
Vol.:(0123456789)

Pattern Analysis and Applications           (2024) 27:38  
https://doi.org/10.1007/s10044-024-01254-3

SHORT PAPER

Tiny polyp detection from endoscopic video frames using vision 
transformers

Entong Liu1 · Bishi He1  · Darong Zhu2 · Yuanjiao Chen1 · Zhe Xu1

Received: 14 April 2023 / Accepted: 18 February 2024 
© The Author(s) 2024

Abstract
Deep learning techniques can be effective in helping doctors diagnose gastrointestinal polyps. Currently, processing video 
frame sequences containing a large amount of spurious noise in polyp detection suffers from elevated recall and mean aver-
age precision. Moreover, the mean average precision is also low when the polyp target in the video frame has large-scale 
variability. Therefore, we propose a tiny polyp detection from endoscopic video frames using Vision Transformers, named 
TPolyp. The proposed method uses a cross-stage Swin Transformer as a multi-scale feature extractor to extract deep feature 
representations of data samples, improves the bidirectional sampling feature pyramid, and integrates the prediction heads of 
multiple channel self-attention mechanisms. This approach focuses more on the feature information of the tiny object detec-
tion task than convolutional neural networks and retains relatively deeper semantic information. It additionally improves 
feature expression and discriminability without increasing the computational complexity. Experimental results show that 
TPolyp improves detection accuracy by 7%, recall by 7.3%, and average accuracy by 7.5% compared to the YOLOv5 model, 
and has better tiny object detection in scenarios with blurry artifacts.

Keywords Polyp detection · Endoscopic video analysis · Tiny object detection · Vision transformers · Gastrointestinal 
diseases

1 Introduction

Gastrointestinal endoscopy is essential for early diagnosis of 
colorectal and gastric cancer. During the examination, the 
doctor inserts a flexible tube with a miniature camera and 
guides it through the digestive tract to detect early precancer-
ous lesions [1].Typically, the miss rate of endoscopy is over 
15% [2], and the quality of the examination during surgery 
usually depends on the doctor's ability to avoid misdiagno-
sis, which requires a high level of professional knowledge 
and experience. In areas with poor medical conditions, due 
to the shortage of endoscopy doctors and different levels of 
operation, the missed diagnosis rate during fatigue can even 
reach 27% [1, 3], which not only delays patient treatment 
but also increases medical costs. Therefore, computer-aided 

examination is needed to improve the diagnostic capacity 
and technical level of doctors so as to better serve the major-
ity of patients and reduce further development and deteriora-
tion of the disease.

With the continuous development and application of deep 
learning techniques, object detection has received a lot of 
attention as an influential research direction in computer 
vision. Different from traditional methods that manually 
extract features, deep learning object detectors can auto-
matically learn image features to achieve more accurate 
and faster object detection. Currently, two different types of 
detectors are mainly used in deep learning detection tasks: 
one-stage detectors and two-stage detectors. They have their 
own strengths and weaknesses and are different in their 
applicability in different application scenarios. The two-
stage detector first generates candidate regions that may con-
tain the target through the region proposal network, and then 
classifies and regresses these candidate regions to achieve 
object detection. Common two-stage detectors include 
R-CNN, Fast R-CNN, and Faster R-CNN. Among them, 
Faster R-CNN is the most popular and classic one, which 
achieves end-to-end object detection by introducing Region 
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Proposal Network (RPN), with higher detection accuracy 
and faster detection speed. Ruilin Wang et al. improved the 
Faster R-CNN [4] network, using ROI alignment instead of 
ROI pooling, and improving the operation mechanism of 
non-maximum suppression, achieving favorable results in 
detection [5]. The one-stage detector will not generate candi-
date boxes, and directly transform the problem of target bor-
der positioning into a regression problem, which has higher 
detection efficiency than the two-stage detector. Dai et al. 
proposed Faster R-CNN-based single-stage detector R-FCN, 
which merges detection and localization into a unified net-
work with shared convolutional feature maps and position 
sensitive RoI pooling layers for faster and more accurate 
object detection. In some small target tasks, the detec-
tion accuracy of one-stage detectors has reached or even 
exceeded that of two-stage detectors [6]. Common one-stage 
detectors include YOLO, SSD, and RetinaNet. For example, 
Al-Masni et al. compared the performance of YOLOv2 and 
SSD algorithms in polyp detection in their paper, and found 
that YOLOv2 had better performance than the SSD algo-
rithm [7]. Redmon et al. introduced a lightweight version of 
YOLOv3 called Tiny-YOLOv3. They evaluated the perfor-
mance of Tiny-YOLOv3 and RetinaNet on the COCO dataset 
and found that Tiny-YOLOv3 was better than RetinaNet in 
tiny object detection [8]. As the YOLO algorithm is continu-
ously updated, the detection accuracy of YOLOv5 increases 
by about 10% compared to YOLOv4. Moreover, compared 
with traditional deep learning algorithms, YOLOv5 has 
faster processing speed and lighter model size [9], but its 
ability to obtain global information is limited.

