three layers of nets.

• Longline: This technique consists in attaching a long 
main line with bated hooks behind the boat. The bated 
hooks are attached at intervals to attract the different spe-
cies of fish.

• Dredges: This technique involves the use of a rigid struc-
ture called dredge to collect shellfish by dragging the 
dredge along the seafloor.

• Pots and traps: This is a stationary method of capturing 
sea animals, in which pots and traps are deployed for 
a period of time (e.g. 24 h) and then hauled aboard to 
harvest the trapped fish.

3.2  Data curation

In this Section, we describe the data curation process applied 
to the MAFIS raw data (see Table 2) in order to obtain a 
clean corpus for fishing gear classification. As already noted 
by the literature, AIS messages should undergo a data pre-
processing process in order to obtain a clean corpus to work, 
as these data suffers from different quality problems such as 
gaps in data, duplicated messages, or irregular time sam-
pling [36, 40, 52]. Another commonly applied preprocessing 
approach is to filter data samples with a speed lower than a 
certain value, in order to only considered specific parts of 
the trajectory. Firstly, we filtered diary statements with more 
than one fishing gear, as we had no method to determine 
which fishing gear was employed at each time of the naviga-
tion. Using the remaining diaries, we identified the vessel’s 
departure and return to port by combining two consecutive 
vessel’s GPS positions with the port outline. Due to the vari-
ability of the AIS beacon, in some trajectories there was no 
intersection between the vessel’s positions and the port out-
line. Since this may be confused with a loss of coverage, we 
decided to consider only those trajectories that intersect the 
outline of a port at both its beginning and its end, given that 
the correct use of the AIS beacon provides more reliability. 
We then used the starting/ ending time and the location of 
a trajectory, determined from the vessel’s GPS positions, to 
obtain the fishing gear reported in the diary statement.

The messages issued by the AIS beacon do not always 
have a fixed sampling rate of 300 seconds. Consequently, 
we fixed a threshold of 350 seconds, with which we were 
able to cover 95.45% ( 2� ) of the AIS messages and detect 
outliers, according to the empirical three-sigma rule of 
68 − 95 − 99.7 [56]. This threshold represents the maximum 
time that can elapse between two consecutive messages, 
which guarantees continuous sampling of GPS positions, 
hence preventing both loss of coverage and outliers. Con-
versely, by setting a threshold to obtain a clean, continu-
ous sample, we significantly reduced the number of diary 
statements, since the trajectories with at least one message 
exceeding the sampling threshold had to be discarded alto-
gether. This clearly denotes a trade-off between the number 
of samples and the cleanliness of the data, which in our case 
(i.e., a threshold of 350 seconds) led to reduction from 31.8 
to 19.6 K in the number of diary statements, with nearly a 
third of the records being filtered. In addition, we discarded 
trajectories with a low percentage of AIS messages at fishing 
speed (i.e., a speed lower than 5 knots), or with a total dura-
tion of less than 180 minutes. We identified these trajectories 
with activities other than fishing, such as docking at interme-
diate ports. The final number of valid diary statements after 
the whole data curation process is 9376.

3.3  Feature extraction

As we previously exposed, both the course and the speed of a 
vessel present specific behavioral patterns that depend on the 
fishing gear. We can corroborate this fact on the trajectories 
illustrated in Fig. 1, or in the velocity profiles depicted in 
Fig. 2 for the remaining fishing gears analyzed in this work. 
The evolution of a vessel’s trajectory over time t is described 
by two time sequences of geographical coordinates, namely 
the longitude long(t) and the latitude lat(t). These signal are 
analogous to the positional signal x(t) and y(t) describing 
a trajectory over a 2-dimensional space over time t. In this 
sense, the literature on modeling trajectories using machine 
learning approaches is extensive, and includes a diverse set 
of applications. Among the different applications of these 
methods, the work on biometric verification of online signa-
tures [57–59] (i.e., those signatures characterized by chrono-
logical sampling of the signature movement) is particularly 
interesting to model the trajectories of the present study. 
This is due to the high intra-class variability of signers and 
the low inter-class variability of forgeries, which requires 
the extraction of features with significant discriminant 
power. Based on this, we adapt state-of-the-art techniques 
for dynamic handwritten signature recognition to the kin-
ematics of vessels. Moreover, portions of trajectories rep-
resenting fishing activities, usually with a speed lower than 
5 knots, provide an analogy with the contact of digital pens 
with electronic tablets. Hence, we establish a relationship of 



 Pattern Analysis and Applications           (2024) 27:42    42  Page 8 of 19

inverse proportionality between the fishing speed signal s(t) 
and the pressure of the digital pen p(t).

