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Abstract
Nowadays, face detection and head pose estimation have a lot of application such as face recognition, aiding in gaze esti-
mation and modeling attention. For these two tasks, it is usually to design two different models. However, the head pose 
estimation model often depends on the region of interest (ROI) detected in advance, which means that a serial face detector 
is needed. Even the lightest face detector will slow down the whole forward inference time and cannot achieve real-time 
performance when detecting the head pose of multiple people. We can see that both face detection and head pose estima-
tion need face features, so a shared face feature map can be used between them. In this paper, a multi-task learning model 
is proposed that can solve both problems simultaneously. We directly detect the location of the center point of the bounding 
box of face; at this location, we calculate the size of the bounding box of face and the head attitude. We evaluate our model’s 
performance on the AFLW. The proposed model has great competitiveness with the multi-stage face attribute analysis model, 
and our model can achieve real-time performance.

Keywords Multi-task · Face detection · Head pose · Anchor Free

1 Introduction

Face detection and face attribute analysis are important and 
challenging tasks in computer vision. This paper addresses 
the face detection and head pose estimation problems which 
has many applications such as face recognition and human 
attention modeling. In recent years, due to the high effi-
ciency of CNN, deep learning has achieved good results in 
computer vision tasks. In face detection and analysis, a large 
number of efficient models are proposed to solve different 
tasks, such as face recognition [2, 21], face age estimation 
[15], face landmarks detection [31, 32], head pose estima-
tion [20, 30] and so on. For these tasks, different models are 
designed to solve the corresponding tasks and have achieved 
good accuracy and performance. However, these tasks 
all require face bounding box to be detected in advance. 
When we connect face detection models with these head 
pose estimation models in series, the performance of these 
models will be less efficient. In particular, the head posture 
of multiple people is estimated at the same time, such as 

the modeling of students’ attention in class. It is difficult to 
achieve real-time pose estimation for multiple people at the 
same time because of the need to calculate each person’s 
head posture separately.

In the task of head pose estimation, both traditional meth-
ods and deep learning methods need to detect the ROI of the 
face, and some even need to detect the landmarks of the face. 
There are a lot of unnecessary calculations, which increase 
the computational complexity of the whole model and the 
overall inference time. Recently, MTCNN, MaskFace and 
Retinaface [3, 31, 32] realize the multi-task learning model 
of face detection and face landmarks detection through 
shared convolution feature map. The inference time of the 
face landmarks detection model which relies on the pre-
detection of face ROI is improved, and the accuracy of face 
detection is also improved. More recently, Retinaface etc [3] 
has demonstrated that multi-task learning can increase over-
all accuracy by adding additional supervision. In addition, 
it is a shared feature mapping. In the same amount of tasks, 
the repetitive feature extraction is reduced and the calcula-
tion speed is accelerated. In this paper, a multi-task learning 
model combining face detection and head pose estimation 
is proposed to reduce the overall time spent in the task of 
face detection and head pose estimation, which can be better 
applied in real-time.
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Our network is intended to be applied to face detection 
and head pose estimation in the classroom where requires 
high real-time performance. Inspired by Centernet [33], this 
paper proposes an anchor free single-stage face detection 
model with head pose estimation. It reduces the overall com-
putational complexity and avoids the detection of the face 
bounding box before the head pose estimation. The head 
pose is a three-dimensional vector containing yaw, pitch and 
roll. For the head pose estimation of a face in an image, 
most of the faces in the image need to be detected first, and 
then the head pose estimation of face ROI is carried out. 
Our model can directly calculate the 3D vector of the head 
pose during the detection of the face(as shown in Fig. 1). 
The head pose estimation task is a regression task, but the 
direct application of regression to solve the head pose does 
not perform well on large-scale data. Inspired by Hopenet 
and FSA-Net, we first performed a rough classification of the 
head pose, and then performed a fine regression.

