Skip to main content
Log in

A novel fully parallel skeletonization algorithm

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

A Skeleton that is extracted by a skeletonization algorithm from a binary image is useful for object description, matching, recognition and compression. The parallel thinning algorithm, one of the skeletonization algorithms is well known to have computational effciency. The main contribution of this paper is that we proposed a novel fully parallel thinning algorithm based on a comprehensive investigation of the well-known Zhang-Suen (ZS)-series algorithms and the one-pass thinning algorithm (OPTA)-series algorithms, which not only has good performance in terms of (8,4) connectivity preservation and single-pixel thickness, but also has the following qualities: it is more robust to the boundary noise than the OPTA-series algorithms and it is faster than the ZS-series algorithms in terms of thinning speed, as confirmed by the experiments presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. Blum H (1962) An associative machine for dealing with the visual field and some of its biological implications. Biolo Prototyp Synthetic Syst. https://doi.org/10.1007/978-1-4684-1716-6_34

    Article  Google Scholar 

  2. Kimia BB, Tannenbaum AR, Zucker SW (1995) Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. Int J Comput Vision 15:189–224. https://doi.org/10.1007/BF01451741

    Article  Google Scholar 

  3. Leymarie F, Levine MD (1992) Simulating the grassfire transform using an active contour model. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/34.107013

    Article  Google Scholar 

  4. Siddiqi K, Pizer SM (2008) Medial Representations: Mathematics. Springer, Algorithms and Applications

    Book  Google Scholar 

  5. Saha PK, Borgefors G, Sanniti di Baja G (2016) A survey on skeletonization algorithms and their applications. Pattern Recognit Letters 76:3–12. https://doi.org/10.1016/j.patrec.2015.04.006

    Article  Google Scholar 

  6. Saha PK, Borgefors G, Sanniti di Baja G (2017) Skeletonization: Theory, Methods, and Applications. Academic Press, London. https://doi.org/10.1016/B978-0-08-101291-8.00017-1

    Book  Google Scholar 

  7. Brandt JW, Algazi VR (1992) Continuous skeleton computation by Voronoi diagram. CVGIP: Image Understanding. 55:329–338. https://doi.org/10.1016/1049-9660(92)90030-7

    Article  MATH  Google Scholar 

  8. Ogniewicz RL, Ilg M (1992) Voronoi skeletons: theory and applications. Proceed IEEE Comput Soc Conf Comput Vis Pattern Recognit 62:63–69. https://doi.org/10.1109/CVPR.1992.223226

    Article  Google Scholar 

  9. Ogniewicz RL, Kübler O (1995) Hierarchic voronoi skeletons. Pattern Recogn 28:343–359. https://doi.org/10.1016/0031-3203(94)00105-U

    Article  Google Scholar 

  10. Aslan C, Erdem A, Erdem E, Tari S (2008) Disconnected skeleton: Shape at its absolute scale. IEEE Trans Pattern Anal Mach Intell 30:2188–2203. https://doi.org/10.1109/TPAMI.2007.70842

    Article  Google Scholar 

  11. Arcell C, Sanniti Di Baja G, Serino L (2011) Distance-driven skeletonization in voxel images. IEEE Trans Pattern Anal Mach Intell 33:709–720. https://doi.org/10.1109/TPAMI.2010.140

    Article  Google Scholar 

  12. Lam L, Lee SW (1992) Thinning methodologies—a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 9:869–885. https://doi.org/10.1109/34.161346

    Article  Google Scholar 

  13. Chin RT, Wan HK, Stover DL, Iverson RD (1987) A one-pass thinning algorithm and its parallel implementation. Comput Vis Gr Image Process 40:30–40. https://doi.org/10.1016/0734-189X(87)90054-5

    Article  Google Scholar 

  14. Jang BK, Chin RT (1992) One-pass parallel thinning: analysis, properties, and quantitative evaluation. IEEE Trans Pattern Anal Mach Intell 11:1129–1140. https://doi.org/10.1109/34.166630

    Article  Google Scholar 

  15. Wu RY, Tsai WH (1992) A new one-pass parallel thinning algorithm for binary images. Pattern Recogn Lett 13:715–723. https://doi.org/10.1016/0167-8655(92)90101-5

    Article  Google Scholar 

  16. Deng W, Iyengar SS, Brener NE (2000) Fast parallel thinning algorithm for the binary image skeletonization. Int J High Perform Comput Appl 14:65–81. https://doi.org/10.1177/109434200001400105

    Article  Google Scholar 

  17. Zhou RW, Quek C, Ng GS (1995) A novel single-pass thinning algorithm and an effective set of performance criteria. Pattern Recogn Lett 16:1267–1275. https://doi.org/10.1016/0167-8655(95)00078-X

    Article  Google Scholar 

  18. Wang RZ, Zhao YR, Ji TH, Liu LP (2020) Fingerprint Refinement Model Based on Improved OPTA. J Comput 31:274–283. https://doi.org/10.3966/199115992020123106021