3.3.1  Global features

A trajectory can be described by an n-dimensional vec-
tor, containing features related to its shape and temporal 
events. The authors of [30] propose to represent a trajec-
tory with a large set of 100 global features. They consid-
ered for this representation features that had demonstrated 
high performance in the literature of online signature veri-
fication. Global features are extracted from discrete time 
signals of digital pen trajectories, namely the positional 
signals x(t) and y(t), and the pressure signal p(t). For the 
latter, a value of p(ti) > 0 indicates that the digital pen 
down, while p(ti) = 0 indicates that the digital pen is up 

at timestamp ti . Each global feature fi is normalized using 
tanh-estimators [60] to the interval [0, 1]. The global fea-
tures can be grouped into the following four categories:

• Time: 25 features related to the duration of the trajec-
tory, events such as raising the digital pen, or local 
maximums/minimums.

• Velocity and acceleration: 25 features obtained from 
the first and second order temporal derivatives of posi-
tion-temporal functions, such as the standard deviation 
of these.

• Direction: 18 features extracted from the trajectory, for 
instance the starting direction, or direction histograms.

• Geometry: 32 features associated with the line or aspect 
of the dynamic trajectory.

Fig. 2  Velocity profiles of four fishing gears: trammel (top-left); gillnets (top-right); pots and traps (bottom-left); and dredges (bottom-right)
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In this work, we adapted the extraction of global features 
proposed by Martinez et al. to our fishing vessel trajecto-
ries. We refer the reader to [30] to check the complete list 
of features. To conduct the extraction, we consider as sig-
nals x(t) and y(t) the vessel’s GPS position (i.e. long(t) and 
lat(t) respectively) converted to nautical miles. As for the 
pressure signal p(t), we use the fishing speed signal s(t), 
establishing an inverse proportionality analogy between both 
signals. This means that for a specific timestamp ti , a value 
of p(ti) = 0 indicates the vessel is at navigation speed (i.e. 
higher than 5 knots), while p(ti) > 0 denotes that the ves-
sel is at fishing speed, with high values representing lower 
speed. Finally, the average sampling period Ts and the time 
vector indicating the real-time instant of each data point are 
considered as well.

3.3.2  Local features

Similarly to the case of global features, we adapt here the 
set of local features proposed in [30] to describe vessel tra-
jectories, using similar correspondences to the ones exposed 
before. This set of features was an extension of the origi-
nal set proposed by Fierrez et al [31]. Concretely, based on 
the signals x(t), y(t), and p(t), seven discrete functions are 
defined in [31], for which the first- and second-order deriva-
tives are computed for a total number of 21 signals. From 
these, all second-order derivatives except those of x(t) and 
y(t) are not considered in [30] due to their low contribu-
tion to the verification performance. The resulting set of 
16 signals is extended with another 11 functions from the 
literature, for a final number of 27 local features. A detailed 
description of these features is provided in [30].

3.4  Classification models

In the previous Section, we presented our feature extraction 
strategy, which results in two different sets of features from 
the trajectory data, local and global features. To obtain these 
sets, we draw an analogy between the evolution of trajecto-
ries and signatures over time to leverage from the literature 
on feature extraction for signature verification. Owing to the 
different nature of local and global features, we use different 
classification strategies for each of them.

Looking first at the classification with local features, it 
has been a common practice to process this type of sequen-
tial features with recurrent-based classifiers, in order to 
model their evolution over time. Thus, we decide to use 
Bidirectional Gated Recurrent Units, i.e., BiGRU-based 
model, to process local features. Although the GRU unit is 
less powerful compared to units such as LSTM, its simplic-
ity makes it stronger against overfitting, and can effectively 
learn long-term dependencies in the data. Due to the limited 
data of the problem, we believe that the GRU is the perfect 

choice to avoid that risk. Furthermore, the use of bidirec-
tional units allows us to process the local features in both 
time directions. Our model includes a masking layer that 
prevents trajectory data without information to be consid-
ered, followed by a BiGRU layer with 100 units. We take 
the final state of the BiGRU layer, and use a fully connected 
layer as the output of the network, with softmax activation 
for the multi-class case or sigmoid activation for the binary 
case to compute the final prediction. This output layer con-
tains the same number of units as the classes considered in 
the classification problem.

On the other hand, classification on global features can 
be done using standard Machine Learning classification 
approaches, since each feature describes an aspect of the 
data globally, instead of representing its temporal evolu-
tion. To this end, we consider three different classification 
models: (i) Support Vector Machines (SVM) with Gaussian 
kernel; (ii) Random Forests (RF); and (iii) Multilayer Per-
ceptron (MLP), consisting of a hidden layer with ReLU acti-
vation, followed by an output layer with softmax activation 
(with the same number of output units as classes). Note that 
these models have been commonly applied by works on the 
literature (see Sect. 2). Therefore, these classifiers should be 
powerful enough to obtain competitive results based on a set 
of discriminant features like the one extracted in this work.