The Transformer model was originally proposed by 
Google and applied to natural language processing tasks. 
As the advantages of Transformer in processing lengthy 
sequence data continue to be discovered, some research-
ers have begun to explore its application in object detection 
tasks [10]. The vision Transformer (ViT) model proposed 
by Dosovitskiy et al. [11] splits image data into a text-like 
sequence similar to natural language processing. For exam-
ple, the image is divided into a series of non-overlapping 
regions, and the feature representation of each region is used 
as an input sequence, which is then learned and fused using 
the Transformer model, thus demonstrating the feasibility 
of the Transformer model for object detection tasks.  The 
Swin Transformer proposed by Liu et al. reduces the com-
putational complexity and memory usage by introducing a 
Shifted Window mechanism, dividing the input image into 
tiny blocks, and independently calculating self-attention 
based on the blocks, while still maintaining excellent object 
detection performance [12, 13].

Although the above object detection methods commonly 
have higher accuracy than traditional algorithms, the model 
has a steep rate of missed detections when processing large 
sequences of video frames containing pseudo-noise, and the 

detection accuracy is also low when the scale of the polyp tar-
get varies largely in the video frames. Therefore, we propose 
a tiny polyp detection from endoscopic video frames using 
Vision Transformers, named TPolyp, which takes into account 
both global and local feature information and can adapt to 
extreme scale variations. The main contributions of this paper 
are as follows:

1. A sliding window-based local self-attention mecha-
nism module is proposed as the backbone to capture 
local dependencies in input sequences.Compared with 
the traditional attention mechanism, our innovation is 
to apply the attention mechanism to the local window, 
effectively extract the correlation of local features, and 
thus enhance the modeling ability of the model on the 
input sequence.

2. The bidirectional feature pyramid network is improved 
as a Neck part to predict different objects by dynami-
cally selecting different network depths. This innovative 
design enables the network to make more accurate pre-
dictions of objects at different scales at different levels, 
improving the performance of the model in multi-scale 
object detection tasks.

3. In the downsampling process, we introduce techniques 
such as channel attention module, cross-stage connec-
tion and channel rearrangement. The application of these 
innovative techniques helps to further extract the fea-
ture information between channels, enhance the recep-
tive field and capture more context information. The 
design of the downsampling process using a variety of 
techniques can effectively improve the model's ability to 
represent image features.

4. The output of the model is divided into four scales, 
including minimal, small, medium and large. This inno-
vative design enables the model to adapt to different 
detection difficulties and better handle detection tasks 
of different scale targets. By introducing multi-scale tar-
get processing, our model has stronger adaptability and 
generalization ability in target detection task.

The paper is structured as follows: Sect. 2 reviews related 
work. Section 3 describes the main steps of the research meth-
odology. In Sect. 4, the dataset is described and ablation exper-
iments are performed to evaluate performance metrics, dem-
onstrate the working principle of TPolyp method, and provide 
directions for future research. Section 5 concludes the paper.

2  Related work

Polyps are an essential sign of early colon cancer, so the 
main purpose of examination is to detect them as early as 
possible to improve patient survival rates [14]. Automatic 
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detection and localization of polyps in video frames of gas-
trointestinal endoscopy can help reduce missed and false 
detections in manual manipulation, improve detection qual-
ity and efficiency, and have positive implications for early 
detection of pre-cancerous lesions.

