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Abstract
Although many state-of-the-art methods of object detection in a single image have achieved great success in the last few 
years, they still suffer from the false positives in crowd scenes of the real-world applications like automatic checkout. In order 
to address the limitations of single-view object detection in complex scenes, we propose MVDet, an end-to-end learnable 
approach that can detect and re-identify multi-class objects in multiple images captured by multiple cameras (multi-view). 
Our approach is based on the premise that incorrect detection results in a specific view can be eliminated using precise cues 
from other views, given the availability of multi-view images. Unlike most existing multi-view detection algorithms, which 
assume that objects belong to a single class on the ground plane, our approach can classify multi-class objects without such 
assumptions and is thus more practical. To classify multi-class objects, we propose an integrated architecture for region 
proposal, re-identification, and classification. Additionally, we utilize the epipolar geometry constraint to devise a novel 
re-identification algorithm that does not require assumptions about ground plane assumption. Our model demonstrates 
competitive performance compared to several baselines on the challenging MessyTable dataset.

Keywords Multi-view object detection · Automatic checkout · Epipolar geometry · Re-identification · Multi-view 
classification

1 Introduction

With the significant progress in deep learning, several meth-
ods based on deep learning have been proposed in various 
applications of computer vision, such as automatic check-
out [1, 2], autonomous driving [3], and robotics [4]. Among 
these applications, automatic checkout employs different 
types of sensors including cameras, LIDARs, microphones, 
and scales to automatically recognize the items bought by 
a customer in a store, without the need for scanning bar-
codes. In comparison with other types of sensors, camera-
based automatic checkout is not only less expensive but also 

advantageous in utilizing the recent promising outcomes of 
computer vision research.

However, Rigner et al. [2] have shown that the perfor-
mances of some representative vision-based detection 
algorithms, such as Mask R-CNN  [5], YOLO  [6], and 
RetinaNet  [7], were degraded when the scenes become 
crowded in automatic checkout. While several methods have 
attempted to solve this issue in a single-view setting [8–10], 
a single-view clue is insufficient to address the occlusion 
problem in complex scenes. To improve detection accuracy 
under occlusion, recent approaches have utilized depth infor-
mation [11–13], LIDAR point cloud [14, 15], or multiple 
camera views (multi-view) [16–19]. In this paper, we focus 
on multi-class object detection from multiple RGB camera 
views.

In this study, the multi-view images capture the overlap-
ping fields of view and are characterized by the intrinsic 
and extrinsic camera parameters. Each scene contains mul-
tiple classes of objects, and the positions of the cameras 
are randomized per every scene for a general setting. The 
objective is to locate objects in each view (region pro-
posal), compare the objects across views to determine if 
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they have the same identity (re-identification), and classify 
the re-identified objects (classification).

Existing multi-view detection studies have two limi-
tations: (i) they cannot process multi-class objects, and 
(ii) they assume ground plane for re-identification. For 
instance, Cai et al. [20] have proposed to separately use 
the state-of-the-art methods in the fields of single-view 
detection and multi-view re-identification for multi-view 
detection. However, this approach cannot determine the 
final class if the object’s classes are different in each view. 
Similarly, other studies [17, 19, 21] have integrated the 
detection and re-identification procedures in an end-to-
end manner, but they also assume only one class, and all 
objects in the scenes are considered to be of the same class 
without classification. Furthermore, multi-view pedestrian 
detection methods [17, 21], which are the main focus of 
multi-view detection research, assume a reference ground 
plane, which is not applicable to scenarios where objects 
do not stand on the ground plane, such as automatic check-
out and unmanned stores. Therefore, a general model that 
performs multi-class object detection and re-identification 
without ground plane assumption is required.

Therefore, this paper proposes a method to address two 
issues in object detection: multi-class classification and 
re-identification without ground plane assumption. For 
multi-class classification, the proposed method simulta-
neously performs region proposal, re-identification, and 
classification in an end-to-end manner. Specifically, we use 
faster R-CNN’s region proposal network to locate objects 
in each view, and then, a view embedding network (VEN) 
trained with triplet loss [22] to re-identify the region pro-
posal boxes. Finally, a classification network determines 
their class after pooling the re-identified regions. We save 
time and memory use by sharing the initial features in 
three stages. In addition, to improve detection accuracy 
at inference time, the re-identification and classification 
networks are trained on the incomplete detection results 
generated by the region proposal network instead of the 
error-free ground truth.