In general, this paper proposes a multi-task learning 
model, which can detect faces and estimate head posture 
simultaneously. Our contribution can be summarized as 
follows: 

(1) An end-to-end multi-task learning model is proposed, 
which can obtain the head pose estimation while detect-
ing the face. By using the shared feature map, the over-
all computing time of head pose estimation is reduced, 
it can achieve real-time head pose estimation for mul-
tiple people.

(2) In the head pose estimation process, we did not directly 
return to the head attitude angle, but made a rough clas-
sification of the head attitude angle, and then we made 
a fine exception to get our head attitude angle. It makes 
the model more robust.

(3) An anchor-free one-stage face detection model is 
proposed. For a single task of face detection model, 

we lose a small amount of accuracy but get a huge 
improvement in model speed.

2  Related work

Face detection and its attribute analysis have always been a 
key challenge in computer vision. Many excellent methods 
have been put forward to solve these tasks. In this section, 
we will review the previous methods from three aspects: face 
detection, head posture estimation and multi-task learning.

2.1  Face detection

Face detection is to find the position of the face in the image, 
is a detailed branch of the object detection task. In the early 
face detection algorithm, the method of template matching 
was used. A face template is used to compare with each 
position of the image to determine whether there is a face 
here, for example Rowley propose [18, 19]. Viola and Jones 
proposed to construct a detector using a simple Haar-like 
feature and a cascade of adaboost classifier [25]. Compared 
with the previous method, the detection speed is greatly 
improved and maintains good accuracy. A number of studies 
have shown that this detector can significantly reduce visual 
changes in human faces in real-world applications, even with 
more advanced features and classifiers [29, 32]. Compared 
with DMP model [12, 27], it shows good performance and 
has good detection effect on distorted, gender multi-pose 
and other faces. However, its biggest problem is that it is too 
slow to be applied in engineering.

Later, with the success of the convolutional neural net-
work in the classification problem [6, 8, 23], it was quickly 
applied to face detection problem, which greatly exceeded 
the previous framework in accuracy. Most of the current face 
detection models are evolved from object detection models, 

Fig. 1  We detect the face as a point and calculate the size of the face bounding box and the head pose of the face directly at this point
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which can be divided into one-stage methods and two-stage 
methods. Two-stage methods [26] adopting “proposal and 
refinement”, which have high accuracy but slow speed. One-
stage [13] adopts intensive sampling of face position and 
scale, which will lead to the imbalance of positive and nega-
tive samples in the training process. To solve this problem, 
sampling and re-setting is widely used. Compared with two-
stage method, one-stage shows excellent performance, but 
its relative accuracy is slightly lower than two-stage method.

Anchor was widely used in the one-stage and two-stage 
target detection network, and it was proposed in Faster 
R-CNN [17]. In recent years, anchor-based target detec-
tion has made great progress and proved its effectiveness. 
However, anchor needs a large number of samples, which 
aggravates the imbalance of positive and negative samples 
in the original face detection task. In recent years, with the 
development of the anchor-free object detection network 
[33], its performance is getting closer and higher than that 
of the anchor-based network.

2.2  Head pose estimation

Head pose estimation has been a widely studied problem 
in computer vision, and there are many differences in the 
methods. In some of the literature [14, 22], they used pose 
templates to match real faces to get head poses. Detector 
arrays [19] were also a popular way to train multiple detec-
tors to detect different head positions. All of these methods 
consume huge computing resources.

With the success of face landmarks detection [24, 31], 
face landmarks have become popular to be used to evaluate 
head pose. Given a set of 2D face landmarks to calculate 
the 3D head attitude angle such as POSIT [1]. However, the 
head pose estimation method based on landmarks needs to 
detect the landmarks of the face, and the landmarks of the 
face are dense. In some low-resolution images or for small 
faces, some experts are often unable to demarcate the key 
points of the face.