In recent years, machine learning and deep learning have 
been widely applied in medical imaging. Machine learn-
ing algorithms for polyp image detection mainly use tradi-
tional image processing techniques, requiring the manual 
design of feature extraction procedures and classifiers. Wang 
et al. [15] proposed a polyp detection framework includ-
ing image preprocessing, feature extraction, feature selec-
tion, and classification steps. Zheng et al. [16] proposed a 
computer-aided diagnosis method based on image feature 
extraction and Fisher vector technology. Zhang et al. [17] 
proposed a polyp detection method based on SIFT features. 
These approaches rely on expertise and experience and have 
elevated data quality requirements. In contrast, deep learning 
algorithms can automatically learn features and have rela-
tively low data quality requirements. Zacharaki et al. [18] 
used support vector machines and neural networks to detect 
polyps in computed tomography colonoscopy, employing 
multiple texture feature extraction methods and comparing 
their effect. The final results showed that neural networks 
performed better in detecting polyps with regular textures 
and had better performance [19]. Early machine learning 
detection algorithms relied on the color and texture features 
of polyps, but the large color changes between polyps and 
the limited visibility of surface textures hindered the appli-
cability of the algorithms [20].

Wang et al. [21] used a region-based CNN model to 
detect and classify polyps in colonoscopy images, which 
can detect potential polyp regions in images and classify 
them. Fang et al. [22] used a method based on convolutional 
neural networks (CNN) and region-based CNN (R-CNN), 
where CNN was used to generate candidate regions and 
R-CNN was used for classification and localization of 
these candidate regions, achieving polyp region localiza-
tion in colonoscopy images. These polyp detection methods 
require separate classification of each region in the image 
[23], resulting in moderate speed. Urban et al. [24] used 
an improved RCNN model, incorporating the techniques of 
Fast R-CNN and Faster R-CNN on the basis of the origi-
nal RCNN model. This method uses the Region Proposal 
Network (RPN) to generate candidate regions and uses the 
RoI pooling layer for object classification and localization, 
demonstrating good performance.

Due to the diverse appearance of polyps in GI endos-
copy images, two-stage detection methods suffer from prob-
lems such as mismatch between candidate box scales and 
targets, and high computational complexity for classifica-
tion and regression. To better adapt to this characteristic, 
Xu et al. [25] and Li et al. [26] each made improvements 

and optimizations to the EfficientDet model from two per-
spectives. The former uses an attention mechanism based 
approach to extract image features, while the latter uses a 
feature pyramid network based approach to extract features 
at different scales. However, both use compound scaling 
methods to further improve detection efficiency and perfor-
mance. This method can dynamically adjust the size and 
resolution of the input image according to the size and shape 
differences of polyps in gastrointestinal endoscopy, provid-
ing ideas for subsequent multi-scale research [27].

Bychkov et al. [28] first proposed to use ResNet and FPN 
networks to construct feature pyramids to extract features at 
different scales, and applied them to object detection tasks, 
providing ideas for the fusion of deep learning and feature 
pyramids. Later, Wang et al. [29] proposed a polyp detec-
tion method that combines the YOLO algorithm and FPN. 
Bertrand et al. [30] proposed a polyp detection method based 
on SSD and FPN. In addition, the network structure based on 
Focal Loss and FPN has also been proven to be feasible [31]. 
These methods all use FPN to construct feature pyramids 
and have achieved excellent results. While FPN performs 
better in the above scenarios, the most common obstacles 
in endoscopy detection include artifacts caused by motion, 
specular reflections, low contrast, bubbles, debris, body flu-
ids, and blood, which are often confused with lesions. Each 
organ has specific limitations on the use of endoscopes, and 
the appearance, size, and shape of polyps in gastrointestinal 
endoscopy are also different, making accurate detection of 
polyps much more difficult [32–34]. In complex scenarios, 
the FPN can only construct a feature pyramid between the 
top and bottom layers of the backbone network and cannot 
fully integrate features from the middle layers, which may 
cause the detector to have difficulty in recognizing some 
medium-sized targets. In addition, the resolution of the fea-
tures in each layer of the FPN varies significantly, which 
may cause the object detector to lose accuracy when work-
ing with small targets and fail to cover the entire target area 
when working with large targets.

There are a number of open questions about the FPN 
structure. Bogusz et al. [35] introduced a method based 
on PANet (Panoramic Attention Network). This approach 
starts by using ResNet as the backbone network to gener-
ate feature maps at different scales. Then, PANet is used to 
integrate these feature maps, adaptively adjusting the fea-
ture weights through a global attention mechanism, avoiding 
the problem of insufficient feature integration in FPN and 
adapting to feature resolution, so that it does not lose accu-
racy when processing small targets and can cover the entire 
image when processing large targets, avoiding the problem 
of feature resolution mismatch in FPN [36]. However, due 
to the complexity of the PANet network structure and the 
high requirements for training data and computing resources, 
Smith et al. [37] proposed an object detection method based 
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on Simplified PANet. This approach first preprocesses colo-
noscopy images with a single threshold segmentation algo-
rithm, and then uses Simplified PANet to achieve multi-scale 
feature fusion and object detection. Compared to PANet, 
Simplified PANet has advantages such as lower computa-
tional and storage overhead, simpler and more user-friendly 
network structure, and higher detection performance. How-
ever, it also has certain limitations compared to PANet, such 
as the inability to adaptively adjust the feature weights. In 
our approach, instead of the traditional convolutional neural 
network, we use a sliding window-based local self-attention 
mechanism and integrate a bidirectional adaptive feature 
selection mechanism to better integrate local low-level and 
high-level features. During the sampling process, techniques 
such as channel attention module, cross-stage connections, 
and channel reordering are introduced to enhance its global 
feature integration capability in complex scenes and auto-
matically select useful features for detection tasks, thereby 
improving adaptability.