For re-identification without ground plane assumption, 
the proposed method adopts epipolar geometry to deal with 
occlusions and view variations. We calculate the embedding 
distance of a pair of region proposal boxes using the features 
extracted by VEN, and re-identify them as the same instance 
if they have the smallest distance across views and satisfy 
the epipolar constraint. Without ground plane assumption, 
our method achieves accurate re-identification.

Our model has been extensively tested on the challenging 
MessyTable dataset [20], which contains complex scenes 
with multi-view multi-class objects. The studies demon-
strate that our model improves the detection performance 
(MODA) of faster R-CNN by +16% point. Moreover, our 
jointly optimized model outperforms the simple combination 

of detection and re-identification by +21% MODA and 
+25.9% AP, respectively. In summary, our contributions 
are as follows:

• We propose MVDet, an end-to-end learnable object 
detector that is capable of handling multi-class objects 
in multi-view scenarios. To the best of our knowledge, 
this is the first attempt in this domain.

• We have developed a novel algorithm that can re-iden-
tify objects across multi-view images under the epipo-
lar geometry constraints, without relying on the ground 
plane assumption. Our method can be applied to various 
scenarios where objects are not on the ground plane, such 
as automatic checkout and unmanned stores.

• Our proposed MVdet outperforms the single-view detec-
tion model and separately optimized multi-view detec-
tion models by jointly optimizing the region proposal, 
re-identification, and classification networks, without the 
ground plane assumption.

2  Related works

2.1  Single‑view object detection

Object detection on a single image has made significant 
progress with deep learning, with methods such as Faster 
R-CNN [23] proposing regions where objects are expected 
to be and performing classification on those regions. Other 
detectors like YOLO [24], SSD [25], and EfficientDet [26] 
combine both steps by simultaneously localizing and clas-
sifying objects. However, accurate object detection a single 
image is limited when objects are partially or completely 
occluded.

2.2  Multi‑view re‑identification

Multi-view re-identification research has primarily focused 
on person retrieval, with many studies exploiting the parts of 
the objects [27–30]. In contrast, FaceNet [22] has introduced 
a triplet loss to minimize the distance between an anchor 
and a positive input, while maximizing the distance between 
the anchor and a negative input. ASNet [20], which per-
forms well on the MessyTable dataset, leverages context of 
instances in complex scenarios. However, these approaches 
significantly suffer when inaccurate single-view detection 
results are used as input since they are trained and optimized 
on accurate ground truth boxes.

2.3  Multi‑view classification

Research on 3D object detection has focused on classifying a 
group of 2D images that represent a 3D object [31–35]. One 



1061Pattern Analysis and Applications (2023) 26:1059–1070 

1 3

relevant study to our paper is MVCNN [36], which combines 
the multi-view images and performs pooling for classifica-
tion. However, this method only classifies bundles of images 
with the same class and does not provide complete multi-
view detection since it does not locate individual objects.

2.4  Multi‑view object detection

Roig et al. [16] have proposed multi-class object detection 
under multi-camera settings by applying conditional random 
fields to object detection results. In comparison with this 
study, which does not contain re-identification, several stud-
ies [17, 18, 21] have suggested the simultaneous localization 
and re-identification for the single class object in multi-view 
images. Baque et al. [17] have demonstrated the effective-
ness of integrating CNN and conditional random field to 
improve the robustness to occlusion in multi-view multi-
target detection. Chavdarova et al. [18] have used a prede-
fined occlusion mask to partially mask input images during 
training and fuse multi-view features. Hou et al. [21] have 

proposed an anchor-free multi-view pedestrian detection 
using perspective transformation of the feature map. How-
ever, these studies assumed a ground plane and could not 
handle multi-class objects. There have also been approaches 
to recognize instances without ground plane assumption 
using image appearance and geometric information of cam-
eras in the multi-view setting [19, 37], but they could not 
handle multi-class objects. To address these limitations, we 
propose a multi-view multi-class object detector without a 
ground plane assumption.

