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Abstract
Human action recognition is an active field of research that intends to explain what a subject is doing in an input video. Deep 
learning architectures serve as the foundation for cutting-edge approaches. Recent research, on the other hand, indicates that 
hand-crafted characteristics are complementary and, when combined, can enhance classification accuracy. Cutting-edge 
approaches are based on deep learning architectures. Recent research, however, indicates that hand-crafted features comple-
ment each other and can help boost classification accuracy when combined. We introduce the key trajectories approach that 
is based on the popular, hand-crafted method, improved dense trajectories. Our work explores how pose estimation can be 
used to find meaningful key points to reduce computational time, undesired noise, and to guarantee a stable frame processing 
rate. Furthermore, we tested how feature-tracking behaves with dense inverse search and with a frame to frame subject key 
point estimation. Our proposal was tested on the KTH and UCF11 datasets employing Bag-of-words and on the UCF50 and 
HMDB datasets using Fisher Vector, where we got an accuracy performance of 95.71, 84.88, 92.9, and 81.3%, respectively. 
Also, our proposal can recognize subject actions in video eight times faster compared to its dense counterpart. To maximize 
the bag-of-words classification performance, we illustrate how the hyperparameters affect both accuracy and computation 
time. Precisely, we present an exploration of the vocabulary size, the SVM hyperparameter, the descriptor’s distinctiveness, 
and the subject body key points.

Keywords  Action recognition · Pose estimation · Dense trajectories · Key trajectories

1  Introduction

Human action recognition is a fundamental task of intel-
ligent video-surveillance systems that seek to understand 
what the subjects are doing in an input video.

This task can be addressed by two main approaches: hand-
crafted methods and deep learning architectures. Although 
deep learning for action recognition has reported high 
accuracy performance [15, 52] in common datasets [28, 35, 

41, 48], recent work [8, 23, 48] suggests that hand-crafted 
features are complementary to deep learning methods, and 
together can improve the classification performance.

Our findings show that improved dense trajectories 
achieve high classification performance and can be enhanced 
using deep learning procedures. Common hand-crafted 
methods, like improved dense trajectories, are divided into 
two main tasks: Action Representation and Action Classi-
fication. Action Representation involves 3 steps: sampling, 
feature extraction, and feature encoding.

Sampling aims to locate the frame regions to be ana-
lyzed, it can be performed both densely or by finding interest 
points. Then, the feature extraction step takes these points 
to get relevant information about the video. Finally, fea-
ture encoding discretizes the entire space of local features 
extracted from a training set, common methods comprise 
bag-of-words (BoW) [7] and fisher vector (FV) [32].

On the other hand, action classification concerns how to 
distinguish one action from another, according to the set 
of features collected in previous steps. Action classification 
can be divided into three main approaches: template-based, 
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generative, and discriminative models. A detailed explana-
tion can be found in Sect. 2.

This paper introduces the Key Trajectories approach that 
describes an action using subject key points estimation and 
dense trajectories. We tested our proposal on four publicly 
available datasets for subject action recognition (KTH, 
UCF11, UCF50, and HMDB51) and found that subject key 
points are a viable alternative for the detection of interest 
points in the sampling step and can be a faster replacement 
for human optical flow.

Using an Nvidia 1080TI GPU for pose estimation, Key 
Trajectories accomplishes the action recognition task 8 times 
faster, generating about 80-90% fewer trajectories, with little 
to none impact on the recognition performance, i.e., 94.20% 
compared to the 95.65% of the dense trajectories in the KTH 
dataset. Regarding the UCF11 dataset, we got an accuracy 
of 80.66% in contrast to the 84.08% of its dense counterpart. 
We propose a second configuration that recognizes actions 
two times faster, but accuracy is not affected. The results 
achieved were 95.71 and 84.43% for the KTH and UCF11, 
respectively.

To better understand our results, we examined how hyper-
parameters affect both accuracy and computation time. Spe-
cifically, we provided an exploration of the bag-of-words 
vocabulary size, the SVM hyperparameter, the amount of 
the information supplied by the descriptors, and the subject 
body key points. At the tracking step, we explored how the 
use of dense inverse search affects computation time and 
how to track using pose estimation.

Finally, we tested our method using Fisher Vector in the 
UCF50 and HMDB51 datasets, where we achieved 92.9 
and 81.3%, respectively, compared to 91.2 and 57.2% of the 
dense trajectory procedure.

We organized the rest of this paper as follows: Section 2 
provides an overview of pertinent methods for the action 
recognition task. Then, in Sect. 3, we identify which pieces 
of the process needlessly increase the computation time, and 
we introduce our proposal. In Sect. 4, we report the experi-
ments together our results in in Sect. 5 (Hyperparameters 
analysis), Sect. 6 (Efficiency analysis) and Sect. 7 (Effective-
ness analysis). Finally, in Sect. 8, we establish the conclu-
sions of this research.

2 � Related work

Human Activity Recognition (HAR) [52] can be categorized 
into 3 levels: gestures, actions, and interactions; gestures 
are atomic body movements, actions are sequences of ges-
tures with a linked meaning, and interactions are actions 
comprising two or more doers. Our work focuses on action 

recognition, which can be divided into two subtasks: action 
representation and action classification.

2.1 � Action representation

Action representation has been approached in three distinct 
ways: global, local, and depth-based representations [52]. 
Global representations are not robust to occlusions, noise, 
and changing viewpoints, so they have fallen into disuse over 
time. Depth-based representations need knowledge about the 
object depth, which can be obtained by employing special 
cameras like Microsoft Kinect.

On the other hand, local representations [52] aim to 
describe a video through a combination of local descrip-
tors sampled densely (by placing points without any seman-
tics) or by locating points of interest. There are several 
approaches for the location of points of interest [3, 14, 22], 
but one of the most widely used is space-time interest points 
(STIP) [22], which is an extension of the Harris detector 
[14]. Although detecting interesting points may improve 
performance, there are some issues to consider, such as the 
number of points to be used and their representativeness 
[52].

Once the interest points have been identified, the next 
step is to describe them. The most widely used methods are 
Scale-invariant feature transform (SIFT) [25, 26], 3D SIFT 
[36], speed-up robust features (SURF) [1], 3D SURF [50], 
HOG [9], HOF [10], and MBH [44].

It is possible to combine several descriptors to improve 
performance, such as the dense trajectory approach [44, 45] 
that achieves high accuracy through the descriptors HOG, 
HOF, MBH, and the displacements of the trajectories (DT). 
Shi et al. [37] present a sequential deep trajectory descriptor 
(sDTD) to capture long-term motion information.

The next step is feature encoding, which the key idea 
is to discretize the entire space of local features extracted 
from a training set. Several works have been presented: bag-
of-words (BoW) [7], fisher vector (FV) [32], stacked fisher 
vector (SFV) [31], vector quantization (VQ) [40], vector of 
locally aggregated descriptors (VLAD) [17], super vector 
encoding (SVC) [53]. According to [52], the best perfor-
mance is achieved by using dense trajectories with SFV.