3  Method

Although many traditional object detection methods have 
excellent accuracy and speed in discontinuous image object 
detection tasks, in polyp detection of gastrointestinal endos-
copy videos, due to the pseudo-images caused by camera 
shaking and the large variation in polyp image scales, there 
is a high demand for the extraction of global and local fea-
tures, so there is a problem of low recall when dealing with 
complex scenes containing a large amount of pseudo-noise 
video frame sequences, as well as low detection accuracy in 
cases where the polyp target scale changes greatly in video 
frames. To overcome these issues in existing techniques, in 
this paper, we propose a tiny object detection algorithm for 
gastrointestinal endoscopy video frames. Figure 1 shows the 
overall framework of TPolyp.

The proposed TPolyp framework mainly consists of four 
parts. The first part is the data preprocessing and data aug-
mentation module, which is used to obtain continuous video 
frames of gastrointestinal endoscopy images and preprocess 
them. Among them, there are eight alternative data augmen-
tation methods that can increase data diversity and improve 
the generalization ability and robustness of the model. The 
second part is the backbone of this framework, which uses 
two multi-head self-attention mechanisms for feature extrac-
tion, allowing it to focus on different scales and levels of 
information simultaneously and thus better adapt to multi-
level tasks. The third component is the feature pyramid, 
which connects the backbone and bidirectional adaptive fea-
ture selection. By using cross-stage connections and chan-
nel reordering, it solves the problem of inconsistent input 
image sizes, improves the effect of multiple feature fusion, 

and bidirectional sampling can better integrate features from 
different levels. The fourth part is the prediction head, which 
adds multiple self-attention mechanisms, channel attention 
modules, cross-stage connections, and channel reordering 
techniques based on multiple convolutional layers and fully 
connected layers to predict target class, location, confidence, 
and additional information.

3.1  Backbone network based on Swin transformer 
feature extraction

Different from previous polyp target detection methods, 
Swin Transformer is selected as a multi-scale feature extrac-
tor in this paper. The main network structure is shown in 
Fig. 2a, and swin block is shown in Fig. 2b. In this paper, 
the input image is divided into a series of overlapping small 
blocks of the same size. For each small block, its feature 
representation is extracted, and these feature representations 
make up the feature map. The feature map is then divided 
into chunks of the same size, each made up of four adjacent 
smaller chunks. These large block feature representations are 
composed of four small block feature representations. These 
chunks are gradually merged into larger chunks through sev-
eral patch merging-like operations, eventually producing a 
global feature representation. Each merge operation merges 
four adjacent blocks into a larger block and applies a self-
attention mechanism on the new block to fuse the feature 
representations of these blocks, as shown in Fig. 3. This self-
attention mechanism is only computed within a local win-
dow, so when the window size is fixed, the computational 
complexity is also fixed. In this way, it can capture feature 
information at different scales and focus only on local prior 
knowledge when calculating self-attention mechanisms, thus 
reducing sequence length and computational complexity.

After data preprocessing, gastroenterology three-chan-
nel images containing polyps were input into the feature 
extractor. The height H and width W of the image are set at 
640 × 640. After cross-stage connection and channel rear-
rangement operation, CSTR structure as shown in Fig. 1 is 
used to fuse CSPnet before swin block. The swin block con-
tains the W-MSA module (window long head self-attention) 
and the SW-MSA module (sliding window long head self-
attention). The W-MSA module can reduce the calculation 
of self-attention operation and feature mapping. SW-MSA 
module uses the offset window to realize the information 
exchange between different Windows, and further improves 
the capability of feature representation. These two self-atten-
tion structures are connected in series to form a block. At 
this time, the dimensions of the image do not change. Under 
the condition that the size of the output feature matrix is 
20 × 20, the window size corresponding to the fourth stage 
is only 20 × 20. First, the image input patch segmentation 
module is divided into blocks, and every 4 × 4 = 16 adjacent 
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pixels are set as patches, and each pixel has three values of 
R, G, and B. After the channel direction is expanded, the 
channel data of each pixel is transformed linearly by lin-
ear embedding layer. Finally, the CSTR shown in Fig. 1 is 
repeatedly stacked in four stages. The image changes in the 
four stages of the trunk part model are (640, 640, 3) → (160, 
160, 48) → (160, 160, 128) → (80, 80, 256) → (40, 40, 
512) → (20, 20, 1024). Table 1 shows the structure configu-
ration information of the four phases.