Others consider using depth information to assess head 
pose. Fanelli et al. [4] exploited discriminative random 
regression forests for head pose estimation with depth 
images. But, this requires additional device overhead. With 
the development of deep learning, some end to end deep 
learning models are gradually studied. Hopenet et al. [20, 
30] adopted the deep learning method to transform the 
regression task of the head pose into the classification task, 
so as to directly obtain the head pose and make the model 
more robust. Whether the head pose estimation method 
based on landmarks or the direct estimation method from 
a single image, they all need to connect other models to 
provide additional help. When it is necessary to estimate the 
head posture of multiple people at the same time, the overall 
computational complexity will increase exponentially.

2.3  Multi‑task methods

Multi-tasking learning is the combination of multiple single 
tasks into a single model. In recent years, some work has 
demonstrated that multi-tasking learning can achieve better 
performance [3, 31, 32] than single-task learning model. 
They used CNNS to simultaneously detect faces, landmarks, 
etc. In Hyperface [16], the authors detects faces, landmarks, 
headpose and gender in the images at the same time. But, it 
is inefficient and difficult to use in industry. MTCNN uses 
image pyramid and cascading CNN to predict the position 
of face bounding box and face landmarks points. Some 
recent methods use the feature pyramid approach to detect 
faces of different scales. SSD [10] and so on add additional 
regression heads for landmarks detection. Retinaface, SSH 
[3, 13] added semantic models to increase the visual field 
of perception of the model. Meanwhile, Retinaface proved 
that this kind of multi-task learning provides additional 
self-supervision to improve the ability of the model. Then, 
Maskface proposed RoiAilgn [5] for landmarks detection to 
optimize the accuracy of landmarks detection and improve 
the accuracy of the face detection model. Multi-task learn-
ing has high efficiency. Self-supervised training can be car-
ried out through inter-task correlation to improve the model. 
However, there are few researches on multi-task learning 
model for face detection and head pose. Although hyperface 
solves multi-person face-related tasks, including head pose, 
its efficiency is very low.

3  Towards real‑time face detection and head 
pose estimation

3.1  Architecture

In practical applications, such as classroom students’ atten-
tion modeling, most of the faces are small target faces, and 
the head pose estimation of multiple people is carried out. 
So, we need a model to detect small target faces and estimate 
multi-person head pose in real time. Our model is an one-
stage anchor-free multi-task learning model. The position 
and head posture of the face frame can be obtained directly 
from RGB images. We refer to Centernet, which is an anchor 
free target detection model with good accuracy and perfor-
mance in target detection tasks. Centernet detects the center 
of the object directly and regresses the size of the box at 
this point. Centernet is friendly to small targets because the 
training uses a Gaussian distribution on the sample and tar-
gets are detected as points, that can solve the problem of 
detect small face. We not only need to detect small target 
face, but also need certain ability to detect large target face. 
Many of the most advanced works based on anchors have 
built different structures to detect faces of different sizes. 
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High-level features are used to detect large faces, while low-
level features are used to detect small faces. We also build 
a feature pyramid to detect faces of different scales. For 
different scale feature pyramids, we assign different scales 
of face for supervised training. Traditional FPNs include 
bottom-up, top-down and lateral connections, which is an 
effective structure for spatial integration. But its connection 
is linear and simple without good fusion of semantic infor-
mation between layers. So we use DLA34 as our backbone 
network because it contains a similar structure to FPNs. Dif-
ferent from FPNs, the feature fusion design of shallow layer 
and deep layer is more complex. More semantic information 
is fused between layers. By designing different face sizes 
for different layers, the ability of the model is effectively 
improved. A rough outline of the model as shown in Fig. 2.