2.2 � Action classification

Action classification [52] has been carried out using 3 
approaches: template-based, generative, and discriminative 
models. The simplest models are template-based, with the 
principle of finding the closest of a set of predefined tem-
plates. Generative methods use probabilistic procedures like 
the Hidden Markov Model (HMM) [4], Dynamic Bayes-
ian networks (DBN) [12]. Discriminative ones use machine 
learning techniques like support vector machines (SVM) 
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[30], conditional random fields (CRF) [42], and deep learn-
ing architectures [52].

On the other hand, deep learning architectures [52] like 
deep neural networks (DNNs) [2, 16], convolutional neural 
networks (CNNs) [23, 29, 39], and recurrent neural net-
works (RNNs) [13, 43] have achieved high accuracy values 
and even many of them perform the action recognition task 
in real-time [27, 51]. Unlike traditional machine learning 
methods, deep neural networks can learn representations 
automatically.

State-of-the-art methods focus on improving classifica-
tion performance by combining CNN features with hand-
crafted features. Li et al. [23] proposed to combine CNN 
with VLAD to capture mid-range and long-range dynamics. 
Wang et al. [48] presented the deep-convolutional descriptor 
which combines dense trajectories with CNN features. Ché-
ron et al. [8] introduced a Pose-based Convolutional Neural 
Network descriptor that proved that CNN approaches are 
complementary to hand-crafted approaches.

Jhuang et al. [18] examine the limits of recognition algo-
rithms using ground truth information to identify what fac-
tors most influence the model’s performance. This work [18] 
found that mid-to-high level features l had the greatest influ-
ence on classification accuracy. Based on the Jhuang et al. 
[18] work and the current success of deep learning methods, 
we suggest a new way to combine CNN approaches with 
hand-crafted procedures by using CNN to locate meaningful 
key points to reduce computational time, undesired noise, 
and guarantee a stable frame processing rate, which can be 
applied to challenging datasets.

3 � Our proposal: action recognition by key 
trajectories

Algorithms must take into account both accuracy and com-
putation time to allow real-time subject action recognition 
and its application in video-surveillance systems. Neverthe-
less, the trend is to build increasingly effective methods. So, 
our aim is to speed up the dense trajectories approach with 
no impact on recognition accuracy. In this section, we break 
down the action recognition task into different stages and 
sub-stages to explain each one of our contributions.

3.1 � Key trajectories extraction

To extract trajectories from a video, dense trajectories broke 
down the recognition task into three consecutive steps: dense 
sampling, tracking, and description. This Section discusses 
pertinent factors that might result in needless computations 
that increase execution time.

3.1.1 � Sampling

Dense trajectories [44, 46] suggest that sampling should be 
accomplished densely to create robust models to occlusions, 
scale and rotation variations, and other well-know problems 
in computer vision systems. Nevertheless, this idea leads to 
extract points on the whole image without any semantics, 
which may result in a bottleneck because feature-tracking 
requires the application of an optical flow algorithm to each 
point that can be highly expensive.

Furthermore, a trajectory is a motion description, but in 
a real-life video, there are several motion sources in addi-
tion to the object of interest, such as secondary objects, 
basic camera movements, environmental conditions, and so 
on. Hence, dense sampling implies considering all motion 
sources that result in unnecessary calculations and noise in 
the final model.

Our proposal hypothesizes that the subject key points, 
shown in Fig. 1, contain comparable distinctiveness and 
representativeness as using a dense sampling over several 
scales.

Considering only subject key points implies a constant 
number of the frame-locations used, which enables a stable 
frame processing rate, a critical feature for high-resolution 
and lengthy videos. In contrast to our proposal, in dense tra-
jectories, the frame-locations used are highly related to the 
video-resolution and scales used. Additionally, the estima-
tion of subject key points gives us the necessary information 
to group trajectories by people, which can be helpful for 
interaction recognition.

The estimation of subject key points must fulfill two prop-
erties: repeatability and high discrimination. Repeatability 
is necessary to the discovery of the same point over sev-
eral object views that gives robustness to the scale, rotation, 
viewpoint, and illumination variations. Then, high discrimi-
nation ensures that a point has a binary connection with a 
subject. These properties are satisfied by the work of Cao 
et al. [6, 38, 49].

Our proposal examined the distinctiveness of subject key 
points to find a setup that could further reduce computation 
time and determined two sets of key points: using all the 
subject key points, as described in Fig. 1, and a set of essen-
tial key points described in Sect. 5.2.1. Figure 2 shows what 
the use of key points looks like and its comparison with its 
dense counterpart.

3.1.2 � Tracking

Feature tracking is the process of determining the location 
of a point in successive frames, which results in a temporal-
sequence for each point created during the sampling step.

The key idea to reduce the computational time is to ana-
lyze each point faster, Hence, we recommend the use of the 
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Kroeger et al. [19] optical flow algorithm, which outper-
forms in both accuracy and computation time to Farneback 
suggested by dense trajectories.

On the other hand, another advantage of the subject key 
points estimation is that it can be used to match points along 
each of the frames, leading to a faster form of feature-track-
ing. Nevertheless, some points need to be taken into account: 

1.	 A full-body view of the subject is required in the video.
2.	 Occlusions may have an impact on the detection process.

To address the concerns raised above, we made the follow-
ing decisions: 

1.	 If a key point does not exist in the following frame (due 
to occlusion), the preceding frame’s value is utilized 
instead.

2.	 If the full-body view is missing, we performed the opti-
cal flow algorithm instead.

Other parameters in our study, such as the trajectory length 
and frame step size, correspond to those in the Wang et al. 
[45] paper, which demonstrated greater accuracy and 
avoided drifting problems.

3.1.3 � Description

The description of the sequences of points extracted from 
a video is the last step needed to complete the extraction 
process. Wang et al. [45] proposed to use HOG [9], HOF 
[10], MBH (MBHX, MBHY) [45], and trajectory displace-
ments (DT) [44].

Using a large array of descriptors can produce valuable 
knowledge about video-motion. However, each descriptor 
appends 4000 features to the final video descriptor. Hence, 
dense trajectories generate a 20,000-dimensional vector, 
which implies dealing with high dimensionality-related 
issues.

The estimation of subject key points means working 
with a lower number of trajectories. As an example, dense 
trajectories extract about 527 trajectories from a 160 × 
120-video of 131 frames, despite key trajectories that only 
obtain 35 trajectories, which is just 10% of the number of 
its dense counterpart. So, using a lower number of features 
per descriptor seems feasible. Furthermore, an assessment 
of the distinctiveness of each descriptor (TRAJ, HOG, HOF, 
MBHX, MBHY) is presented in Sect. 3.2 to discover how 
descriptors affect classification accuracy.

