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Abstract
With the rapid development of computer technology, data collection becomes easier, and data object presents more complex. 
Data analysis method based on machine learning is an important, active, and multi-disciplinarily research field. Support vector 
machine (SVM) is one of the most powerful and fast classification models. The main challenges SVM faces are the selec-
tion of feature subset and the setting of kernel parameters. To improve the performance of SVM, a metaheuristic algorithm 
is used to optimize them simultaneously. This paper first proposes a novel classification model called IBMO-SVM, which 
hybridizes an improved barnacle mating optimizer (IBMO) with SVM. Three strategies, including Gaussian mutation, logistic 
model, and refraction-learning, are used to improve the performance of BMO from different perspectives. Through 23 clas-
sical benchmark functions, the impact of control parameters and the effectiveness of introduced strategies are analyzed. The 
convergence accuracy and stability are the main gains, and exploration and exploitation phases are more properly balanced. 
We apply IBMO-SVM to 20 real-world datasets, including 4 extremely high-dimensional datasets. Experimental results are 
compared with 6 state-of-the-art methods in the literature. The final statistical results show that the proposed IBMO-SVM 
achieves a better performance than the standard BMO-SVM and other compared methods, especially on high-dimensional 
datasets. In addition, the proposed model also shows significant superiority compared with 4 other classifiers.

Keywords Barnacles mating optimizer · Feature selection · Support vector machine · Gaussian mutation · Logistic model · 
Refraction-learning

1 Introduction

Due to rapid technology advancement, an enormous amount 
of data is stored in databases. It becomes hard to make deci-
sions for industrial intelligence by analyzing the stored 
data. Data mining is a process of acquiring information and 
knowledge from such huge data [1]. Feature selection (FS) 
is an important preprocessing step in the field of data min-
ing and machine learning [2]. Its purpose is to eliminate the 
redundant and irrelevant features to compress the original 
data into a low-dimensional space, reduce the computational 
complexity, and increase the classification accuracy [3–5]. 
In essence, the process of FS is to select the optimal feature 

subset from the original dataset. In other words, it can be 
regarded as a combinatorial optimization task [6].

FS methods explicitly or implicitly combine some sub-
set search mechanism and subset evaluation mechanism, 
which can be divided into three categories: filter, wrapper, 
and embedding [7]. The filter method performs FS on the 
dataset based on correlation statistics and then trains the 
learning model. There is no interaction between the process 
of FS and the process of training the learning model [8]. The 
wrapper method evaluates the selected feature subset based 
on the performance of the learning model. In other words, 
the purpose of the wrapper method is to select the optimal 
feature subset for a given learning model [9]. Therefore, the 
wrapper method usually achieves better results than the fil-
ter method. However, since the learning model needs to be 
trained many times in the FS process, the computational 
overhead of the wrapper method is usually much higher than 
that of the filter method [10]. For the embedding method, its 
idea is to embed the FS process into the construction of the 
learning model. Because of the complexity of the concepts, 
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it is not easy to construct such models. In addition, it is also 
hard to improve the learning model to get better results [11]. 
After comparison and consideration, the wrapper-based FS 
is used in this paper.