Finally, we will explore a score fusion scheme in our 
experiments [61], by combining the predictions of both 
global and local models. The goal of the fusion strategy is 
to combine in a single prediction the knowledge contained in 
both approaches, we would capture complementary informa-
tion of the trajectory data. For this purpose, we compute the 
fusion score sf  in the form of:

where sg and sl are the scores, either Average Precision (AP) 
or Accuracy, obtained from the global and local models 
respectively, and wg and wl = 1 − wg are the correspond-
ing weights calculated iteratively to provide the best sf  on 
a K-fold cross-validation (CV). Thus, the fusion score is 
computed as weighted sum of the scores predicted by each 
classifiers.

4  Experiments and results

4.1  Experimental protocol

Similar to other existing databases for fishing gear classifica-
tion, the Tragasec database suffers from class imbalances. 
As can be seen in Fig. 3 (left), where we depict the dis-
tribution of diary statements by fishing gear, the most fre-
quent class in our database is Trawls (i.e., 6333 trajectories), 

(1)sf = wg sg + wl sl
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whose representation is significantly higher than the second 
one (i.e., Surrounding, with 1764 diary statements). Note 
that for two classes the number of trajectories is less than 
50. Actually, we have twice as many samples for the Trawls 
class than for the rest of the classes combined, as illustrated 
in Fig. 3 (right). This fact seems to imply 9 that trawling is 
the most widespread fishing practice, despite its potential 
negative impact on climate change [4].

Given the conditions of our database, two sets of experi-
ments are proposed in this work. In a first part of the experi-
ments, we want to evaluate the proposed methodology for 
fishing gear classification in a multi-classification configura-
tion using the Tragsatec database (Sect. 4.2). Specifically, 
we will explore the multi-classification task using a balanced 
subset of Tragasatec with the 5 most frequent classes. We 
decided to leave out of this experiment both the Dredges 
and Pots and traps classes due to the low number of sam-
ples available, which makes unfeasible to obtain sufficient 
training/test sets to extract significant results. Nevertheless, 
we have included these classes in the database, as they may 
be useful for other researchers to evaluate their propos-
als, or even for future extensions of the database. Thus, in 
this experiment, we apply an under-sampling procedure to 
obtain a balanced corpus with 209 samples from the Trawls, 
Longlines, Surrounding, Trammel, and Gillnets classes, so 
that each class is equally represented to prevent potential 
biases associated with class imbalances.

On a second part of the experiments (Sect. 4.3), we con-
sider the proportions illustrated in Fig. 3 (right), and explore 
the fishing gear classification task as a binary problem, i.e., a 
One-vs-All configuration in which the aim is to detect Trawls 
from other fishing gears. As we mentioned in Sect. 1, this 
fishing gear is of particular interest for its impact in bio-
diversity, therefore international regulation point special 
emphasis on how to regulate its use. This relevance can be 
also noted on how this class is one of the most frequently 
included in works dealing with fishing practices, with some 
of them even focusing exclusively on trawling [36, 45]. Fur-
thermore, the availability of more data samples here allows 
us to conduct an ablation study (Sect. 4.3.1) to better under-
stand how characteristics such as the sampling period of the 
number of data samples available affect the performance.

In both cases, we will follow a similar approach. First, we 
split the Tragsatec subset for the experiment into a training 
set with 70% of the samples, and a validation set with the 
remaining 30% . Using these partitions, we will search for the 
best hyper-parameter configuration for each classification 
model. Concretely, for the models using local features, the 
following hyper-parameters are explored:

• SVM. Two different hyper-parameters are tuned for the 
SVM, the complexity C, and the � value. The complexity 
controls the trade-off between correctly classifying all 
training samples (i.e., low values of C) and maximizing 
the margin of the classifier (i.e., high values of C). On 
the other hand, � controls the curvature of the decision 
boundary through the RBF function, with high values of 

Fig. 3  Distribution of Diary statements (Trajectories) by fishing gear class: Multi-class (left) and Binary (right)

9 The data used for the Tragsatec database reflect fishing practices on 
a short period of time (i.e., 2 months), so further research would be 
needed to confirm this assertion.
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� representing more curvature. We will explore values of 
C ∈[1, 10, 100], and � ∈[0.1, 0.01, 0.001].