3  Method

In this section, we provide a detailed introduction to our 
method, which has two distinct characteristics: a network 
capable of learning multi-class multi-view object detection 
in an end-to-end manner, and an epipolar geometry-based re-
identification algorithm without the assumption of a ground 
plane. As shown in Fig. 1, our model takes a multi-view 
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Fig. 1  MVDet is a multi-view multi-class object detector that com-
prises three networks: RPN, VEN, and classifier. All three networks 
share the initial features that are extracted from VGG. The RPN 
network generates region proposal boxes using the shared features, 
which are then passed through the ROI pooling layer and resized to 
the same size. Meanwhile, the VEN network extracts view embed-
ding features from the shared features and then, selects the view 

embedding vectors corresponding to the region proposal boxes. Re-
identification across the views is performed using these vectors and 
epipolar geometry, as specified in Algorithm 1. Finally, the classifier 
network determines the classes for the sets of re-identified boxes. The 
dotted lines indicate that the weights of the networks are shared for 
each camera
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RGB image as input and outputs the position and class of 
the objects in each view. We explain the architecture of the 
multi-class multi-view object detector in Sect. 3.1 and the 
re-identification algorithm based on epipolar geometry in 
Sect. 3.2.

3.1  Architecture of MVDet

MVDet consists of a region proposal (RPN), view embed-
ding (VEN), and classification networks, as shown in Fig. 1. 
These networks work together to detect, re-identify, and 
classify objects in multiple views simultaneously. In the 
following sections, we explain each network in detail.

3.1.1  RPN

In the first step of MVDet, the RPN generates box-shaped 
region proposals where objects are likely to be located, simi-
lar to the Faster R-CNN approach [23]. To extract the feature 
maps from the multi-view images that will be shared in the 
subsequent steps, the VGG network [38] is used. We choose 
VGG because it is a lightweight network, but other networks 
could be used as well. The weights of the VGG network are 
shared across all cameras to ensure memory efficiency and to 
extract features that are robust to changes in viewpoint. Fol-
lowing this, the RPN network locates regions in the feature 
map that corresponds to the predicted object locations, and 
the features within these regions are cropped and resized to 
a uniform size using pooling layer.

3.1.2  VEN

VEN is a network that extracts view embedding features 
from a shared feature map. When the region proposal boxes 
extracted by the RPN are provided across all views, the view 
embedding vector that corresponds to each region proposal 
box is indexed from the view embedding feature. The dis-
tances between these vectors across all views are used as the 
similarity between objects, and these distances are utilized 
for re-identification with epipolar geometry. This section 
provides a detailed explanation of VEN.

View embedding. VEN extracts the embedding fea-
ture map Y ∈ IRW×H×A×F2 from the shared feature map X 
∈ IRW×H×F1 , where W and H represent the number of rows 
and columns of grid cells in an image, and A denotes the 
number of anchors in a grid cell. F1 represents the chan-
nel size of the shared feature, and F2 is the dimension of 
the view embedding vector. The view embedding vector 
y ∈ IRF2 corresponding to a specific region proposal box 

is chosen from Y based on the coordinates of the grid cell 
and anchor index of that region proposal box. Indexing 
the view embedding feature map to find the embedding 
vectors that correspond to the region proposal boxes is a 
faster process than embedding all of the cropped region 
proposal images from the beginning. This speeds up the 
running time of the algorithm.

VEN training. Inspired by the approach used in Face-
Net [22], our goal is to ensure that the embedding dis-
tance between region proposal boxes belonging to the 
same object is small, while the distance between boxes 
of different instances is large. In other words, a region 
proposal box Ba (anchor) of a specific object in a particu-
lar view should be closer to the region proposal boxes Bp 
(positive) of the same object in other views than to the 
region proposal boxes Bn (negative) of any other object. 
To achieve this, we aim to minimize the VEN loss, which 
is formulated as follows:

where f is a mapping function from view embedding feature 
map Y to view embedding vector using the index of the given 
region proposal box B. � is a margin between positive and 
negative pairs, and N is the number of samples.