In order to increase the visual field of perception of the 
model, we design the semantic model after DLA-34 different 
step size output. Before the semantic model, we add a 1*1 

convolutional layer to unify the feature map into 256 channels. 
The semantic model is designed with reference to Retinaface, 
as shown in Fig. 3. We set the input channel of the semantic 
model to 256 and then feed it into two branches. Three feature 
maps of 128, 64 and 64 channels are obtained, and finally the 
three feature maps are spliced into 256 channels as the output 
of the semantic model. After the semantic model, we get our 
shared feature map. Then, we design the 1*1 convolutional 
layer of different channels to match our different tasks, such 
as face classification as channel 1.

3.2  Multi‑task loss

For the supervision training of face detection at different 
scales, we minimize the following multi-task loss

(1)L = Ldet + Loffset + Lsize + Lhead

Fig. 2  Rough outline of the model.We have chosen DLA-34 as our 
backbone. Then, we connect context-sensitive model after output of 
different scales to increase the visual field of perception of the model. 

We set up different convolution heads for different tasks. We use mul-
tilosses to constrain our model

Fig. 3  Context module. The information in the convolutional layer includes the size of the convolution kernel and the output channels
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, where Ldet is the loss of face bin class, Loffset is bounding 
box location regression loss, Lsize is the loss of face bounding 
box size, Lhead is the loss of head pose.

For each face bounding box, we calculate the coordinates 
of its center point as the point we want to detect. 
(x1, y1, x2, y2) is coordinates of the upper left and lower right 
corner of the face bounding box. And, the keypoint can be (
x1+x2

2
,
y1+y2

2

)
 . We do pixel level point classification. Ldet is 

focal loss (Formula 2), for each ground truth keypoint p, we 
compute a low-resolution equivalent p̃ =

|
|
|
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R

|
|
|
 , where R is the 

stride of the output. We then splat all ground truth keypoints 
onto a heatmap Y ∈ [0, 1]

w

R
×

H

Rusing a Gaussian kernel 

Yxyc = exp
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)

 , where is an object size-adap-

tive standard deviation. The heatmap under asynchronous 
length is shown in Fig. 4.

where � and � are hyper-parameters of the focal loss, and N 
is the number of keypoints in image I. The normalization by 
N is chosen as to normalize all positive focal loss instances 
to 1. We use � = 2 and � = 4 in all our experiments.

For keypoint, we do not simply multiply the step size 
by the coordinates of the heat map to get the coordinates 
of the original image directly, which is obviously not accu-
rate enough. In the process of transforming, the image 

(2)

Ldet =
1

N

∑

xy

{ (
1 − Ŷxy

)𝛼
log

(
Ŷxy

)
if Ŷxy > 0.9

(
1 − Yxy

)𝛽(
Ŷxy

)𝛼
log

(
1 − Ŷxy

)
if Ŷxy < 0.8

coordinates into heatmap coordinates, there must be some 
loss. We calculate the real point coordinates and the offset 
map to heatmaps by the loss as follows:

where P is the predictive value.
The length and width of the face frame are directly 

obtained by regression. Lsize as defined by the following 
formula:

where s is the truth size of the bounding box.
For head pose estimation, we minimize the following 

mutil loss:

where H is the cross-entropy loss, MSE is the squared error 
loss functions. y is the true label, ŷ is the predicted value. 
Section 3.3 describes the details.

3.3  Headpose estimation

Generally speaking, the head pose estimation belongs to the 
regression task. The three vectors of the head pose can be 
obtained through direct regression. But this approach does 
not work very well for large scale data. Inspired by Hopenet 

(3)Loffset =
1

N

∑
|P − (p − p̃)|

(4)L size =
1

N

∑|
|
|
Ŝp − s

|
|
|

(5)L head = H(y, ŷ) + 𝛼MSE(y, ŷ)

Fig. 4  Different stride of the output (4, 8, 16) face bounding boxes of keypoint in heatMap Gaussian distribution