For polyp detection tasks in gastroenterology video 
frames, after the Swin Transformer network architecture, the 
SPPF structure as shown in Fig. 1 is adopted to divide the 
feature maps into blocks, and the features within each block 
are maximized to obtain fixed-size feature vectors. Then, the 

feature vectors of all blocks are spliced together to get the 
final feature representation. These processing methods only 
need to operate on the feature graph, so the detection accu-
racy of the model can be improved without increasing the 
amount of computation, and the final output can be obtained. 
At the same time, it can also aggregate different scale recep-
tive fields without changing the size of the feature map, so 
as to enhance the ability of feature expression.

3.2  Feature pyramid with cross‑stage connections 
and bi‑directional sampling

 Traditional object detection networks typically start fea-
ture fusion from the third layer of features. To improve 

Fig. 1  The overall framework diagram of TPolyp
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the network's ability to detect small objects, a small object 
detection layer is introduced in this work and a second fea-
ture layer is added to the feature fusion network to preserve 
shallow semantic information. A 160 × 160 feature map, 
which was not fused in the feature extraction network, was 
added to the detection layer, and an upsampling and down-
sampling operation was added to the feature fusion network 
to increase the number of detection layers to four. After 
the addition of the detection layer, the number of output 

prediction boxes is increased from 9 to 12, which are all 
prediction boxes with different aspect ratios for small object 
detection.

Conventional FPN structures have only one-way infor-
mation flow from top to bottom. As shown in Fig. 4a, the 
PANet network adds an extra bottom-up path to enhance the 
information flow, effectively preserving more shallow fea-
tures. BiFPN is a Google team's improved network structure 
based on PANet, as shown in Fig. 4c. The original BiFPN 
network fused features from the third to the seventh of the 
seven feature layers, and believed that a node with only one 
input edge would contribute less to the network. Therefore, 
the feature fusion nodes in the third and seventh layers are 
removed in this paper to reduce the computational cost. At 
the same time, proposed a cross-scale concatenation method 
by adding an additional edge to directly fuse features in the 
feature extraction network with features of similar size in 
the bottom-up path, which preserves more shallow semantic 

Fig. 2  Swin Transformer network structure

Fig. 3  Diagram of the patch 
merging process

Table 1  Structural configuration information for the four stages

Stage 1 Stage 2 Stage 3 Stage 4

Channel depth of feature map 128 256 512 1024
Number of heads of self-

attentive modules
4 8 16 32

Number of blocks stacked 2 2 2 2

Fig. 4  Pyramid structure of the four types of bidirectional fusion features
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information without losing too much relatively deep seman-
tic information. The feature fusion network of YOLOv5 uses 
the PANet structure. As shown in Fig. 4b, since the network 
added a small object detection layer and added the second 
layer of features, which was not involved in feature fusion, 
to the feature fusion network, too much shallow semantic 
information was retained, leading to a serious loss of deep 
semantic information in the network and making the features 
relatively complex for the network. Therefore, it is impor-
tant to retain more relatively deep semantic information. 
This study uses an improved bidirectional fusion network, 
as shown in Fig. 4d, which adds cross-scale connections to 
fuse more features without increasing too much computa-
tional cost.

3.3  Prediction head with multiple channel 
self‑attention mechanisms

 The prediction heads in this study include multiple chan-
nel self-attention mechanisms, which can aggregate and 
fuse features from different scales to improve the model's 
cross-scale detection capability. The multi-head self-atten-
tion mechanism can model contextual information in the 
feature maps, enable dynamic adjustment and fusion of 
the feature maps, and improve the detection accuracy and 
robustness of the model. By combining channel and spa-
tial attention mechanisms and cross-stage partial networks, 
the feature expression and discriminability can be further 
improved without increasing the computational complexity, 
thus improving the accuracy and robustness of the model. 
Swin Block enables cross-scale feature fusion and solves 
the problem of detecting targets at different scales. By com-
bining techniques such as CBAM and CSPNet, the cross-
scale fusion ability of features can be further improved to 
improve the detection accuracy and robustness of the model. 