To train the embedding vectors of the region proposal 
boxes using Eq. (1), we first sample an anchor in a specific 
view from the region proposal boxes that has the largest 
Intersection Over Union (IOU) with a ground truth object 
in that view. Then, we search for the positive and negative 
samples corresponding to this anchor in the other views. 
The positive sample is the region proposal box with the larg-
est IOU with the anchor. The negative sample, on the other 
hand, is randomly selected from the region proposal boxes 
whose embedding distances to the anchor are longer than 
the embedding distance between the anchor and the posi-
tive sample.

VEN architecture. VEN architecture consists of two 
ReLU-activated convolutional layers, each with a 3 × 3 kernel 
and 512 output channels, and one sigmoid-activated convo-
lutional layer with a 1 × 1 kernel and A ∗ F2 output channels. 
The resulting feature map Z ∈ IRW×H×A∗F2 is then reshaped 
to the embedding feature map Y ∈ IRW×H×A×F2 , followed by 
L2 normalization.

The technical specifications for VEN are as follows:

• The size of the shared feature map is W × H × 512 
( F1 = 512).

(1)
N�

i

[‖f (Ba
i
) − f (B

p

i
)‖2

2
− ‖f (Ba

i
) − f (Bn

i
)‖2

2
+ �],



1063Pattern Analysis and Applications (2023) 26:1059–1070 

1 3

• The size of the embedding feature map is W × H × 9 × 
128 ( A = 9,F2 = 128).

• The margin between positive and negative pairs ( � ) is set 
to 0.3.

• We exclude region proposal boxes with an IOU smaller 
than 0.3 during VEN training.

• We limit the number of VEN training samples to a maxi-
mum of 16 per iteration.

3.1.3  Classifier

After re-identifying the region proposal boxes using VEN, 
the next step is to classify them. For classification, we use a 
modified network based on faster R-CNN. Firstly, a 1 × 1 con-
volution operation is applied to the features of each region 
proposal box to reduce their channel size by 1/N, where 
N is the number of views. Then, the features of the same 
instances are concatenated. However, if a view is missing 
in a re-identified instance, the view is replaced with a black 
image.

Next, two fully connected layers with two dropout layers 
are used for pooling. The resulting feature map is passed 
through two parallel paths. The first path is a fully con-
nected layer followed by softmax for object classification. 
The second path is a linearly activated fully connected layer 
for localization. The localization step refines the localization 
result obtained in the region proposal step.

Finally, after classification, a novel multi-view non-max-
imum suppression (NMS) is used. If the overlapping area 
between two objects of the same class is more than 0.3 in at 
least one view, the object with lower confidence is removed.

Our proposed classifier is designed to have shallow lay-
ers, which provides several advantages compared to exist-
ing multi-view classifiers with deep structures such as 
MVCNN [36]. One advantage is the efficient use of memory 
during training and inference, which is beneficial for practi-
cal applications. Moreover, our simple classifier can still 
achieve high accuracy because it utilizes the shared feature 
map that has already extracted the key features of objects, as 
opposed to starting from scratch for each view.

Additionally, our classifier includes a localization layer 
that refines the inaccurate region proposal results from RPN. 
This is in contrast to MVCNN, which only performs clas-
sification. The ability to refine the localization results can 
further improve the overall accuracy of our method.

3.2  Re‑identification based on VEN and epipolar 
geometry

In this section, we explain our approach for re-identi-
fication without assuming a ground plane. We use the 
embedding vector from VEN and epipolar geometry for 

this task. We note that the term re-identification in this 
paper is slightly different from the term used in person 
re-identification. The latter refers to the task of retrieving 
person images in one view, given a query target person in 
another view. In contrast, re-identification in our paper 
refers to the task of associating the same instances when 
objects are detected across multiple views. Our approach 
to re-identification differs from person re-identification in 
that it deals with inaccurate detection results and associ-
ates objects in all views. The objective of this section is 
to describe our re-identification algorithm that leverages 
VEN and epipolar geometry.