1750 Pattern Analysis and Applications (2021) 24:1745–1755

1 3

and FSA-Net, we set up three classifiers corresponding to 
three different Euler angles of head attitude respectively to 
make a rough positioning of the angle. We only detect the 
three head attitude angles with an angle of −99◦ to 99◦ . In 
general, most of the angles of head posture are concentrated 
in this range. We divide it into a category every 3 ◦ , a total 
of 66 categories for each head attitude angle. In the loss 
function, we use following loss to calculate the classifica-
tion loss:

We calculate the angle based on the expected value of the 
classification. The final angle is obtained by multiplying the 
confidence level of classification with the corresponding cat-
egory. We use MSE to calculate the probable losses:

Then, we add the classification loss to the regression loss 
to get the loss of our head pose estimation, as shown in 
Formula 5. Where � is a hyperparameter, we set it to 0.1 in 
our model.

4  Experiments and results

We use the open dataset AFLW(Annotated Facial Land-
marks in the Wild) [11] in our training. In the face detection 
experiment, we test the accuracy of the model not only on 
AFLW but also on AFW [34], FDDB [7], and Pascal face 
[28] datasets. The other experiments are carried out on the 
AFLW dataset. In addition to evaluating the performance 
of our model on public datasets, we also evaluate the actual 
effect of our model in our practical application process of 
classroom student’s attention modeling.

4.1  Training

4.1.1  The data processing

During training, images are resized with a randomly chosen 
scale factor between 0.6 and 1.3. Then, we randomly flip the 
image with a 50% probability and distort the color. Then, 
we cropped the random area of the image into a 512*512 
resolution image. If the cropped image does not contain any 
bounding box of face, we perform normal cropping on the 
image to include at least one bounding box of face. This ena-
bles us to include more positive samples in training batches. 
In ALFW dataset, samples greater than 99◦ and less than 
−99◦ from yaw, pitch and roll angles are excluded.

(6)H(y, ŷ) =
1

N

∑

i

−
[
yi log

(
p̂i
)
+
(
1 − yi

)
log

(
1 − p̂i

)]

(7)MSE =
1

n

n∑

i

(
ŷi − yi

)2

4.1.2  Training details

We train our model by using the SGD optimizer with the 
momentum of 0.9 and the weight decay of 0.0001. In the 
AFLW dataset, the batch size is 16. Our backbones is pre-
trained on the ImageNet dataset. Our initial learning rate 
is set at 0.001. At the 10th epoch, we set the learning rate 
as 0.01, and after 30 epochs, we adopt the step attenuation 
strategy. When our validation loss is not decreasing, we mul-
tiply the learning rate by 0.1. We set the minimum learning 
rate to 0.00001.

4.2  Results of face detection

We evaluate the accuracy of face detection on AFW, AFLW, 
FDDB and Pascal face datasets. AFLW is a massive Facial 
database with multiple poses and perspectives. The image 
is from Flickr crawl. There are 21,997 pictures and 25,993 
faces. Most of them are RGB images, but a few are gray-
scale. Among them, 59% were female, and 41% were male. 
We use 60% of the ALFW dataset for training and the 
remaining 40% for testing. The AFW dataset was collected 
from Flickr, and the images in this dataset contain large vari-
ations in appearance and viewpoint. In total, there are 205 
images with 468 faces in this dataset. The FDDB dataset 
consists of 2,845 images containing 5,171 faces collected 
from news articles on the Yahoo website. This dataset is the 
most widely used benchmark for unconstrained face detec-
tion. The PASCAL faces dataset was collected from the test 
set of the PASCAL person layout dataset, which is a subset 
of PASCAL VOC. This dataset contains 1335 faces from 
851 images with large appearance variations.

In the anchor-based method, to get more positive samples, 
samples with ROI greater than 0.5 are generally selected as 
positive samples and those with ROI less than 0.3 as nega-
tive samples. In order to obtain the same effect as the anchor-
based method, increase the number of positive samples in 
the training process and balance the proportion of positive 
and negative samples, we take the Gaussian distribution 
value greater than 0.9 as the positive sample and the value 
less than 0.8 as the negative sample. Samples with Gaussian 
values between 0.8 and 0.9 are ignored. The Centerpoint 
equal to 1 in Centernet is compared as a positive sample, 
and the rest were all negative samples in our comparison 
experiment. Through Fig. 5, it is found that our method can 
effectively improve the accuracy of the model.