• Random Forests. For the RF model, we will only explore 
the number of estimators N, which is the number of deci-
sion trees included in the forest. In this work, the con-
sider values of N ∈[101, 1, 10 K].

• Neural Network. Two different hyper-parameters are con-
sidered for the NN classifier, namely the number of units 
L in the hidden layer, and the learning rate of the network 
� . Note that the output layer of the Neural Network con-
tains the same number of units as classes in the multi-
class configuration (i.e., 5 output units) and uses softmax, 
while only 1 output unit with sigmoid activation is used 
for binary classification. As for the hyper-parameters, we 
will explore the values of L ∈[100, 1, 10 K], and � ∈

[1e − 3 , 1e − 4 , 1e − 5].

Noteworthy, the optimal weights for the local–global fusion 
scheme are also obtained with this strategy, using the set of 
optimal hyper-parameters that we have previously found for 
the local classifiers.

Once we have the optimal hyper-parameters, the final 
performance is assessed using a K-fold Stratified Cross 
Validation (SCV) protocol, in which the data is divided into 
10 folds that preserve class proportions. Thus, we train the 
models 10 times, using in each iteration a different combina-
tion of 9 folds for training, and the remaining one for testing. 
The final performance score is obtained by aggregating the 
results of all iterations. When assessing the performance in 
a class-balanced configuration, the accuracy (or the mean 
accuracy in the 10-fold SCV) is employed. Otherwise, we 
decide to use the Mean Average Precision (mAP). Note 
that all our experiments in the multi-class configuration are 
based on a balanced dataset, so we only use accuracy-based 
metrics. We will also use some traditional performance 
tools, such as Confusion Matrix, Receiver Operating Curve 
(ROC), which illustrates the False Positive Rate (FPR) 
against the True Positive Rate (TPR) at different classifi-
cation thresholds, Detection Error Tradeoff (DET) curves, 
which measures the FPR against False Negative Rate (FNR) 
at different classification thresholds, and the Equal Error 
Rate (EER), the operating point at which FPR is equal to 
FNR.

4.2  Multi‑class fishing gear classification

As we introduced before, the purpose of this section is to 
explore the multi-class fishing gear classification task on 
the newly Tragsatec database. To this aim, we selected the 5 
classes with more samples, namely Trawls, Longlines, Sur-
rounding, Trammel, and Gillnets. An under sampling pro-
cedure was applied to our data in order to obtain a balanced 
corpus including 209 diary statements and trajectories per 
class.

The results of the 10-fold SCV are reported in Table 3 for 
the different classifiers considered. Note that we included as 
well the 95% confidence intervals. The best accuracy pro-
vided by a single classifier is 86.22% , obtained with RF with 
the global feature set. The MLP and SVM classifiers showed 
lower performances with 82.69 and 83.16% respectively. The 
BiGRU classifier provided 75.6% of accuracy using the local 
feature set. However, the best performance is obtained when 
combining the global and local feature set scores. By consid-
ering in the same prediction information from both global 
and local features, obtained from the fusion of the scores 
provided by RF and BiGRU, a raise in performance above 
90% is achieved. This is a relative error reduction of 28% . 
We consider this a promising result, and expect to increase 
even more the performance with the collection of more data 
samples, or improving the feature selection process.

In Fig. 4 we illustrate the confusion matrices obtained for 
the five fishing gears with the following classifiers: (i) RF 
(top-left), (ii) BiGRU (bottom), and (iii) fusion of RF and 
BiGRU at score level (top-right). We obtained this confuss-
ion matrices from the classifiers trained with the 70/30 train-
ing/validation splits used to determine the hyper-parameters. 
In all three cases, the Trawls class is the one exhibiting the 
best results, while Gillnets obtains the worst. Surprisingly, 
there are almost no errors associated to incorrectly predict-
ing the Trawls class, which further highlights the perfor-
mance when identifying this class. As observed in Fig. 4 
(bottom), we obtain here an accuracy of 93% for the Sur-
rounding class, a value greater than the total accuracy of the 
RF-BiGRU classifier (i.e., 90.13% ). This is not the case of 
[7], where this class obtained the worst results. In such work, 
the data sequences employed a sampling period Ts of 2 h. 
This sampling rate not enough to classify the Surrounding 

Table 3  Results of different 
approaches for fishing gear 
classification. We report the 
mean accuracy and its 95% 
confidence interval (CI) (in 
% ) computed after a K-fold 
stratified cross validation with 
K = 10

We include as well the hyper-parameter values for each approach

Classifier Features Hyperparameters Mean acc. (95% CI) [%]

BiGRU Local – 75.60± 3.62

MLP Global L = 1,000; � = 0.0001 82.69± 2.00

SVM Global C = 100 ; � = 0.01 83.16± 1.77

RF Global N = 101 86.22± 2.66

RF + BiGRU Fusion w
RF

= 0.8 ; w
BiGRU

= 0.2 ��.��± �.��
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gear (“Purse seine” in [7]) with an accuracy similar to the 
other classes. This fact further highlights the benefits of 
using a higher sampling rate to correctly characterize fish-
ing gears through vessel trajectory data.