To apply our re-identification algorithm, we first gather 
region proposal boxes from all views and select the top M 
boxes with the highest confidence scores. These M boxes 
are then defined as reference boxes, denoted as Rtop . Given 
a reference box B1 in the first view, we use its center coor-
dinates to compute an epipolar line in the second view, 
using the intrinsic and extrinsic parameters of the camera. 
The pixel distances between all region proposal boxes and 
the epipolar line in the second view are then calculated to 
exclude unlikely region proposal boxes that are far from 
the epipolar line more than a certain threshold �1 . This 
threshold is a hyperparameter, and we empirically deter-
mine its value. After excluding unlikely candidates, we 
identify the box B2 with the smallest embedding distance 
from B1 as the same instance.

Once a pair of matched region proposal boxes B1 and B2 
are identified, two epipolar lines in the third view could 
be calculated from B1 and B2 , respectively, using the cam-
era’s intrinsic and extrinsic parameters. A feasible match 
in the third view is a region proposal box that is close 
to the intersection of these two epipolar lines. We set a 
threshold �2 to exclude candidates that are too far from the 
intersection. Among the remaining region proposal boxes, 
the one with the shortest embedding distance from B1 is 
considered as the same instance. This process is repeated 
for the rest of the views.

Algorithm 1 outlines the re-identification process. The 
EMD(a, b) function calculates the embedding distance 
between the region proposal boxes a and b. EPD1(a, b) 
function calculates the pixel distance between the center 
coordinate of region proposal box a and the epipolar line 
derived from the region proposal box b. The EPD2(a, b, c) 
function calculates the pixel distance between the center 
coordinate of region proposal box c and the intersection of 
two epipolar lines, which are derived from region proposal 
boxes a and b, respectively.
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Algorithm 1 Re-identification
Require: R1, R2, ..., RN where each Ri is a set of region proposal boxes

for the ith view and N is the number of the views, θ1 and θ2 which are
the thresholds to remove the candidates that do not meet the epipolar
constraint.

Ensure: Re-identified region proposal boxes I
1: Rall =

⋃N
i=1 Ri

2: Rtop = M region proposal boxes with the highest confidence in Rall

3: I = []
4: for all a ∈ Rtop do
5: Icur = [a]
6: i = view index of a
7: Rrest = Rall - Ri

8: b̂ = argmin
b∈Rrest

EMD(a, b) s.t. EPD1(a, b) < θ1

9: if b̂ �= NULL then
10: Icur.append(b̂)
11: j = view index of b̂
12: for k = 1, . . . , N except for i and j do
13: ĉ = argmin

c∈Rk

EMD(a, c) s.t. EPD2(a, b̂, c) < θ2

14: if ĉ �= Null then
15: Icur.append(ĉ)
16: end if
17: end for
18: end if
19: I.append(Icur)
20: end for

4  Experiments

4.1  Dataset

MessyTable [20] is a multi-camera object dataset designed 
for the instance re-identification task. It consists of 120 
object classes with varying sizes, colors, and materials. The 
dataset comprises 5,579 scenes captured by nine synchro-
nized cameras, with 6 to 67 instances randomly placed on a 
table under different lighting conditions and backgrounds. 
The camera poses are set randomly in 567 configurations. 
The scenes are categorized into three difficulty levels, with 
harder scenes featuring more occluded objects, similar-
looking instances, or fewer instances in the overlapping 
field of cameras. A total of 50,211 images are labeled with 
1,219,240 bounding boxes, each annotated by class and 
instance IDs. The dataset also provides the calibrated intrin-
sic and extrinsic camera parameters.

The annotations in MessyTable, including camera param-
eters, bounding boxes with class labels for objects, and 

instance IDs for each bounding box, are utilized to evalu-
ate the effectiveness of the proposed multi-view detection 
model. However, due to high memory usage, only 16,737 
images from three cameras are utilized in our experiments. 
The training, validation, and test sets are randomly divided 
in a 1:1:1 ratio, following the original setup of MessyTable.