    Article  Google Scholar 

  19. Lei G, LI Z, Zhi W, (2017). A Fast and Complete Thinning Algorithm for Character Image. DEStech Transactions on Engineering and Technology Research

  20. Gang C, Ning C, Yong Z (2012) An improved OPTA fingerprint thinning algorithm based on neighborhood searching. Proceedings - 2012 International Conference on Computer Science and Information Processing CSIP 2012. https://doi.org/10.1109/CSIP.2012.6308934

  21. Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27:236–239. https://doi.org/10.1145/357994.358023

    Article  Google Scholar 

  22. Ben Boudaoud L, Solaiman B, Tari A (2018) A modified ZS thinning algorithm by a hybrid approach. Vis Comput 34:689–706. https://doi.org/10.1007/s00371-017-1407-4

    Article  Google Scholar 

  23. Shen Y, Ai T, Yang M (2019) Extracting centerlines from dual-line roads using superpixel segmentation. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2895016

    Article  Google Scholar 

  24. Tarabek P (2012) A robust parallel thinning algorithm for pattern recognition. 2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI) 75–79. IEEE.

  25. Chen W, Sui L, Xu Z, Lang Y (2012) Improved Zhang-Suen thinning algorithm in binary line drawing applications. In 2012 International Conference on Systems and Informatics (ICSAI2012) 1947–1950. IEEE.

  26. Lü HE, Wang PSP (1986) A Comment on “a fast parallel algorithm for thinning digital patterns.” Commun ACM 29:239–242. https://doi.org/10.1145/5666.5670

    Article  Google Scholar 

  27. Jagna A, Kamakshiprasad V (2010) New parallel binary image thinning algorithm. ARPN J Eng Appl Sci 5:64–67

    Article  Google Scholar 

  28. Abdulla WH, Saleh AO, Morad AH (1988) A preprocessing algorithm for hand-written character recognition. Pattern Recogn Lett 7:13–18

    Article  Google Scholar 

  29. Sossa JH (1989) An improved parallel algorithm for thinning digital patterns. Pattern Recogn Lett 10:77–80. https://doi.org/10.1016/0167-8655(89)90070-6

    Article  MATH  Google Scholar 

  30. Kwon JS, Gi JW, Kang EK (2001) An enhanced thinning algorithm using parallel processing. IEEE Int Conf Image Process. https://doi.org/10.1109/icip.2001.958228

    Article  Google Scholar 

  31. Boudaoud LB, Sider A, Tari A (2015) A new thinning algorithm for binary images. 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT) 1–6. IEEE.

  32. Li R, Zhang X (2018) Research on the Improvement of EPTA Parallel Thinning Algorithm. https://doi.org/10.2991/ncce-18.2018.167

  33. Dong J, Chen Y, Yang Z, Ling BWK (2017) A parallel thinning algorithm based on stroke continuity detection. SIViP. https://doi.org/10.1007/s11760-016-1034-y

    Article  Google Scholar 

  34. Gökmen M, Hall RW (1990) Parallel shrinking algorithms using 2-subfields approaches. Comput Vis, Gr Image Process 52:191–209. https://doi.org/10.1016/0734-189X(90)90054-Y

    Article  Google Scholar 

  35. Ma CM, Wan SY, Der LJ (2002) Three-dimensional topology preserving reduction on the 4-subfields. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2002.1114851

    Article  Google Scholar 

  36. Neusius C, Olszewski J, Scheerer D (1992) An efficient distributed thinning algorithm. Parallel Comput 18(1):47–55. https://doi.org/10.1016/0167-8191(92)90110-S

    Article  MATH  Google Scholar 

  37. Kong TY (1995) On topology preservation in 2-D and 3-D thinning. Int J Pattern Recognit Artif Intell 9:813–844. https://doi.org/10.1142/S0218001495000341

    Article  Google Scholar 

  38. Ronse C (1986) A topological characterization of thinning. Theoret Comput Sci 43:31–41. https://doi.org/10.1016/0304-3975(86)90164-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Ronse C (1988) Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Appl Math 21:67–79. https://doi.org/10.1016/0166-218X(88)90034-0

    Article  MathSciNet  MATH  Google Scholar 

  40. Rosenfeld A (1975) A characterization of parallel thinning algorithms. Inf Control 29:286–291. https://doi.org/10.1016/S0019-9958(75)90448-9

    Article  MathSciNet  MATH  Google Scholar 

  41. Hall RW (1992) Tests for connectivity preservation for parallel reduction operators. Topol Appl 46:199–217. https://doi.org/10.1016/0166-8641(92)90015-R

    Article  MathSciNet  MATH  Google Scholar 

  42. Hall RW (1996) Parallel connectivity-preserving thinning algorithms. In Machine Intelligence and Pattern Recognition. North-Holland, Elsevier 145–179. https://doi.org/10.1016/S0923-0459(96)80014-0.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunhuan Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Ren, X., Tsviatkou, V.Y. et al. A novel fully parallel skeletonization algorithm. Pattern Anal Applic 25, 169–188 (2022). https://doi.org/10.1007/s10044-021-01039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-021-01039-y

Keywords

Navigation