Finally, in Fig. 5 we report the Receiver Operating Char-
acteristic (ROC) curves of different classifiers (left) and 
different fishing gears when RF + BiGRU is considered 
(right). As seen, the Gillnets obtained the lowest area under 
the curve, which is consistently with the per-class results of 
Fig. 4, where an error of 12% between Gillnets and Trammel 
was observed. This may be explained by the fact that the 
trammel fishing gears is basically a variant of the gillnets, 
as exposed in Sect. 3.

4.3  Binary fishing gear classification: trawls 
detection

Now that we have assessed the performance of the proposed 
methodology in a fishing gear multi-classification configura-
tion, in this section we explore the binary classification task. 
Recalling from Sect. 4.1, in this case we use all the dataset 
to train binary classifier in a One-vs-All configuration, with 
the purpose of distinguish between the most frequent class 
(i.e., Trawls) and the rest. Given that in this experiment both 
classes are unbalanced, mAP is used as the performance 
metric.

The results obtained after the 10-fold stratified CV are 
reported in Table 4 for the different individual and fusion-
based classification approaches. We include as well the 

Fig. 4  Confusion matrices obtained in the multi-class configuration with the following classifiers: RF based on global features (top-left); BiGRU 
based on local features (bottom),; and fusion of RF and BiGRU based on both features (top-right)
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95% confidence intervals of the results obtained. The mAP 
value provided by a single classifier is 99.97% , obtained 
with RF with the global feature set. The SVM and MLP 
classifiers showed lower performances with 99.83 and 
99.82% respectively. The BiGRU classifier obtained a mAP 
value of 99.81% using the local feature set. However, the 
best performance is obtained when combining both global 

Fig. 5  ROC curves of different classifiers (left), and different fishing gears (right) using the RF + BiGRU classifier (i.e., the one with best per-
formance).

Table 4  Mean Average 
Precision (mAP) results and 
its 95% Confidence Interval 
(CI) (in % ) in the binary 
classification setup computed 
after a K-fold cross validation 
( K = 10 folds)

We include as well the optimal hyperparameter values for each approach

Classifier Features Hyperparameters mAP (95% CI) [%]

BiGRU Local – 99.81± 0.04

MLP Global L = 1,000; � = 0.0001 99.82± 0.08

SVM Global C = 10 ; � = 0.01 99.83± 0.03

RF Global N = 1,001 99.97± 0.01

MLP + BiGRU Fusion w
MLP

= 0.49 ; w
BiGRU

= 0.51 99.91± 0.01

SVM + BiGRU Fusion w
SVM

= 0.52 ; w
BiGRU

= 0.48 99.91± 0.01

RF + BiGRU Fusion w
RF

= 0.75 ; w
BiGRU

= 0.25 ��.��± �.��

Fig. 6  DET curves (the closer to the bottom-left the better) obtained 
with different classifiers for binary fishing gear classification. The 
intersection of a DET curve with the dotted line represents the EER 
point

Table 5  Equal Error Rate (EER) values (in % ) of each approach for 
the binary fishing gear classification task

We also include the thresholds from which the EER is obtained in 
each case

Classifier Features Threshold (%) EER (%)

BiGRU Local 45.11 1.32
MLP Global 88.93 0.99
SVM Global 70.32 0.89
RF Global 53.15 0.86
MLP + BiGRU Fusion 52.23 0.56
SVM + BiGRU Fusion 51.06 �.��

RF + BiGRU Fusion 57.96 0.64
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and local information with a score fusion scheme, a fact 
already noticed in the multi-classification experiment (see 
Table 3). Note that all the fusion approaches exhibit bet-
ter performances than the individual classifiers. The best 
Average Precision is 99.98% provided by the combination 
of the best global feature classifier (RF) with the best local 
feature classifier (BiGRU).

Figure 6 reports the Detection Error Tradeoff (DET) 
curves for all classifiers considered, from which the Equal 
Error Rate (EER) is obtained for each of them, as shown 
in Table 5. Given that all the systems analyzed obtained 
high, similar values of the mAP, the EER metric can help 
to better understand the possible differences between mod-
els. Therefore, the SVM + BiGRU classifier offers the best 
performance for FPR vs FNR, as its EER is the lowest with 
a value of 0.43%.