4.2  Implementation details

Our multi-view object detection model is based on Keras-
FasterRCNN, which is an implementation of single-view 
Faster R-CNN using Keras. The source codes for Keras-
FasterRCNN and Keras can be found at https:// github. com/ 
you359/ Keras- Faste rRCNN and https:// github. com/ keras- 
team/ keras, respectively. For our implementation, we choose 
VGG16 [38], which was pre-trained on ImageNet [39], as 
the backbone network. The anchor boxes used in our model 
have sizes of [128, 256, 512] and aspect ratios of [1:1, 1:2, 
2:1]. Region proposal boxes are resized to 7 × 7 in the ROI 
pooling layer. We used dropout layers  [40] with a drop 

https://github.com/you359/Keras-FasterRCNN
https://github.com/you359/Keras-FasterRCNN
https://github.com/keras-team/keras
https://github.com/keras-team/keras
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probability of 0.5. We used the ADAM optimizer [41] with 
an initial learning rate of 0.00001 for the region proposal, 
view embedding, and classification networks. All of our 
experiments were conducted on a single NVIDIA 1080 Ti 
GPU.

4.3  Metrics

To evaluate the effectiveness of our model, we employ 
detection and re-identification metrics. For detection, we 
use MODA, MODP, and F1-score (F1). MODA takes into 
account both false positives and false negatives, while 
MODP measures the localization error of true positives [42]. 
F1 is a harmonic mean of recall and precision. We use a 
threshold of 0 to compute MODA and F1. Re-identification 
performance is evaluated using AP and FPR-95, as in [20]. 
AP is calculated as a weighted sum of precisions, count-
ing the number of positive and negative matches at each 
threshold. FPR-95, commonly used in patch-based match-
ing, is the false positive rate when recall is 95% [43], and 
complements AP.

4.4  Baselines

In this section, we explain the baselines used in our experi-
ments. To the best of our knowledge, there are no existing 
studies on multi-view multi-class object detection with-
out the ground plane assumption. Therefore, we employ 
heuristics or deep learning-based methods for single-view 
detection, re-identification, and multi-view classification. 
We then integrate the results from each step to generate 
the final results for multi-view detection, which serve as 
the baseline for our experiments. We note that the per-
formance of single-view faster R-CNN, which forms the 

backbone of our model, represents the lower bound in our 
experiments.

To re-identify the objects detected in single views, we use 
ASNet and TripleNet, which are state-of-the-art methods 
for re-identification on the MessyTable dataset. ASNet uses 
neighboring information around a bounding box when the 
appearance features of a pair of boxes are dissimilar, while 
TripleNet is a feature extractor trained with triplet loss [22] 
that measures the feature similarity of a pair of boxes. In our 
experiments, we train ASNet and TripleNet on the ground 
truth labels and refine the similarity scores using epipolar 
geometry in the inference step for the fair comparison, fol-
lowing the methodology of FaceNet [22].

To evaluate the effect of ground plane assumption, we 
also utilize homographic projection as another method of 
re-identification. Homographic projection is a widely used 
technique in multi-view pedestrian detection [21] and track-
ing [44, 45], which is based on the assumption of a ground 
plane. It projects the coordinates of objects from each view 
onto a 2D ground plane and determines whether they rep-
resent the same object based on the distance between their 
projected locations. We calculate the similarity scores as the 
reciprocal of the distances between the projected locations.