Our model will be used for real-time human attention 
modeling. We choose some models with both accuracy and 
model inference speed to compare, such as MTCNN, SSH 
and Retinaface et.al [3, 9, 13, 25, 32, 34]. In the input pro-
cess, we do not stack image pyramid because in the actual 
application process, the real-time performance of the model 
would be greatly reduced. We believe that this operation 
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only has a certain effect on the refresh accuracy of the data-
sets. Figures 6, 7 and 8 show the precision-recall curves of 
different detectors corresponding to AFLW, AFW and Pas-
cal face datasets, respectively. Figure 9 shows the Receiver 
Operating Characteristic (ROC) of the models on the FDDB 
dataset.

From the experimental results on several datasets, we can 
see that our model’s performance has achieved the state-of-
the-art. On the FDDB dataset, some methods use FDDB 
as training data in a 10-fold cross-validation fashion. And 
our method does not use the FDDB dataset for training. 
Because our model selection is friendly to small targets, 
while AFLW datasets and other datasets are mostly large 
target faces. Although our model is trained on the AFLW 
dataset, it can be found that our model still pays more atten-
tion to small target faces than most models, so the effect on 
the AFLW dataset is not very good. In some subsequent 
subjective evaluations, it is found that our models performed 
better than these models in the classroom, where most small 
target faces are detected.

4.3  Results of head pose estimation

We evaluate the attitude errors of the three head attitude 
angles as a contrast to some head pose estimation models. 
Since all the methods we compare require human faces as 
input, we select the face detected by our model to send into 
the comparison method, so as to ensure the same data we 
use in the comparison process and the fairness of the com-
parison. We calculate the mean absolute error of each three 
head pose angles, and it turns out that smaller is better. The 
experimental results are shown in Table 1 and Fig. 10. The 
blue line indicates the direction the subject is facing; the 
green line for the downward direction while the redone for 
the side.

4.4  Inference efficiency

We calculate the model inference time of the face detec-
tion model and the head pose estimation model on the test 
dataset, respectively. The inconsistent image size in the data-
set will lead to inconsistent reasoning speed of the model. 
Therefore, we calculate the overall running time of the 
model on the test dataset, and calculate the average time 
consumed by each image, as shown in Table 2. We calculate 
the reasoning speed of the model on Tesla P100 GPU, and 
make statistics on some advanced face detection models with 
fast reasoning speed. We compare the reasoning speed of 
the single face detection model and face detection plus head 
pose evaluation. From the table, we can see that the speed 
of our model is basically the same as that of the current one-
stage face detector, but with the head pose estimation model, 
we can see that our model is better than the multi-step head 
pose model.

We also compare the model inference time with dif-
ferent numbers of people in an image. We use images of 
the same size but with different numbers of people to pre-
vent the impact of image size on the speed of the model, 

Fig. 5  Experimental results of model with different samples

Fig. 6  Precision-recall curves on the AFLW dataset

Fig. 7  Precision-recall curves on the AFW dataset
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because we only compare the model reasoning speed with 
different numbers of people. We divide the experiment 
into four groups, with 17 and 34 more closely related to 
the number of students in the classroom. In addition, we 
compared the reasoning time of the model with 1 person 
and 5 people. Each group of experimental pictures for 10, 
each group repeated the experiment three times to take 

the average value, to ensure the fairness of the results, as 
shown in Table 3. It can be seen that the reasoning time of 
the multi-step head pose estimation model increases with 
the increase of the number of people, while our model 
basically does not change. It can be seen that our model 
has a huge advantage when dealing with multiple people.