4.3.1  Ablation study: effect of number of training samples 
and sampling period

With the aim of further exploring the binary classification 
setup, we present here an ablation study to understand how 
factors such as the size of the training data or the sampling 
frequency affect the classification performance.

Attending first to the effect of the number of data sam-
ples available during the training process, we arbitrarily 
selected here 400 samples of each class as test set, with 
which we evaluated the performance of the classifiers 
trained in diverse scenarios. From the remaining samples, 
we made available a different number of training samples St 
to train the classifiers, including in this set an equal number 
of samples from each class Sc ∈ [100, 200, 500, 1K, 2, 2.64 
K]. The last value (i.e., 2.64) corresponds to the maximum 
number of samples available for the Non-Trawls class after 
subtracting the test set samples. With this study we pretend 
to understand whether having more data samples contrib-
utes to performance, and which algorithms are best suitable 
for scenarios in which few data are available. Since both 
classes are balanced in this experiment, we use the accuracy 
as performance metric to assess the classifiers. The Detec-
tion Error Tradeoff (DET) curve and the Equal Error Rate 
(EER) are also used.

Table 6 presents the performance of different individual 
and fused classifiers when a different number of training 
samples is available. The performance is measured as the 
mean accuracy after a K-fold Cross Validation ( K = 10 
folds). Note that in this case, instead of evaluating the 
performance with the corresponding test fold, we use always 
use the fixed test set with 800 data samples (i.e., 400 from 
each class. To vary the number of training samples, we 
under-sampled the training sets to obtain balanced training 
subsets with St samples. We can observe a similar trend in all 
classifiers, which start from a performance around 94 − 95% 

when few data samples are available, and the performance 
progressively increase until a peak around 98 − 99% when 
more samples are available. Note that we can observe the 
same trend in the confidence intervals, which are larger 
(i.e., more variability in the resulst across folds) when few 
data samples are available for training. In general, fusion 
schemes obtain better results than both local and global 
classifiers. For small amounts of data, the best single global 
feature classifier is RF, which improves its performance 
in combination with the BiGRU local feature classifier, 
although the performance of the latter is always the lowest 
when used separately. The SVM, however, exhibits the best 
performance as an individual classifier for both 2 and 4 
K, a point from which it seems to saturate, as observed in 
the reduction in 5.28 K. Actually, the best performance is 
obtained with SVM + BiGRU when 4 K data samples are 
available (i.e., 99.43% ). While this performance is slightly 
reduced in the next configuration (i.e., similar to what 
occurs with the SVM model alone), we can observe here 
the best results for several classifiers, including the other 
two fusion schemes, the RF and the BiGRU. As conclusion, 
the hypothesis that having more data samples available for 
training improves the performance seems to be corroborated, 
but we note that the performance can saturate after certain 
amount of data is used.

Now that we have observed the effect of the number of 
training samples on fishing gear classification performance, 
we want to assess the impact of the sampling period Ts . To 
this aim, we progressively reduce here the sampling fre-
quency 1∕Ts of the GPS positions, and measure the perfor-
mance of the classifiers trained in such scenarios scenarios. 
Given that the Tragsatec database presents a sampling period 
of Ts = 5 minutes, one position is selected every 2, 4 and 10 
positions, therefore exploring values of Ts ∈ [5, 10, 20, 35] 
minutes. The maximum sampling period of 35 minutes has 
been calculated taking into account that the minimum num-
ber of points in a trajectory must be 17 for the algorithms to 
work correctly, and that the trajectories are at most 30 miles 
offshore, as this is the coverage provided by the AIS beacon, 
most of them being approximately 10 hours (600 minutes). 
Therefore, the maximum sampling period is obtained as 
600∕17 = 35 minutes.

The same diary statements are always selected for the 4 
sampling periods in order to be able to compare them in a 
consistent way. The number of samples of the train set is 
372 and 731 from the Non-Trawls and Trawls classes respec-
tively, while the test set comprises 160 and 314 samples 
from each of these. As the classes are imbalanced in this 
experiment, we use as performance metric mAP.