Since ASNet, TripleNet and homographic projection 
generate only the similarity scores between two boxes, a 
method for the complete re-identification on the boxes 
across all views is required. Therefore, we build a graph, 
where the nodes represent the detection boxes, and the edges 
are weighted by the similarity scores of the corresponding 
nodes. We only include edges with similarity scores higher 
than 0.5 to ensure reliable re-identification. Next, a maxi-
mum bipartite graph matching is applied to identify the 
valid paths in the graph, where all nodes in a valid path are 
considered as the same instances. Finally, the paths with 

Table 1  Detection and 
re-identification results of 
baselines and our method on 
MessyTable. Our method is 
most effective for detection and 
re-identification

The values highlighted in bold indicate the highest performance among the models

Method Detection Re-ID

MODA↑ MODP↑ F1↑ AP↑ FPR-95↓

SVDet 0.35 0.7 0.66

SVDet+Homograpy+Majority 0.04 0.69 0.48 0.187 0.907
SVDet+Homograpy+MVCNN 0.04 0.71 0.46 0.119 0.9
SVDet+ASNet+MVCNN 0.3 0.7 0.63 0.441 0.852
SVDet+TripleNet+MVCNN 0.3 0.7 0.63 0.482 0.852
SVDet+ASNet+Majority 0.29 0.69 0.63 0.535 0.865
SVDet+TripleNet+Majority 0.3 0.69 0.63 0.575 0.858
MVDet(Ours) 0.51 0.71 0.7 0.834 0.548
GT SVDet+TripleNet+MVCNN 0.73 0.99 0.86 0.783 0.71
GT SVDet+TripleNet+Majority 0.87 0.99 0.93 0.862 0.622
GT SVDet+GT ReID+MVCNN 0.87 1.0 0.93 1.0 0
GT SVDet+GT ReID+Majority 1.0 1.0 1.0 1.0 0
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the repeated nodes and subset paths are eliminated to avoid 
duplicate re-identification of single instances.

To assign a class label to the above re-identified instance, 
we use majority voting and MVCNN [36]. Majority voting 
method selects the class label for the re-identified instance 
based on the class that appears in the highest number of 
bounding boxes. The confidence score is calculated by aver-
aging the detection scores of the boxes whose class is the 
majority class. If there is a tie between multiple classes, the 
final class is randomly selected from the tied classes.

MVCNN is a deep learning-based method that clas-
sifies multi-view images of a single object. However, in 

the original MVCNN, the number of input views must be 
fixed. Therefore, if a view is missing from the previous re-
identification step, we compensate for the missing view by 
duplicating the other views and feeding them as inputs to 
MVCNN with the fixed number of views. Additionally, to 
enable background classification, which is not possible in 
the original MVCNN, we cut out patches without objects 
from the images and use them as background image samples 
during training. Finally, we also apply non-maximum sup-
pression (NMS), which is also used in MVDet, to both the 
majority voting and MVCNN.

Table 2  Detection and 
re-identification results on 
subsets of different scene 
complexity

The values highlighted in bold indicate the highest performance among the models

Subsets Method Detection Re-ID

MODA↑ MODP↑ F1↑ AP↑ FPR-95↓

Easy SVDet 0.44 0.7 0.71
SVDet+TripleNet+Majority 0.41 0.7 0.69 0.735 0.814
MVDet (Ours) 0.62 0.72 0.78 0.898 0.505

Medium SVDet 0.41 0.7 0.7
SVDet+TripleNet+Majority 0.33 0.7 0.65 0.613 0.844
MVDet (Ours) 0.54 0.71 0.72 0.838 0.568

Hard SVDet 0.36 0.68 0.65
SVDet+TripleNet+Majority 0.19 0.68 0.56 0.415 0.892
MVDet (Ours) 0.39 0.68 0.61 0.757 0.692

(a) GT

(b) SVDet

(c) MVDet

Fig. 2  (a) Ground truth and detection results of (b) SVDet and (c) MVDet. SVDet generates false positives due to the repeated detection of the 
same object and detection of the background region. In contrast, MVDet alleviates these issues and produces accurate detection results
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(a) MVDet

(b) SVDet+Homography+Majority

Fig. 3  First and second rows display the detection results of (a) 
MVDet and (b) SVDet+Homography+Majority, respectively. Due to 
varying viewpoints in the first two columns and objects positioned at 
the elevated surface in the last two columns, the accuracy of homolo-
graphic projection may decrease. The reason for this is that the center 

point of an object in one view, indicated by a red point, can be pro-
jected to a blue point in another view that is far from the original 
location of the same instance. Consequently, the object that is closer 
to the projected point may be incorrectly identified as the same object