Meanwhile, the prediction head is shown in Fig. 3. Efficient 
feature fusion and prediction can be achieved with a small 
number of parameters, which optimizes the computational 
efficiency of the model and better adapts to the problem of 
detecting polyps with blurred features.

4  Experiments and results

4.1  Dataset

Two public datasets for polyp detection, LDPolypVideo 
[38] and Hyper-Kvasir [39], were used to evaluate differ-
ent approaches. Among them, LDPolypVideo (training 
set: 22,310 frames, test set: 2479 frames). The video frame 
images in the training set have frame-level labels, that 
is, each frame image contains information about the size 
and location of the polyp. Hyper-Kvasir (training set: 889 
frames, test set: 111 frames). The two datasets contain pol-
yps of different sizes and shapes, as shown in Figs. 5 and 6. 
We kept the same data set Settings for TPolyp and all other 
methods for the sake of fairness of the experiment.

In Figs. 5 and 6a represents the annotated anchor boxes 
for all samples, (b) represents the distribution of anchor box 
positions in all samples, and (c) represents the distribution 
of anchor box dimensions in all samples.

4.2  Evaluation metrics

In object detection tasks, Precision, Recall, Precision-Recall 
curve (PR curve), mean Average Precision (mAP) are com-
monly used to evaluate the performance of the model. Here, 
mAP is the average of all class APs and is computed for 
the entire dataset. In this experiment, only one class needs 
to be detected and evaluated – with or without polyps. In 

Fig. 5  Hyper-Kvasir dataset
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the actual calculation, the number of positive and negative 
samples for the true and predicted bins needs to be counted, 
and TP, FP, FN, and TN are used to do this:

IoU is used as the basis for marking the boundary boxes 
as TP, FP, FN, and TN. The calculation method is as follows: 
Generally, the prediction box whose IoU is greater than 0.5 
is marked as TP. The calculation of mAP0.5 refers to the 
average accuracy when the IoU threshold is 0.5. Therefore, 
the above target detection and estimation indicators can be 
calculated and defined as follows:

Mean Average Precision (mAP)—a comprehensive index 
of precision and recall, whose value is the area under the PR 
curve drawn with Recall as the horizontal axis and Precision 
as the vertical axis. Its discrete form is used in practice:

In Eq. (3),  ΔR(k) is an interval that is evenly divided into 
n segments between 0 and 1 on the x-axis

In Eq. (4), c represents the class.
The loss function consists of three main parts: classifica-

tion loss, object loss, and localization loss. In this study, both 
the classification loss and objectness loss are calculated using 
binary cross-entropy (BCE) loss. In practical applications, the 
model automatically calculates the predicted values, and by 
continuously adjusting the parameters of the loss function, 
the model can be continuously improved, ultimately achieving 

(1)Precision = TP∕(TP + FP)

(2)Recall = TP∕TP + FN

(3)AP =

n∑

K=1

P(k)ΔR(k)

(4)mAP =
1

|c|
∑

c∈C

AP(c)

optimal performance [40]. The CIoU loss is used to compute 
the localization loss.The CIoU loss is based on the DIoU loss 
and adds a factor that considers the consistency of aspect ratios 
between the predicted and ground truth boxes [41, 42]. The 
formula is as follows:

Here, b and  bgt correspond to the center points of B and  Bgt, 
respectively. ρ(∙) denotes the Euclidean distance, and c repre-
sents the diagonal distance between the minimum enclosing 
rectangles of B and  Bgt. α is a parameter used for balancing 
the ratio.

� Here, is used to measure the consistency of aspect ratios, 
which is defined as follows:

The CIoU loss function combines the advantages of GIoU 
and DIoU loss functions and can solve the problem of zero IoU 
loss value when the prediction box and ground truth box do 
not intersect. At the same time, this function takes into account 
the overlap area and distance between the central points of the 
predicted boxes, and adds a parameter that measures the aspect 
ratio agreement between the predicted and ground truth boxes. 
These improvements further improve the convergence rate and 
regression accuracy of the model.