3.2 � Key trajectory, feature encoding

Feature encoding is accomplished with bag-of-words 
(BoW) using k-means, but other clustering algorithms 

Fig. 1   Subject key points. A visual representation of the subject key 
points that we propose to use in our work [6, 38, 49]

Fig. 2   subject key point sampling versus dense sampling. Using the 
subject’s key points considerably decreases the amount of data to be 
analyzed
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could be used as well. [34]. Reducing the computational 
time of the vocabulary constructions has a two-fold contri-
bution: hyper-parameter optimization and faster descriptor 
creation.

First, being able to build vocabularies faster enables 
us to carry out the hyper-parameter analysis presented in 
this paper using our computer system. Second, the final 
descriptors are created by associating each trajectory by 
comparison to a corresponding visual word of the vocabu-
lary. Hence, the vocabulary size (the number of visual 
words that constitute the vocabulary), is correlated to the 
number of comparisons made, which affects both the accu-
racy and the computation time of the classification stage.

As mentioned before, key trajectories work with a lower 
number of trajectories, which implies dealing with sparse 
vectors if we use the 4000-size as Wang et al. proposed. 
Therefore, it is not unreasonable to think that a smaller 
vocabulary is more appropriate than a larger one.

To answer our hypothesis, we explored different vocab-
ulary sizes to determine which fit better with our aim. 
Also, we introduce a novel way, shown in Fig. 3, to associ-
ate trajectories and construct a descriptor using a reduced 
number of subject key points. The general idea is that the 
injective relationship of a trajectory to a subject key point 
can be used to group trajectories. The first step is to create 
a 250-size vocabulary that means a reduction of 96% com-
pared to the dense trajectories. Next, a descriptor for each 
group is formed, and its concatenation is the final descrip-
tor. Our results show that this scheme helps to maximize 
accuracy with no impact on the computation time.

4 � Experimental results

This Section aims to introduce the experiments conducted to 
assess our proposal. All experiments were carried out using 
a personal computer with macOS High Sierra, an Intel Core 
i7 processor (seventh generation at 2.9GHz), and 16 GB of 
RAM except for the subject key points estimation that was 
obtained using an Nvidia GTX 1080TI graphics card.

Dese trajectories [45] were obtained using the C++ 
implementation of the method provided by the authors using 
the protocol described in their paper [46]. For key trajecto-
ries, all algorithms were developed in C++ using OpenCV 
3.4.1.

The vocabulary constructions were implemented using 
the work of Chang et al. [7] with the configuration described 
by Wang et al. [45] (4000 visual words, one vocabulary per 
descriptor).

The kernel used for the SVM was the �2 kernel, avail-
able in OpenCV, but one-class classifiers could be also used 
for abnormal behavior recognition [5]. Then, for the dense 
inverse search algorithm, we use the implementation avail-
able in the OpenCV library.

Finally, the subject key points estimation was performed 
using the work and setup proposed by Cao et al. [6, 38, 49].

4.1 � Datasets

We use accuracy to assess the effectiveness of our experi-
ments conducted on the KTH [35] (6 action classes), UCF11 
[24] (11 action classes), UCF50 [33] (50 action classes), 
and HMDB51 [20] (51 action classes) datasets. using the 

Fig. 3   A new way to encode trajectories. This Figure shows our new 
way to encode a trajectory using a small vocabulary. The subject key 
points are used to form a total of 6 groups (or the number of subject 

key points contemplated) and employing a general vocabulary get the 
six mini descriptors, whose concatenation will form the final video 
descriptor



414	 Pattern Analysis and Applications (2022) 25:409–423

1 3

original protocol provided by the authors. On the other hand, 
experiments related to reducing the computational time were 
tested in the KTH dataset.

4.2 � Experiments setup

As previously mentioned, we identified that both classi-
fication accuracy and computational time are sensitive to 
specific parameters. So, to explore the solution space and 
find a trade-off between these, we conducted two sets of 
experiments.

The first one is intended to study the hyperparameters 
involved in action recognition. Concretely, this experiment 
comprise:

Bag-of-words size. The number of visual words that form 
a vocabulary impacts both accuracy and computation time. 
On one hand, a large number of visual words imply better 
results, but the efficiency might be affected. So, the idea 
is to find a middle point that provides an adequate trade-
off between efficiency and effectiveness. To measure the 
computation time related to the descriptor and vocabulary 

constructions, we took the time in seconds normalized using 
the number of trajectories involved.

Descriptors distinctiveness. The dimensionality of a 
descriptor is correlated with the computation time and 
classification accuracy. A high dimensionality vector can 
improve results but can easily become a bottleneck. We 
investigated the C and gamma SVM parameters using chi2 
and RBF kernels to better understand each descriptor. To 
measure the SVM computation time, we took the average 
time that it takes to classify a descriptor in the testing set.

Subject key points. The number of subject key points used 
has a strong relationship with classification accuracy and 
computation time. So, we assess the distinctiveness of each 
point using classification accuracy to know which points 
represent better an action.

The second set of experiments is intended to assess the 
effectiveness of our proposal using accuracy as the evalu-
ation metric. We compare three configurations of our pro-
posal together with dense trajectories.

Each configuration is goal-specific: A and B for applica-
tions that expect high accuracy performance, and C if timing 
is a critical issue. Figure 4 summarizes each configuration. 

Fig. 4   Key Trajectories. Our proposal is composed of three differ-
ent configurations. Our proposal ADisof + op_25 + 5 desc aims to reduce 
the number of features that compose the final vector by reducing 
the number of visual words. Our proposal BDisof + op_25 + 3 desc has the 

purpose of testing the best subset of descriptors found. Our proposal 
COP + op_6 + 3 desc tests our new idea to encode trajectories using very 
small vocabularies and the estimation of points to replace the optical 
flow process
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Also, We also experimented with a Fisher Vector version of 
the configuration A.

Configuration A introduces the estimation of subject key 
points, the implementation of dense inverse search as the 
optical flow algorithm. This version of our proposal is tested 
using bag-of-words and fisher vector.

Configuration B has the same setup that configuration 
A, but it uses a lower array of descriptors (HOG, MBHX, 
MBHY) formed by smaller vocabulary.

Configuration C prioritizes computational time over clas-
sification accuracy. It takes the same setup that configuration 
B, but the set of six-subject crucial points, identified in the 
first experiments set, and implements our encoding ideas 
outlined in Sect. 3. Also, we include the frame-to-frame esti-
mation of subject key points as a feature-tracking.

For each of these bow-configurations, together with the 
Wang et al. [45] method, we assess: 

1.	 Classification Accuracy
2.	 Speed-up for each step of the action recognition process.
3.	 Average number of trajectories extracted.
4.	 Computational time for vocabulary construction.
5.	 Computational time for the SVM model.
6.	 Overall computational time (trajectories extraction, 

descriptor construction, classification task), shown in 
the Eq. (3).