Fig. 8  Precision-recall curves 
on the Pascal Face dataset

Fig. 9  ROC curves of on the FDDB dataset
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4.5  Results in classroom student’s attention 
modeling

The classroom containing a large number of small target 
faces is a suitable application of our model. So, we also do 
some subjective precision comparisons on our classroom 
videos, and some model comparisons on the speed of rea-
soning. Although most of the models use feature pyramid 
to optimize the detection of faces at different scales, due to 
the existence of anchor, when the size difference between the 
target face and anchor is large, it cannot be detected well. 
And, most models do not make special anchor settings for 
small target faces. Our model is based on Centernet, small 
target friendly. And, the students in the classroom are mostly 
small targets, so subjectively, our model for face detection 
of students in the classroom is quite effective, as shown in 
Figs. 11, 12.

Then, we count the frames of face detection and head 
pose estimation of different models in actual classroom(see 
Table 4). In order to be fair, we ensure the same operating 
environment during the test. Our test uses a single Tesla 
p100 GPU with a CPU of Intel Xeon E5-2620. It can be seen 
that our model can easily achieve the real-time detection 
effect in the classroom with a large number of people. The 
multi-step head pose estimation model needs to re-extract 
each person’s feature map. Therefore, the multi-step head 
pose estimation model is difficult to achieve real-time effect 
in a large number of peoples. Our model can reduce the 
computation process of extracting feature again in head pose 
estimation by sharing the feature map with face detection 
task. It can be seen that our model has a great advantage in 
dealing with this multi-person head posture.

5  Conclusions

In this paper, an effective multi-task learning model is pro-
posed, which combines face detection with head pose esti-
mation to detect and analyze small target faces. Through the 
shared feature map, we can get the position of the bound-
ing box and the pose angle of the head at the same time. It 
reduces the steps of detecting the region of interest before 

Fig. 10  Pose estimation on the AFLW dataset. From top to bottom, 
they are ground truth, results of Hopenet and our model

Table 1  Mean average error of Euler angles across different methods 
on the AFLW dataset

Method Yaw Pitch Roll MAE

Dlib 23.153 10.545 13.633 15.777
Hopenet 8.84 15.41 14.1 12.78
Our 5.49 23.81 17.26 15.52

Table 2  Inference time(ms) of different models

Method Inference time

Retinaface(mobile) 0.2
yolo_face_dect 0.017
SSH 0.12
Retinaface(mobile)+hopenet 0.32
yolo_face_dect+hopenet 0.137
SSH+hopenet 0.24
Our 0.071

Table 3  Inference time(ms) of different models with different num-
bers of people

Nums of 
people

SSH+Hopenet YOLO_
face+Hopenet

Our

1 0.152 0.156 0.015
5 0.183 0.18 0.016
17 0.32 0.252 0.015
34 0.58 0.46 0.017

Table 4  Frames per second of different models in classroom surveil-
lance video

Method Frames 
per 
second

Retinaface(mobile)+Hopenet 9
MTCNN+Hopenet 1.8
SSH+hopenet 3.9
Our 40.69
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estimating the head pose from the field and eliminates the 
overall computational complexity. The efficiency of single 
person head pose estimation is slightly improved, and for 
multi-person head pose estimation, our model can still work 
in real time. It is very helpful for the application of multi-
person pose estimation, such as the students attention mod-
eling in the classroom. We also estimation student head pose 
in real classroom, and the results are remarkable. Our model 
can be better applied in practice. Our preliminary experi-
mental results show that our method is more suitable for 
front-end real-time analysis systems and can more efficiently 

estimation the head pose of a large number people. In the 
future, we still need to make great efforts in precision and 
speed of model reasoning.
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(a) Our method (b) SSH

(c) MTCNN (d) Retinaface

Fig. 11  Different face detection models for student face detection in classroom. It can be seen that our model detects more small target faces than 
other models

Fig. 12  Illustration of our approach on a classroom monitoring sys-
tem
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