The mAP performance values obtained with the 10-fold 
CV are reported in Table 7 for the different single and com-
bined classifiers. All top scores decrease, and almost all 
approaches exhibit a decay in performance as the sampling 
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period increases. We find an exception in the BiGRU clas-
sifier, which achieves a peak performance with a sampling 
period of 10, making the performance of the MLP + BiGRU 
classifier equal to that of the SVM + BiGRU classifier at 
that sampling period point. In light of these results, the Data 

Curation process applied (see Sect. 3.2) could be modified 
to avoid discarding trajectories with momentary loss of AIS 
beacon coverage of up to 10 minutes. For all sampling peri-
ods, the best single global feature classifier is SVM, which 
improves its performance in combination with the BiGRU 

Table 6  Performance of 
different classification 
approaches depending on the 
number of training samples S

t
 

available

We report here the mean accuracy and its 95% confidence interval (CI) (in % ) after a 10-fold CV. In all 
cases, the test set is composed of 400 samples from each class. We include as well the optimal hyperparam-
eter values for each configuration

S
t

Classifier Features Hyperparameters Mean acc. (95% CI) [%]

200 BiGRU Local – 84.31± 0.87

MLP Global L = 1,000; � = 0.001 95.13± 0.16

SVM Global C = 10 ; � = 0.01 95.65± 0.27

RF Global N = 1,001 95.85± 0.23

MLP + BiGRU Fusion w
MLP

= 0.63 ; w
BiGRU

= 0.37 94.85± 0.30

SVM + BiGRU Fusion w
SVM

= 0.85 ; w
BiGRU

= 0.15 95.48± 0.26

RF + BiGRU Fusion w
RF

= 0.98 ; w
BiGRU

= 0.02 ��.��± �.��

400 BiGRU Local – 88.41± 0.79

MLP Global L = 1,000; � = 0.0001 96.44± 0.23

SVM Global C = 10 ; � = 0.001 96.06± 0.25

RF Global N = 10,001 97.20± 0.16

MLP + BiGRU Fusion w
MLP

= 0.72 ; w
BiGRU

= 0.28 96.20± 0.29

SVM + BiGRU Fusion w
SVM

= 0.57 ; w
BiGRU

= 0.43 95.74± 0.18

RF + BiGRU Fusion w
RF

= 0.95 ; w
BiGRU

= 0.05 ��.��± �.��

1 K BiGRU Local – 94.13± 0.68

MLP Global L = 100 ; � = 0.00001 97.44± 0.23

SVM Global C = 10 ; � = 0.01 97.94± 0.12

RF Global N = 1,001 98.26± 0.22

MLP + BiGRU Fusion w
MLP

= 0.55 ; w
BiGRU

= 0.45 97.69± 0.08

SVM + BiGRU Fusion w
SVM

= 0.81 ; w
BiGRU

= 0.19 97.90± 0.10

RF + BiGRU Fusion w
RF

= 0.93 ; w
BiGRU

= 0.07 ��.��± �.��

2 K BiGRU Local – 97.35±0.46

MLP Global L = 1,000; � = 0.0001 98.85± 0.07

SVM Global C = 100 ; � = 0.001 98.71± 0.10

RF Global N = 101 97.76± 0.22

MLP + BiGRU Fusion w
MLP

= 0.50 ; w
BiGRU

= 0.50 ��.��± �.��

SVM + BiGRU Fusion w
SVM

= 0.50 ; w
BiGRU

= 0.50 98.99± 0.22

RF + BiGRU Fusion w
RF

= 0.75 ; w
BiGRU

= 0.25 98.95± 0.17

4 K BiGRU Local – 96.91± 1.02

MLP Global L = 10,000; � = 0.0001 99.03± 0.11

SVM Global C = 100 ; � = 0.001 98.99± 0.13

RF Global N = 1,001 98.71± 0.09

MLP + BiGRU Fusion w
MLP

= 0.40 ; w
BiGRU

= 0.60 98.09± 0.65

SVM + BiGRU Fusion w
SVM

= 0.62 ; w
BiGRU

= 0.38 ��.��± �.��

RF + BiGRU Fusion w
RF

= 0.67 ; w
BiGRU

= 0.33 98.53± 0.35

5.28 K BiGRU Local – 98.10± 0.26

MLP Global L = 10,000; � = 0.001 98.90± 0.12

SVM Global C = 100 ; � = 0.01 98.65± 0.13

RF Global N = 10,001 98.99± 0.10

MLP + BiGRU Fusion w
MLP

= 0.50 ; w
BiGRU

= 0.50 ��.��± �.��

SVM + BiGRU Fusion w
SVM

= 0.51 ; w
BiGRU

= 0.49 99.28± 0.12

RF + BiGRU Fusion w
RF

= 0.67 ; w
BiGRU

= 0.33 98.99± 0.10
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classifier, although the performance of the latter is always 
the lowest as commented before. The performance of the 
RF classifier is in most cases the lowest of the global-based 
classifiers. The performance of the MLP classifier is similar 
to that of the other single global feature classifiers. All sin-
gle global feature classifiers improve their performance, or 
remain the same but never get worse, when combined with 
the local feature classifier. The SVM + BiGRU classifier 
offers the best performance with a mAP equals to 99.93% 
with a sampling period of 5 minutes.