For FV-configurations, we only provided classification 
accuracy.

Equation 2 shows the number of frame locations analyzed 
when sampling is done densely. In contrast, our proposal 
uses a fixed number of subject key points.

Where FT is the normalized time to process a frame, n is the 
number of instances, t_i is the required time to process the 
instance i, f_i is the number of frames that has the instance i.

Where S is the number of scales used. w and h are the frame 
width and height, respectively, st is the sampling step size, 
and P is the number of frame locations.

For feature tracking, acceleration is measured using the 
time to process one frame, outlined in Eq. (1).

Where RT is the full time that is required to perform the 
recognition task, TE is the time needed to extract the trajec-
tories of a video, TD is the time to build a descriptor from a 
previously generated vocabulary, and TC is the time needed 
to perform the classification process.

(1)FT =

(

Σn
i=1

t_i

f_i

)/

n

(2)P = S ∗ (wst − 1) ∗ (hst − 1)

(3)RT = TE + TD + TC

5 � Hyperparameter analysis

This Section will examine the hyperparameter space in 
order to determine the optimal trade-off between accu-
racy and speed. We begin by reviewing the size of the 
BoW vocabulary, then investigate the SVM hyperparam-
eters, and conclude with a distinctiveness analysis of the 
descriptors.

5.1 � Bag‑of‑words analysis

Trying to determine the exact number of visual words that 
maximize both the distinctiveness and computation time of 
a descriptor is an open question. On one hand, using a big 
number of visual words improves classification accuracy, 
but also increases computational time. Furthermore, there 
exists a high risk of creating a model that overfits the train-
ing data. On the other hand, a smaller number of visual 
words benefit computational time, but the final model can 
underfit the training data.

Figure 5 shows how the size of the vocabulary impacts 
the classification accuracy for each video-descriptor. On 
the other hand, the computing time required to construct 
a descriptor is proportional to the number of processed 
trajectories. To get a value reflecting the influence of the 
vocabulary size, we normalize the time in seconds required 
by the number of trajectories; this allows us to determine 
if there is a link between the vocabulary size and the com-
puting time, as seen in Fig. 6. The following are important 
points to consider about Figs. 5 and 6:

•	 Increasing the number of visual words used does not 
mean increasing the classification accuracy. Neverthe-
less, the computational cost always grows.

•	 A deficient number of visual words can generate underfit-
ting models.

Fig. 5   Analysis of descriptors distinctiveness. Classification accuracy 
is not determined by the number of visual words to build vocabulary
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•	 The accuracy performance is stabilized when reaching a 
value between 800-1000 visual words.

•	 MBHX, MBHY, and HOF performed the best in clas-
sification accuracy.

•	 TRAJ and HOG achieved the lowest performance
•	 the number of trajectories is a key factor that affects the 

computation time.

Another aspect where the vocabulary size impacts the 
computation time is in the construction of a descriptor. Fig-
ure 7 explores the relationship between the number of visual 
words and the SVM classifier and determines that the growth 
of both is proportional. Therefore, the more visual words we 
have, the longer the calculation time required.

Our results help us to understand better how action recog-
nition is affected by its hyperparameters; dense trajectories 
[45] suggested to use 4000 visual words. Nevertheless, we 

found that in the KTH dataset, accuracy does not improve for 
values higher than 1000 visual words using key trajectories, 
but the computation time increased proportionally. There-
fore, we set the number of visual words for key trajectories 
to 1000. This enabled us to achieve good performance in the 
KTH, UCF, and HMDB datasets.

5.2 � Descriptor analysis

Action classification is carried out using an SVM due to its 
accuracy performance. Although dense trajectories reported 
good results, it’s not clear what parameters they used and the 
reason for their choice. Hence, we explore the hyperparam-
eter space (C and gamma).

Figure 8 explains our findings, where the color hue rep-
resents accuracy (lighter better), and each matrix position 
is a distinct combination of C and gamma parameters. The 
best results were achieved using a value of 0.01 for gamma 
and a range between 100 and 100,000 for the C parameter.

Another factor that is correlated to the computation time 
for the action classification is the vector dimensionality that 
represents a video. Dense trajectories proposed HOG, HOF, 
MBHX, MBHY, and TRAJ, which form a 20,000-dimen-
sional descriptor (4000 by descriptor). Our findings sug-
gested that 5000 features (1000 per descriptor) are enough 
to represent an action. But, now, we want to know if all 
the descriptors are essential or if we can omit one or more 
to reduce computation time with little to none impact on 

Fig. 6   The main idea of this figure is to answer if the vocabulary 
size is correlated with the time required to construct a descritor, such 
as HOF or HOG. To get an accurate estimate of the impact of the 
vocabulary size, we normalized it by the number of trajectories. The 
findings show that increasing the vocabulary size has no noticeable 
effect on any of the descriptors. Hence, the only factor that impacts 
the execution time is the number of trajectories that were extracted 
from the video

Fig. 7   BoW: vocabulary size versus classification time. This figure 
shows the computation time needed to perform the classification task 
using a descriptor. The most important conclusion is that the com-
putation time grows proportionally when we increase the number of 
visual words used

Fig. 8   SVM: hyper parameters. Each space of the matrix draws a dif-
ferent configuration of C and gamma, and the brightness of the color 
determines the accuracy (clearer, better). The best results are when 
we set gamma to a value of 0.01, and the value of C is in the range of 
100–100,000.0. The SVM kernel is �2 using the HOG, MBHX, and 
MBHY descriptors
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classification performance. So, we assess every combina-
tion of 2 or more descriptors using the �2 and RBF Kernels.

Figure 9 helps us to understand the descriptors and give 
us the next conclusions:

•	 �
2 kernel showed stable performance in all the tests per-

formed.
•	 RBF kernel achieves the best result, but it hasn’t shown 

a stable performance.
•	 �

2 kernel got its best results using only HOG, MBHX, 
and MBHY descriptors.

•	 RBF kernel got its best results using all descriptors

Hence, we found two novel configurations: using a kernel 
�
2 with the HOG, MBHX, and MBHY descriptors (3000 

features, i.e., 15% of the vector-size that dense trajectories 
proposed) and a configuration that uses the RBF kernel with 
all the descriptors, i.e., 5000 features.

5.2.1 � Analysis of subject key points distinctiveness

As described in Sect. 3, sampling is the procedure that deter-
mines which places are going to be examined in order to 
gather information about the video. Carrying out the com-
putation in a dense manner may result in needless computa-
tion. Hence, in this Section, we study the distinctiveness of 
the subject key points to know the impact of each point and 
group of points to the final classification accuracy.