4.3  Data enhancement

In this study, the following methods were used to carry out 
data enhancement, such as scaling and cropping at 50% 

(5)LCIoU = 1 − IoU +
�
2(b, bgt)

c2
+ ��

(6)� = �∕(1 − IoU + �)

(7)� =
4

Π2

(
arctan

wgt

hgt
− arctan

w

h

)2

Fig. 6  LDPolypVideo dataset



Pattern Analysis and Applications           (2024) 27:38  Page 9 of 12    38 

ratio, horizontal inversion, adjustment of HSV hue, satura-
tion and brightness of images, etc., and Mixup algorithm 
[43] was used to mix images of different types through 
simple linear transformation of input image data. M Dur-
ing the training process, these enhancements will generate 
more training data, thereby improving the accuracy and 
robustness of the model. The TPolyp network model was 
trained by using enhanced images and unenhanced images of 
LDPolypVideo dataset, respectively, and two different train-
ing models were obtained to verify the influence of image 
enhancement on detection results. The test results are shown 
in Table 2. The mAP of the model on the unenhanced data 
set is 97.7%, while the model mAP on the enhanced data set 
is 99.5%, which confirms the necessity and effectiveness of 
data enhancement.

4.4  Experimental design and performance analysis

This study was implemented on top of Ubuntu 16.04 LTS 
64-bit operating system, using Python programming lan-
guage and PyTorch deep learning framework to train object 
detection models on NVIDIA GTX3080. The initial learn-
ing rate was set to 0.01, and the training loss was optimized 
using the momentum-based stochastic gradient descent 
(Momentum SGD) method. The number of iterations is set 
to 100, the batch size is set to 16, and the weight decay is 
set to 0.0005. Precision, Recall, and mean average precision 
(mAP) were used as evaluation metrics to comprehensively 
evaluate the performance of the deep learning algorithm.

Our model consists of three parts: backbone, feature 
pyramid, and prediction head. In its backbone, two multi-
head self-attention mechanisms are used for feature extrac-
tion. The feature pyramid part, connecting the trunk and 

bidirectional sampling adaptive feature selection before 
using cross-stage connection and channel rearrangement, 
and then bidirectional sampling can better integrate features 
of different levels. In the last part of prediction, multi-head 
self-attention mechanism, channel attention module, cross-
stage connection and channel rearrangement are added on 
the basis of multiple convolution layers and fully connected 
layers. In order to further verify the effectiveness of this 
research method, the model proposed in this study was com-
pared with some mainstream target detection models, such 
as Faster-RCNN, CenterNet [44] and TransVOD [45], and 
the test results are shown in Table 3. As can be seen from 
Table 3, the detection results of the proposed model are bet-
ter than those of Faster-RCNN, CenterNet, TransVOD and 
other detection models.

Figure 7 shows the visualization of different models. It 
can be seen that our model has a lower miss rate when body 
fluid reflection, lens blur and prediction target are small, 
which improves the prediction score and accuracy, and fur-
ther proves the effectiveness and accuracy of this model.

In Fig. 7 The first row represents the image contain-
ing GT frame of polyps, and the second and third rows 
are the prediction results of YOLOv5 and Ours models, 
respectively. The first three columns of images are from the 
LDPolypVideo dataset and the last three columns of images 
are from the Hyper-Kvasir dataset. The bounding box is 
green for correct position and red for incorrect prediction.

4.5  Ablation experiments

To verify the effectiveness of the research approach 
described in this paper, we perform ablation experiments on 
the modified network model. In this study, YOLOv5 is used 
as the baseline network and seven different architectures are 
trained, including CSTR as the backbone, improved cross-
stage bidirectional sampling as Neck, and multiple channel 
self-attention mechanisms fused in the prediction head, to 
validate their advantages and show the effect parameter of 
their combination.The specific performance of each module 
after improvement is shown in Table 4.

The backbone consists of a stack of convolutional and 
CSPNet structures, and Neck uses a PANet module with 

Table 2  The effect of data enhancement on detection results

Bold values represent the best results of various indicators generated 
after data augmentation

Data processing Precision Recall mAP0.5

Un-Enhanced 0.978 0.980 0.977
Enhanced 0.990 0.989 0.995

Table 3  Experimental results of 
different models

Bold values represent the best performance results of the five models on two different datasets