In general, learning tasks are divided into two categories: 
unsupervised learning and supervised learning. The unsu-
pervised learning does not know the label of each training 
sample (i.e., the class of each training sample) in advance. 
For supervised learning, the training samples include inputs 
and outputs (i.e., features and class labels), which results in 
a better result than unsupervised learning in most cases [12]. 
The supervised algorithm commonly used includes decision 
tree (DT) [13], naïve Bayes (NB) [14], k-nearest neighbor 
(kNN) [15–17], neural networks (NNs) [18, 19], and support 
vector machine (SVM) [20–22]. Among them, SVM was 
first formally proposed by Cortes and Vapnik in 1995. Based 
on the statistical learning theory, SVM minimizes the struc-
tural risk to design the learning model. In addition, SVM has 
been used to solve the various artificial intelligence enabled 
applications due to excellent learning ability and generali-
zation ability [23], such as face recognition [24], text clas-
sification [25], handwriting character recognition [26], and 
bioinformatics [27]. Although SVM has many advantages, 
it also has some limitations. For instance, it is sensitive to 
the initial values of parameters. These parameters include 
the penalty factor and the kernel parameters. The setting of 
these parameters can affect the generalization performance 
of SVM. The details of the SVM classifier will be shown in 
Sect. 3 of this paper. It is worth noting that the performance 
of SVM, like many other wrapper methods, also depends on 
the selected feature subset. The better feature subset can be 
obtained by an excellent search mechanism, which is crucial 
to improve the computational efficiency and classification 
accuracy [28, 29].

The curse of dimensionality (CoD) is the main obstacle to 
big data classification [30]. If a dataset contains N features, the 
number of available solutions increases exponentially with the 
number of features, resulting in  2N solutions being generated 
and evaluated. This requires high computational cost, making 
researchers spend too much time to get a result [31]. Tradi-
tional dimension reduction methods cannot solve this problem 
well because of some limitations in hardware. Based on pub-
lished high-quality papers, a new trend to solve this problem 
is developed. Researchers introduce metaheuristic algorithms 
(MAs) to solve the FS problem in classification tasks. MAs 
do not provide an exact solution but only an estimated result 
in a feasible time. According to the number of solutions, MAs 
can be divided into single-point search and population-based 
methods [32]. The single-point search method describes the 
search trajectory of a solution in the search space, such as 
Tabu search and simulated annealing [33]. Meanwhile, the 
population-based method describes the evolution process of 

a set of points in the search space, such as swarm intelligence 
(SI) algorithm and evolutionary algorithm (EA) [34].

So far, many MAs have been proposed. Barnacle mating 
optimizer (BMO) is a newly proposed bio-inspired EA, origi-
nally designed by Sulaiman in 2020 [35]. BMO has the fea-
tures of fewer parameters and can search promising regions 
of the search space. However, in the field of machine learn-
ing, the no free lunch (NFL) theorem logically proves: there 
is no algorithm for solving all optimization problems [36]. 
In other words, it is pointless to discuss which algorithm is 
better without the specific problem. This is the motivation of 
this research, as well as the NFL theorem, whereby we use 
Gaussian mutation, logistic model, and refraction-learning to 
improve the performance of BMO for the first time. Gener-
ally, an improved algorithm can help evaluate the potential 
features from the pool of features of a given machine learning 
problem. It can improve the performance and computation 
speed of the given machine learning models. Or, it is used 
to resolve the parameters tuning problem with most machine 
learning models. To realize a simultaneous optimization pro-
cess, the proposed IBMO finally helps the SVM classifier find 
the optimal feature subset and parameters at the same time. In 
terms of experiments, a set of 23 classical benchmark func-
tions are used to verify the impact of control parameters and 
introduced strategies. In addition, IBMO-SVM is also applied 
to 20 real-world datasets, including 4 high-dimensional data-
sets, and compared with other 6 state-of-the-art methods. They 
are particle swarm optimization (PSO) [37], grasshopper opti-
mization algorithm (GOA) [38], slap swarm algorithm (SSA) 
[39], Harris hawks optimization (HHO) [40], teaching–learn-
ing-based optimization (TLBO) [41], and hypergraph-based 
genetic algorithm (HG-GA) [42]. The effectiveness and supe-
riority of IBMO-SVM are evaluated by classification accuracy, 
selection size, fitness value, running time, Wilcoxon rank-sum 
test, and Friedman’s test. Finally, the experimental results are 
more comprehensive and convincing through comparison with 
other 4 classifiers. They are logistic regression (LR), decision 
tree (DT), feedforward neural network (FNN), and k-nearest 
neighbor (kNN).