To begin, we examine each key point by performing 
the recognition task on the KTH dataset using only the 
trajectories collected by the target body point, Although 

using only the KTH for our analysis may be biased, we 
found that the model performance is consistent with more 
complicated datasets, as shown in Sect. 7. Our findings are 
shown in Fig. 11, as expected, using a single point has an 
impact on the model’s performance. However, the clas-
sification accuracy was greater than 60 percent in several 
cases, demonstrating the critical role of the human body 
in identifying human-actions.

Our second set of experiments, shown in Fig. 10, exam-
ines how well a model performs when two or more key 
points are used. Due to combinatorial problems, we took 
the points in Fig. 11 that got an accuracy higher than 60%. 
Relevant insights include the following:

•	 The key point associated with the head is irrelevant for 
the purpose of action classification..

•	 The torso is crucial for proper action understanding.
•	 Hands play a critical role in describing an activity.
•	 The collection of points formed by the hands and torso 

enables an effective recognition performance.
•	 By adding forearm and ankle information, classification 

accuracy is improved.
•	 A smaller number of subject key points outperform the 

whole set of 25.

Therefore, if computing time is a constraint, we recom-
mend using the subset formed by the hands, forearms, 
ankles, and torso.

Fig. 9   SVM: descriptors Analysis (two or more descriptors). The blue 
line is the values when using a �2 kernel and the orange line using 
the RBF kernel. �2 kernel is more stable than the RBF kernel. Also, 
HOG, MBHX, and MBHY is the best descriptor subset

Fig. 10   Analysis of Subject key points distinctiveness. This Figure 
shows the best configurations when analyzing all possible combina-
tions of 2 or more subject key points (greater than 60% by itself). It is 
possible to observe that the subject key points located in the arms and 
torso are those that have the best results and that adding the informa-
tion of the legs increases the performance. The accuracy showed is 
using the TRAJ descriptor
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6 � Efficiency assessment

We aim to search through the hyperparameters space to 
find a trade-off between efficiency and effectiveness. In 
this Section, we review the efficiency of key trajectories 
compared to its dense counterpart [45]. The evaluation 
metrics are described in Sect. 3, and the dataset used is 
KTH.

First, this Section explains the behavior of our proposal 
in offline steps (Vocabulary construction and SVM model 
generation). Then, we explore the rest of the steps (trajec-
tory extraction, descriptor construction, and classification).

6.1 � Vocabulary construction

Earlier, we emphasized that the number of visual words 
used to construct the action vocabulary affects the com-
putation time. So, we introduced a three-fold proposal, 
described in Sect. 4.2. Table 1 show the time in seconds 
required to perform the construction of the vocabulary for 
our proposals and dense trajectories. Some remarks are :

•	 Proposal ADisof + op_25 + 5 desc enables the construction 
of the vocabulary three times faster.

•	 Proposal BDisof + op_25 + 3 desc construct a vocabulary 3.8 
times faster compared to dense trajectories.

•	 Proposal COP + op_6 + 3 desc performs 13 times faster than 
dense trajectories.

6.2 � SVM: model generation

While SVM performance is dependent on the parameters 
used, determining which ones maximize accuracy is typi-
cally accomplished by searching in the parameter space. 
However, because the majority of video datasets are quite 
difficult to process due to the amount of spatial and temporal 
information contained in each video, this task can only be 
approached on low-resolution videos, such as those in the 
KTH datasets shown in Table 2.

Fig. 11   Subject key points 
analysis. This Figure shows the 
results obtained in the KTH 
dataset using a single point to 
find trajectories (shown on the 
right). In general, all points 
have similar accuracy. However, 
the hands generally excels in its 
performance

Table 1   Vocabulary construction: Computation time. The computational time required for each of the configurations presented together with the 
Wang et al. work is shown. Our proposal COP + op_6 + 3 desc performs 13 times faster

HOG (s) HOF (s) MBHX (s) MBHY (s) TRAJ (s) TOTAL (s)

Wang et al.Farneback + 3 desc 377.35 494.22 538.14 546.64 246.72 2203.10 (-)
Our proposal ADisof + op_25 + 5 desc 169.26 166.57 176.87 233.43 162.17 908.32 ( 2.4x)
Our proposal BDisof + op_25 + 3 desc 169.26 0 176.87 233.43 0 579.56 ( 3.8x)
Our proposal COP + op_6 + 3 desc 49.435 0 60.94 62.27  0 172.65 ( 12.8x)

Table 2   Features of a KTH 
video. This table shows the 
average features that a video of 
the KTH dataset has

Features

Frames 378
Size [160 x 120]
Number of scales 4
Frames per second 25
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Reducing the computation time for the creation of 
SVM models can help to accomplish this search task; our 
proposal ADisof + op_25 + 5 desc , BDisof + op_25 + 3 desc , and 
COP + op_6 + 3 desc performs the creation of the SVM model 2, 
3, and 3.5 times faster than dense trajectories, respectively, 
as shown in Table 3.

6.3 � Extraction, feature encoding, and classification

The pipeline to recognize actions is formed by three steps: 
trajectories extraction, feature encoding, and action clas-
sification. Therefore, each of the steps must be performed 
as faster as possible if we want to achieve a real-time sys-
tem. Our results are presented in Table 5 shown that our 
proposal Disof + op_25 + 5 desc , BDisof + op_25 + 3 desc , and 
COP + op_6 + 3 desc improves the performance by a factor of 
1.78, 1.78, and 8, respectively.

The computation time for trajectories extraction is nor-
malized by the number of frames, and the computation time 
for the descriptor construction is by the number of trajecto-
ries presented in the video. So, to have a better understand-
ing, we presented in Table 4 the average number of trajec-
tories extracted by each method in four random instances.

Key trajectories extract between 60 and 90% fewer tra-
jectories than dense trajectories, depending on the configu-
ration chosen. This is an important contribution because a 
lower number of trajectories enables better management of 
data for both computational time and physical disk storage.

A full comparison of our proposal is shown in Fig. 12 
using the average video in KTH number, described in 
Table 2. Dense trajectories need 120 seconds to process the 

whole video, but our faster proposal accomplishes this task 
only in 15 seconds. This means 24.8 frames per second (the 
KTH framerate is 25 fps) so this configuration runs in real-
time in the KTH dataset, as shown in Table 5.

Figure 13 shown that the computation time of key trajec-
tories compared to its dense counterpart at each step is con-
siderably lower. Also, as described in Sect. 7, the accuracy 
performance is comparable to Wang et al. [45] work. So, the 
important lessons learned are:

•	 Dense inverse search reduces the computational time by 
a factor of 1.5.

•	 The extraction of trajectories is the most important step 
to speed-up the recognition task.

•	 Subject key points estimation can be used as a faster fea-
ture tracking method.

•	 Use subject key points improve the trajectories extrac-
tion performance by improving the computation time and 
reducing the number of trajectories extracted.