Model LDPolypVideo Hyper-Kvasir

Precision Recall mAP0.5 Precision Recall mAP0.5

Faster-RCNN 0.772 0.696 0.732 0.688 0.467 0.556
CenterNet 0.746 0.654 0.697 0.706 0.438 0.540
TransVOD 0.793 0.696 0.741 0.919 0.920 0.920
YOLOv5 0.922 0.914 0.920 0.906 0.845 0.875
Ours 0.990 0.989 0.995 0.956 0.973 0.970
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three upsampling layers to ensure that the output of the pre-
diction head includes four scales for tiny object detection. 
In the second set, the backbone part is used as a variable 
and a Swin Transformer based feature extraction network 
is embedded, resulting in an average accuracy increase of 
3.4 percentage points after aggregating the receptive fields 
at different scales. In the third set, the Neck part is used as 
a variable and replaced with improved cross-level bidirec-
tional sampling to better preserve features at various levels. 
Experimental results show an average accuracy increase of 3 
percentage points. In the fourth set, only the prediction head 
was changed to a more sophisticated attention mechanism, 
with only a slight improvement in detection metrics. The 
first four experiments show that all three changes contribute 
to optimizing the detection performance, but the effect of 
the last two improvements is not as significant as the second 

improvement in the backbone. This may be because add-
ing additional feature fusion steps does not achieve the best 
results without accurately capturing rich local and global 
information. Therefore, we perform the fifth and sixth exper-
iments, keeping the improved backbone and adding cross-
stage bidirectional sampling and multi-channel prediction 
heads, respectively. The results show that combining the 
changes in the backbone and neck, as well as the backbone 
and prediction head, both increase the average accuracy by 
about six percentage points. Finally, the model proposed in 
this study integrates all three improvements and achieves 
the best performance compared to the baseline, with a 7% 
increase in accuracy, a 7.3% increase in recall, and a 7.5% 
increase in average precision, outperforming alternative 
detection models.

5  Research limitations and future directions

Currently, the number of gastrointestinal endoscopy datasets 
is still limited and most of them contain noise and other 
interference factors. Compared to natural image datasets, the 
quality of these datasets still needs to be improved. There-
fore, future research can focus on designing video denoising 
algorithms and expanding endoscopy datasets, and analyzing 
the robustness of the algorithms.

Global information on individual discontinuous images 
is relatively limited in the video detection process of gas-
trointestinal endoscopy. When significant noise and arti-
facts are present, the use of consecutive video frames can 
raise recall index. However, due to the limited information 

Fig. 7  Comparison of detection performance between YOLOv5 and TPolyp on LDPolypVideo and Hyper Kvasir datasets

Table 4  Results of ablation experiments

Bold values represent the best results from the ablation experiment

CSTR-
back-
bone

Improved-FPN SCC-head Precision Recall mAP0.5

0.922 0.914 0.920
√ 0.969 0.925 0.954

√ 0.963 0.937 0.950
√ 0.983 0.920 0.925

√ √ 0.984 0.971 0.988
√ √ 0.956 0.973 0.985
√ √ √ 0.990 0.989 0.995
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interaction between video frames, the performance under 
blurry detection conditions still lags behind that of sharp 
video frames. Therefore, future research can consider 
detecting global features of video segments. Video clips 
cover temporal and spatial information interactions and 
contain additional latent feature information. Moreover, in 
the presence of significant artifacts and noise, video seg-
ments can complement each other and share information, 
thereby improving the detection capability and raising the 
recall index. At the same time, improving the accuracy and 
generalization of the detection to be closer to real-world 
scenarios is a critical area for future research.

6  Conclusion

In this paper, we propose a tiny polyp detection from endo-
scopic video frames using Vision Transformers, named 
TPolyp, which addresses the characteristics of polyps in 
video frames, such as varying sizes, significant artifacts 
and noise, and complex feature information. The algo-
rithm mainly consists of a backbone network based on 
Swin Transformer feature extraction, a feature pyramid 
with inter-stage connections and bidirectional sampling, 
and a prediction head that integrates multiple channel 
self-attention mechanisms. By further extracting inter-
channel features, increasing the receptive field, and cap-
turing additional information, the model has the ability 
to obtain local dependencies in the input sequence and 
adapt to four types of target variations from ultra-narrow 
to large scales, with the ability to detect, localize, and pro-
vide prediction scores. Compared to the YOLOv5 model, 
the proposed model improves mAP by 7%, recall by 7.3%, 
and mean accuracy by 7.5%, demonstrating better overall 
performance. In addition, this research could assist less 
experienced imaging physicians in medical diagnosis by 
helping them detect lesions that are difficult to identify 
with the naked eye, reducing false negative rates, improv-
ing diagnostic accuracy and detection efficiency, and pro-
moting early detection and treatment of diseases, thereby 
improving patient survival.
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