5  Conclusions

In this work, we have addressed the fishing gear classifica-
tion task from GPS vessel trajectories data. We processed 
for this task the data collected by Tragsatec’s Management 
of Agricultural and Fisheries Information Systems, which 
included information such as AIS beacon positions, date 
and location of departure and return, or the fishing gears 

carried by fishing vessels in Spain waters. After applying 
a data curation process, we obtain a clean database to train 
and evaluate fishing gear from GPS trajectories. The pro-
posed Tragsatec database comprises almost 10 K trajectories 
recorded from 828 fishing vessels, which are classified into 
one among 7 different fishing gears. This database reduces 
the Nyquist bandlimit of existing databases by more than 10 
times, providing, a new resource to develop AI-based solu-
tions to combat illegal fishing activities

We propose a fishingh gear classification framework in 
which fishing vessels’ dynamic trajectories are modeled 
according to both global and local set of features. We 
explode the analogy of vessel trajectories with the problem 
of dynamic handwritten signature verification to this end, 
adapting feature extraction methods proposed in the state-
of-the-art of this biometric trait [30]. Our experiments 
validated the proposed feature extraction using several 
supervised learning classifiers, with performances up to 
90% for multiclass fishing gear classification, and to 99% 

Table 7  Performance of 
different classification 
approaches depending on the 
sampling period T

s
 of the data

We report here the Mean Average Precision (mAP) and its 95% Confidence Interval (CI) (in % ) after a 
10-fold CV. We include as well the optimal hyperparameter values

T
s
 (min) Classifier Features Hyperparameters mAP (95% CI) [%]

5 BiGRU Local – 98.64± 0.26

MLP Global L = 100 ; � = 0.001 99.83± 0.02

SVM Global C = 10 ; � = 0.01 ��.��± �.��

RF Global N = 10,001 99.86± 0.01

MLP + BiGRU Fusion w
MLP

= 0.87 ; w
BiGRU

= 0.13 99.90± 0.02

SVM + BiGRU Fusion w
SVM

= 0.93 ; w
BiGRU

= 0.07 ��.��± �.��

RF + BiGRU Fusion w
RF

= 0.84 ; w
BiGRU

= 0.16 99.90± 0.02

10 BiGRU Local – 98.93± 0.19

MLP Global L = 100 ; � = 0.001 99.83± 0.03

SVM Global C = 10 ; � = 0.01 99.90± 0.02

RF Global N = 10,001 99.77± 0.01

MLP + BiGRU Fusion w
MLP

= 0.77 ; w
BiGRU

= 0.23 ��.��± �.��

SVM + BiGRU Fusion w
SVM

= 0.64 ; w
BiGRU

= 0.36 ��.��± �.��

RF + BiGRU Fusion w
RF

= 0.71 ; w
BiGRU

= 0.29 99.84± 0.02

20 BiGRU Local – 98.80± 0.27

MLP Global L = 1,000; � = 0.001 99.77± 0.08

SVM Global C = 100 ; � = 0.01 99.87± 0.02

RF Global N = 10,001 99.66± 0.02

MLP + BiGRU Fusion w
MLP

= 0.91 ; w
BiGRU

= 0.09 99.87± 0.03

SVM + BiGRU Fusion w
SVM

= 0.85 ; w
BiGRU

= 0.15 ��.��± �.��

RF + BiGRU Fusion w
RF

= 0.79 ; w
BiGRU

= 0.21 99.80± 0.02

35 BiGRU Local – 98.56± 0.28

MLP Global L = 100 ; � = 0.0001 99.67± 0.05

SVM Global C = 100 ; � = 0.01 99.70± 0.03

RF Global N = 1,001 99.49± 0.04

MLP + BiGRU Fusion w
MLP

= 0.71 ; w
BiGRU

= 0.29 ��.��± �.��

SVM + BiGRU Fusion w
SVM

= 0.67 ; w
BiGRU

= 0.33 99.77± 0.03

RF + BiGRU Fusion w
RF

= 0.63 ; w
BiGRU

= 0.37 99.71± 0.05
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when detecting trawling from other fishing practices. We 
consider this last results of especial relevance, due to the 
ecological concerns that bottom trawling has raised among 
international organizations.

Finally, we presented an ablation study to better 
understand how factors such as the amount of data 
available to train the models, or the sampling frequency of 
the GPS signals impact the performance of the models. We 
highlighted here how using a sampling period of minutes 
instead of hours is of significant relevance to obtain better 
results on fishing gear classification, hence confirming 
some of the conclusions previously exposed in [7].
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