Table 3   SVM model construction. The computation time required to 
build an SVM model is shown for each of our proposals together with 
Wang et al. work. All of our proposals perform faster than the dense 
trajectories

Time (s)

Wang et al. Farneback + 3 desc 55.28
Our proposal ADisof + op_25 + 5 desc 30.20 ( 1.8x)
Our proposal BDisof + op_25 + 3 desc 19.13 ( 2.8x)
Our proposal COP + op_6 + 3 desc 16.68 ( 3.3x)

Table 4   Trajectories comparison. The number of trajectories gen-
erated by each of our proposals is shown together with the work of 
Wang et al. in random instances. It is possible to observe that our pro-

posal COP + op_6 + 3 desc reduced by 82–93% the amount of informa-
tion that was generated. All videos have a resolution of 160 x 120. A 
= Disof + op_25 + 5 desc, B = Disof + op_25 + 3 desc

Method 77 frames 131 frames 103 frames 120 frames

Wang et al. 342 527 248 652
Our proposal A and B 75 (Red.: 78%) 106 (Red.: 69%) 44 (Red.: 82%) 166 (Red.: 74%)
Our proposal COP + op_6 + 3 desc 60 (Red.: 82%) 35 (Red.: 93%) 18 (Red.: 92%) 104 (Red.: 84%)

Fig. 12   Computation time: our proposal versus Wang et al. [45]. The 
computation time needed to process a video of 378 frames for each of 
our proposals is shown together with the work of Wang et al., which 
takes almost 2 minutes to process the entire video. The reduction of 
points, disof and the new size-quantity of descriptors used help us to 
reduce the needed time by almost half. Replace the optical flow by 
the subject key points estimation helps to process the video in just 15 
seconds, being almost real-time
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7 � Effectiveness assessment

Intelligent video surveillance systems must fulfill two condi-
tions: be accurate and be faster. In Sect. 6, our experimen-
tal results show that our proposal is 8 times faster, and this 
Section aims to assess the effectiveness of our proposal to 
accomplish the condition described. All experiments were 
carried out using the KTH, UCF11, UCF50, and HMDB51 
datasets.

As shown in Table 6, our proposal ADisof + op_25 + 5 desc 
and BDisof + op_25 + 3 desc , which are two time faster, got 
the best performance for the KTH and UCF dataset. So, 
the key trajectories approach is faster and more accurate 
than dense trajectories. On the other hand, our proposal 
COP + op_6 + 3 desc got a comparable accuracy performance 
to dense trajectories, but its 8 times faster.

Finally, Table 7 compares our proposal with other state-
of-the-art approaches in high-difficulty datasets. In this 
case, we used fisher vector as a feature encoding method. 
Nevertheless, the computation time is not affected because 
the major factor reducing the computation time is the tra-
jectories extraction step. Key trajectories outperform dense 
trajectories in both accuracy and computational time, and 
their accuracy performance is comparable to other important 
works in the field. Speaking of action classes, we found that 
our method performed correctly. However, it may not be 
the best option in specific situations, for example, in videos 
where the human body is not shown (like some instances of 

Table 5   Recognition task: computation time. The computation time 
required to recognize an action for each of our proposals is shown 
together with the work of Wang et  al.. The time to generate trajec-
tories is normalized concerning the number of frames and of the 
descriptors by the number of trajectories. Trajectories extraction is 
the most important step to decrease the computation time. Our pro-
posal COP + op_6 + 3 desc accelerates this step 8 times. Wang et  al. 
= Farneback + 5 desc , Proposal A = Disof + op_25 + 5 desc , 
Proposal B = Disof + op_25 + 3 desc , Proposal C = 
OP + op_6 + 3 desc . the computation time for trajectories extrac-
tion is normalized by the number of frames and the computation time 
for the descriptor constructions by the number of trajectories pre-
sented in the video

Traj. extr (s) Desc. gen. (s) Classification (s)

Wang et al. 0.31 (–) 7.61E-05 (–) 0.04 (–)
Our proposal A 0.17 ( 1.8×) 6.44E-05 

( 1.18×)
0.01 ( 4×)

Our proposal B 0.17 ( 1.8×) 5.77E-05 
( 1.31×)

0.008 ( 5×)

Our proposal C 0.037 ( 8.37×) 4.81E-05 
( 1.58×)

 0.006 ( 6.6×)

Fig. 13   Speed-up of our proposal by steps. For the trajectory’s extrac-
tion, using disof: 1.5 faster. Less number of points 1.78 faster. Key 
points estimation: 8 times faster. For vocabulary construction, fewer 
visual words and descriptors: 3.8 faster, using our encoding method: 

12 fasters. For the descriptor generation, using our procedure is 
almost six times faster and the classification was improved by a fac-
tor of 7

Table 6   Accuracy comparison. The accuracy of our proposal is 
shown together with that of Wang et al. [45]. It is important to note 
that although the method accelerated amazingly, the accuracy was not 
affected

Approach KTH (%) UCF11(%)

Wang et al. [45] 95.65 84.08
Our proposal ADisof + op_25 + 5 desc 95.71 84.29
Our proposal BDisof + op_25 + 3 desc 94.9 84.43
Our proposal COP + op_6 + 3 desc 94.20 80.66
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the mixing class of the UCF50 dataset) due to the estimation 
of subject key points won’t be accurate.

8 � Conclusions

Understanding what a subject is doing in a video is an 
important task of computer vision that can be applied to 
create intelligent video surveillance systems. To work in 
real-world applications, algorithms must fulfill two condi-
tions: be faster and be accurate.

We focused on analyzing the weaknesses of dense trajec-
tories and solving them through deep learning techniques 
such as pose estimation. Our proposal, named key trajecto-
ries, enables us to recognize actions 8 times faster, which, 
as far as we know, is the first time that the KTH for the first 
time, to recognize actions in the KTH in real-time ( ∼ 24 
fps) accurately.

Firstly, we focused on the trajectories extraction step, 
where we found that the dense inverse algorithm as feature 
tracking makes the action recognition process 1.5 times 
faster and 2 times faster if we use subject key points for 
sampling frame locations. Also, we studied the distinctive-
ness and representativeness of subject key points and found 
a subset of 6 crucial points that enables us to perform the 
recognition task 8 times faster with 90% fewer trajectories.

A central contribution of our work is a search on the 
hyperparameters space of action recognition. We found 
that the computation time grows is related to the video 
descriptor length. So, we examined the distinctiveness of 
each descriptor and discovered that using a higher number 
of visual words to generate the video representation does 
not impact on the classification accuracy, but it seriously 
affects the computation time. Then, we observed that it is 
recommendable to reduce this number from 4000 to 1000 ( ∼ 
3.5 times faster). To further reduce the size of the vectors, 
we introduced a new technique for encoding the trajectories 
that helps us build a vocabulary ( ∼ 12 times faster) whose 
size only requires a 5% of the Wang et al. approach [45]. In 
the same way, we contributed an analysis of the parameter 
space of the SVM classifier for the action recognition task, 

finding that the classification results have its highest values 
for values of gamma equal to 0.001 and values of C higher 
than 100.