(a) GT

(b) SVDet+TripleNet+Majority

(c) MVDet

Fig. 4  a Ground truth and re-identification results of (b) SVDet+TripleNet+Majority and c MVDet. If the SVDet boxes deviates slightly from 
the object, SVDet+TripleNet+Majority generates a false re-identification
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Table 1 demonstrates that our MVDet model achieves a 
MODA performance gain of +16% over single-view faster 
R-CNN (SVDet). The reason for this improvement is illus-
trated in Fig. 2, where we can see that MVDet successfully 
reduces many false positives that occur in SVDet. This is 
achieved by utilizing re-identification and classification 
methods to remove false region proposal boxes.

The results from Table  1 and Fig.  3 indi-
ca te  tha t  SVDet+Homography+Major i ty  and 
SVDet+Homography+MVCNN have poor performance due 
to the presence of viewpoint variation and elevated surfaces. 
Homographic projection assumes that an object is located at 
the center of the occupied area on the ground. Therefore, the 
top-down view should represent the object with the center 
coordinates of the bounding box, while in other views, it 
should use the bottom center coordinates of the bounding 
box to represent the object. If multiple views with different 
coordinate matching methods are combined, re-identification 
performance deteriorates, as illustrated in Fig. 3. Addition-
ally, objects not on the ground plane can hinder accurate 
homographic projection as they violate the ground plane 
assumption.

Also, MVDet surpasses the detection and re-identifi-
cation performance of SVDet+TripleNet+Majority by 
+21% MODA and +25.9% AP, respectively, as shown 
in Table 1. It is worth noting that the detection accu-
racy of the separate multi-view detection models is even 
lower than that of SVDet due to the lack of robustness to 
false positives generated by SVDet. This is because the 
re-identification and classification networks are trained 
using error-free ground truth boxes, which are not robust 
to the false positives produced by SVDet. Therefore, the 
performance of GT SVDet+TripleNet+Majority, which 
assumes that the SVDet results are accurate, is much bet-
ter than SVDet+TripleNet+Majority. In other words, the 
performance of re-identification and classification net-
works heavily relies on the accuracy of SVDet results. In 
contrast, MVDet uses region proposal boxes instead of 
ground truth boxes in the re-identification training process, 
making it robust against localization errors in the boxes, 
as shown in Fig. 4.

Furthermore, since the accuracy of the MVCNN 
model is highly dependent on the accuracy of the SVDet 
and ReID results, GT SVDet+GT ReID+MVCNN 
achieves 87% MODA, which is +14% higher than 
SVDet+TripleNet+MVCNN in Table  1. However, GT 
SVDet+GT TripleNet+Majority performs better than 
GT SVDet+GT TripleNet+MVCNN in Table 1 because 
MVCNN often misclassifies instances with minor localiza-
tion errors. Therefore, the MVCNN model, which is trained 
on the ground truth boxes, performs well only when the 
accuracy of the SVDet and ReID results is guaranteed.

We conducted additional validation of our model on 
Easy, Medium, and Hard test sets, which are divided 
based on the scene complexity. The more difficult the test 
set, the more it contains similar objects and occlusions. 
As shown in Table  2, MVDet outperforms SVDet and 
SVDet+TripleNet+Majority on all test sets.

5  Conclusion

This paper addresses the problem of multi-view multi-class 
object detection that does not assume a ground plane. The 
proposed MVDet model performs region proposal, re-iden-
tification, and classification simultaneously in an end-to-end 
manner, using faster R-CNN and triplet loss. The model 
also employs an epipolar constraint-based re-identification 
algorithm to avoid the ground plane assumption. Experi-
mental results on the MessyTable dataset demonstrate that 
MVDet outperforms both single-view detectors and sepa-
rate multi-view detectors in terms of detection and re-iden-
tification accuracy. Overall, the proposed MVDet model 
presents a promising solution to the multi-view multi-class 
object detection problem in the absence of a ground plane 
assumption.

Data availibility Publicly available data are used.
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