8.1 � Future work

A significant difficulty with dense trajectories is that feature 
encoding does not account for the trajectories’ time-space 
relationships. As a result, dense trajectories are incapable 
of fully representing an action. As a future project, we pro-
pose to investigate several methods for including time-space 
relationships in order to improve action detection accuracy. 
Also, we will analyze our method with other feature encod-
ing methods and explore other datasets that include RGB-D 
data.

Another area for improvement is the trajectory extraction 
step, as it currently uses a predetermined trajectory length. 
However, because the temporal information associated with 
actions may be rather complicated, creating methods for 
comprehending their dynamics might yield more accurate 
performance.

Acknowledgements  F. Camarena gratefully acknowledges the scholar-
ship no. 815917 from CONACyT to pursue his postgraduate studies. 
The scholarship had no role in study design, data collection and analy-
sis, decision to publish, or preparation of the manuscript.

Funding  No funding was received.

Declarations 

Conflict of interest  The author declares that he has no conflict of inter-
est.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust 
features (surf). Comput Vis Image Underst 110(3):346–359

	 2.	 Berlin SJ, John M (2016) Human interaction recognition through 
deep learning network. In: 2016 IEEE international Carnahan 
conference on security technology (ICCST), pp 1–4. IEEE

	 3.	 Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) 
Actions as space-time shapes. In: Tenth IEEE international 

Table 7   Accuracy comparison. Key trajectories outperform Dense 
Trajectories and had a similar performance to the state-of-the-art 
methods

Approach UCF50 (%) HMDB51(%)

Key Trajectories 92.9 81.3
Wang et al. [45] 91.2 57.2
de Souza et al. [11] 92.5 70.4
Lan et al. [21] 94.4 65.1
Wang et al. [47] – 82.48

http://creativecommons.org/licenses/by/4.0/


422	 Pattern Analysis and Applications (2022) 25:409–423

1 3

conference on computer vision (ICCV’05) Volume 1, vol 2, pp 
1395–1402. IEEE

	 4.	 Blunsom P (2004) Hidden markov models. Lect Notes August 
15(18–19):48

	 5.	 Camiña JB, Medina-Pérez MA, Monroy R, Loyola-González O, 
Villanueva LAP, Gurrola LCG (2018) Bagging-randomminer: a 
one-class classifier for file access-based masquerade detection. 
Mach Vis Appl. https://​doi.​org/​10.​1007/​s00138-​018-​0957-4

	 6.	 Cao Z, Simon T, Wei SE, Sheikh Y (2017) Realtime multi-person 
2d pose estimation using part affinity fields. In: CVPR

	 7.	 Chang L, Pérez-Suárez A, Hernández-Palancar J, Arias-Estrada 
M, Sucar LE (2017) Improving visual vocabularies: a more dis-
criminative, representative and compact bag of visual words. 
Informatica 41(3)

	 8.	 Chéron G, Laptev I, Schmid C (2015) P-cnn: pose-based cnn fea-
tures for action recognition. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp 3218–3226

	 9.	 Dalal N, Triggs B (2005) Histograms of oriented gradients for 
human detection. In: 2005 IEEE computer society conference on 
computer vision and pattern recognition (CVPR’05), vol 1, pp 
886–893. IEEE

	10.	 Dalal N, Triggs B, Schmid C (2006) Human detection using ori-
ented histograms of flow and appearance. In: European conference 
on computer vision. Springer, pp 428–441

	11.	 De Souza CR, Gaidon A, Vig E, López AM (2016) Sympathy for 
the details: dense trajectories and hybrid classification architec-
tures for action recognition. In: European conference on computer 
vision. Springer, pp 697–716

	12.	 Du Y, Chen F, Xu W, Li Y (2006) Recognizing interaction activi-
ties using dynamic bayesian network. In: 18th international con-
ference on pattern recognition (ICPR’06), vol 1, pp 618–621. 
IEEE

	13.	 Du Y, Wang W, Wang L (2015) Hierarchical recurrent neural net-
work for skeleton based action recognition. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp 
1110–1118

	14.	 Harris CG, Stephens M, et al (1988) A combined corner and 
edge detector. In: Alvey vision conference, vol 15, pp 10–5244. 
Citeseer

	15.	 Herath S, Harandi M, Porikli F (2017) Going deeper into action 
recognition: a survey. Image Vis Comput 60:4–21

	16.	 Huang Z, Wan C, Probst T, Van Gool L (2017) Deep learning on 
lie groups for skeleton-based action recognition. In: Proceedings 
of the 2017 IEEE conference on computer vision and pattern rec-
ognition (CVPR), pp 1243–1252. IEEE computer Society

	17.	 Jégou H, Douze M, Schmid C, Pérez P (2010) Aggregating local 
descriptors into a compact image representation. In: CVPR 2010-
23rd IEEE conference on computer vision & pattern recognition, 
pp 3304–3311. IEEE Computer Society

	18.	 Jhuang H, Gall J, Zuffi S, Schmid C, Black MJ (2013) Towards 
understanding action recognition. In: 2013 IEEE international 
conference on computer vision, pp 3192–3199. https://​doi.​org/​
10.​1109/​ICCV.​2013.​396

	19.	 Kroeger T, Timofte R, Dai D, Van Gool L (2016) Fast optical flow 
using dense inverse search. In: European conference on computer 
vision. Springer, pp 471–488

	20.	 Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) Hmdb: 
a large video database for human motion recognition. In: 2011 
international conference on computer vision, pp 2556–2563. IEEE

	21.	 Lan Z, Lin M, Li X, Hauptmann AG, Raj B (2015) Beyond gauss-
ian pyramid: multi-skip feature stacking for action recognition. 
In: Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 204–212

	22.	 Laptev I (2005) On space-time interest points. Int J Comput Vis 
64(2–3):107–123

	23.	 Li Y, Li W, Mahadevan V, Vasconcelos N (2016) Vlad3: encoding 
dynamics of deep features for action recognition. In: Proceedings 
of the IEEE conference on computer vision and pattern recogni-
tion, pp 1951–1960

	24.	 Liu J, Luo J, Shah M (2009) Recognizing realistic actions from 
videos “in the wild”. In: 2009 IEEE conference on computer 
vision and pattern recognition (CVPR), pp 1996–2003. IEEE

	25.	 Lowe DG (2004) Distinctive image features from scale-invariant 
keypoints. Int J Comput Vis 60(2):91–110

	26.	 Lowe DG et al (1999) Object recognition from local scale-invar-
iant features. In: iccv, vol 99, pp 1150–1157

	27.	 Luo W, Yang B, Urtasun R (2018) Fast and furious: real time 
end-to-end 3d detection, tracking and motion forecasting with a 
single convolutional net. In: Proceedings of the IEEE conference 
on computer vision and pattern recognition, pp 3569–3577

	28.	 Marszalek M, Laptev I, Schmid C (2009) Actions in context. In: 
2009 IEEE conference on computer vision and pattern recognition 
(CVPR), pp 2929–2936. IEEE

	29.	 Mo L, Li F, Zhu Y, Huang A (2016) Human physical activity 
recognition based on computer vision with deep learning model. 
In: 2016 IEEE international instrumentation and measurement 
technology conference proceedings (I2MTC), pp 1–6. IEEE

	30.	 Ng AY, Jordan MI (2002) On discriminative vs. generative clas-
sifiers: a comparison of logistic regression and naive bayes. In: 
Advances in neural information processing systems, pp 841–848

	31.	 Peng X, Zou C, Qiao Y, Peng Q (2014) Action recognition with 
stacked fisher vectors. In: European conference on computer 
vision. Springer, pp 581–595

	32.	 Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher 
kernel for large-scale image classification. In: European confer-
ence on computer vision. Springer, pp 143–156

	33.	 Reddy KK, Shah M (2013) Recognizing 50 human action catego-
ries of web videos. Mach Vis Appl 24(5):971–981

	34.	 Rodríguez J, Medina-Pérez MA, Gutierrez-Rodríguez AE, Mon-
roy R, Terashima-Marín H (2018) Cluster validation using an 
ensemble of supervised classifiers. Knowl Based Syst 145:134–
144. https://​doi.​org/​10.​1016/j.​knosys.​2018.​01.​010. http://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0950​70511​83000​91

	35.	 Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: 
a local svm approach. In: Proceedings of the 17th international 
conference on pattern recognition, 2004. ICPR 2004, vol 3, pp 
32–36. IEEE

	36.	 Scovanner P, Ali S, Shah M (2007) A 3-dimensional sift descrip-
tor and its application to action recognition. In: Proceedings of the 
15th ACM international conference on Multimedia, pp 357–360. 
ACM

	37.	 Shi Y, Tian Y, Wang Y, Huang T (2017) Sequential deep trajectory 
descriptor for action recognition with three-stream CNN. IEEE 
Trans Multimed 19(7):1510–1520

	38.	 Simon T, Joo H, Matthews I, Sheikh Y (2017) Hand keypoint 
detection in single images using multiview bootstrapping. In: 
CVPR

	39.	 Simonyan K, Zisserman A (2014) Two-stream convolutional net-
works for action recognition in videos. In: Advances in neural 
information processing systems, pp 568–576

	40.	 Sivic J, Zisserman A (2003) Video google: a text retrieval 
approach to object matching in videos. In: null, p 1470. IEEE

	41.	 Soomro K, Zamir AR, Shah M (2012) Ucf101: a dataset of 101 
human actions classes from videos in the wild. arXiv preprint 
arXiv:​1212.​0402

	42.	 Vail DL, Veloso MM, Lafferty JD (2007) Conditional random 
fields for activity recognition. In: Proceedings of the 6th inter-
national joint conference on Autonomous agents and multiagent 
systems, p 235. ACM

https://doi.org/10.1007/s00138-018-0957-4
https://doi.org/10.1109/ICCV.2013.396
https://doi.org/10.1109/ICCV.2013.396
https://doi.org/10.1016/j.knosys.2018.01.010
http://www.sciencedirect.com/science/article/pii/S0950705118300091
http://www.sciencedirect.com/science/article/pii/S0950705118300091
http://arxiv.org/abs/1212.0402


423Pattern Analysis and Applications (2022) 25:409–423	

1 3

	43.	 Veeriah V, Zhuang N, Qi GJ (2015) Differential recurrent neu-
ral networks for action recognition. In: Proceedings of the IEEE 
international conference on computer vision, pp 4041–4049

	44.	 Wang H, Kläser A, Schmid C, Liu CL (2011) Action recogni-
tion by dense trajectories. In: 2011 IEEE conference on computer 
vision and pattern recognition (CVPR), pp 3169–3176. IEEE

	45.	 Wang H, Kläser A, Schmid C, Liu CL (2013) Dense trajecto-
ries and motion boundary descriptors for action recognition. Int J 
Comput Vis 103(1):60–79

	46.	 Wang H, Schmid C (2013) Action recognition with improved tra-
jectories. In: Proceedings of the IEEE international conference on 
computer vision, pp 3551–3558

	47.	 Wang L, Koniusz P, Huynh D (2019) Hallucinating idt descriptors 
and i3d optical flow features for action recognition with cnns. In: 
Proceedings of the 2019 international conference on computer 
vision. IEEE, Institute of Electrical and Electronics Engineers

	48.	 Wang L, Qiao Y, Tang X (2015) Action recognition with trajec-
tory-pooled deep-convolutional descriptors. In: Proceedings of 
the IEEE conference on computer vision and pattern recognition, 
pp 4305–4314

	49.	 Wei SE, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolu-
tional pose machines. In: CVPR

	50.	 Willems G, Tuytelaars T, Van Gool L (2008) An efficient dense 
and scale-invariant spatio-temporal interest point detector. In: 
European conference on computer vision. Springer, pp 650–663

	51.	 Zhang B, Wang L, Wang Z, Qiao Y, Wang H (2016) Real-time 
action recognition with enhanced motion vector CNNs. In: Pro-
ceedings of the IEEE conference on computer vision and pattern 
recognition, pp 2718–2726

	52.	 Zhang S, Wei Z, Nie J, Huang L, Wang S, Li Z (2017) A review on 
human activity recognition using vision-based method. J Healthc 
Eng 2017

	53.	 Zhou X, Yu K, Zhang T, Huang TS (2010) Image classification 
using super-vector coding of local image descriptors. In: European 
conference on computer vision. Springer, pp 141–154

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Action recognition by key trajectories
	Abstract
	1 Introduction
	2 Related work
	2.1 Action representation
	2.2 Action classification

	3 Our proposal: action recognition by key trajectories
	3.1 Key trajectories extraction
	3.1.1 Sampling
	3.1.2 Tracking
	3.1.3 Description

	3.2 Key trajectory, feature encoding

	4 Experimental results
	4.1 Datasets
	4.2 Experiments setup

	5 Hyperparameter analysis
	5.1 Bag-of-words analysis
	5.2 Descriptor analysis
	5.2.1 Analysis of subject key points distinctiveness


	6 Efficiency assessment
	6.1 Vocabulary construction
	6.2 SVM: model generation
	6.3 Extraction, feature encoding, and classification

	7 Effectiveness assessment
	8 Conclusions
	8.1 Future work

	Acknowledgements 
	References