The rest of this paper is organized as follows: Sect. 2 pre-
sents the previous related works. Section 3 introduces some 
preliminary knowledge, including a brief overview of BMO 
and SVM. Section 4 highlights the details of the proposed 
method. Experiments are implemented, and results are ana-
lyzed in Sect. 5. Finally, in Sect. 6, conclusions and future 
works are given.

2  Related works

The learning algorithms combining with the machine learn-
ing techniques are currently used for classification tasks. 
Wan et al. proposed a novel manifold learning algorithm 
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based on local structure, namely two-dimensional maxi-
mum embedding difference (2DMED). This method directly 
extracted the optimal projective vectors from 2D image 
matrices. In addition, it successfully avoided computing 
inverse matrices by virtue of difference trace. Experimental 
results showed that 2DMED got better recognition rates on 
face database and handwriting digital database [43]. Fuzzy 
2D discriminant locality preserving projections (F2DDLPP) 
is a novel combination of 2D discriminant locality pre-
serving projections (2DDLPP) and fuzzy set theory. This 
method enhanced the discriminant power in mapping into a 
low-dimensional space. Through comparison and analysis, 
F2DDLPP can select the most useful features for classifica-
tion [44]. In 2017, the maximum margin criterion and fuzzy 
set theory were used to extend the development of locally 
graph embedding algorithms. It was an effective face recog-
nition technique [45]. For other supervised learning prob-
lems, there are also many learning algorithms.

SVM has some parameters to control different aspects 
of algorithm performance. Generally, there are three basic 
methods for tuning these parameters. Some researchers 
try different values to tune these parameters by orthogonal 
experiments. The manual selection method needs to know 
the influence of parameters on model capacity in advance. 
When there are three or fewer parameters, another common 
method is grid search. This method is very slow due to a 
large number of parameter combinations. The third method 
is to use MAs. The parameter search problem can be trans-
formed into an optimization problem. In this case, decision 
variables are parameters, and the cost of optimization is the 
fitness value of the fitness function. To build an efficient 
classification model, FS can help improve the accuracy of 
the model. Some distinguished lines of researches perform 
FS and simultaneously consider parameters of SVM. Such 
examples are presented as follows.

In [37], Huang et al. combined discrete PSO with con-
tinuous PSO to simultaneously perform the feature subset 
selection and SVM parameter setting. Additionally, PSO-
SVM was implemented with a distributed parallel archi-
tecture to reduce the computational time. A hybrid method 
based on the GOA was presented by Aljarah et al. [38] to 
achieve the same goal in 2018. The experimental results 
revealed that GOA was superior to grid search, PSO, 
genetic algorithm (GA), multi-verse optimizer (MVO), 
gray wolf optimizer (GWO), firefly algorithm (FF), bat 
algorithm (BA), and cuckoo search (CS) on improving the 
SVM classifier accuracy. In 2020, Al-Zoubi et al. applied 
the SSA-SVM method to 3 widespread medical cases. 
Compared with other methods, this model had better per-
formance in accuracy, recall, and precision, and was an 
effective method to solve popular diagnosis problems [39]. 
Recently, Houssein et al. have hybridized HHO with SVM 
and kNN for chemical descriptor selection and compound 

activities. Compared with competitor methods, HHO-SVM 
had higher performance. In addition, when the number 
of iterations increases, HHO-SVM obtained better results 
than HHO-kNN [40]. Examples of such native MAs which 
are applied for this optimization field are also GA [46], 
ant colony algorithm optimization (ACO) [47], teach-
ing–learning-based optimization (TLBO) [41], brain storm 
optimization (BSO) [48], etc. A hypergraph framework 
was added to GA (called HG-GA) by Gauthama Raman 
et al. [42]. By using the hyperclique property of hyper-
graph to generate the initial population, the search for the 
optimal solution was accelerated, and trapping at the local 
optimum was prevented. To deal with an intrusion detec-
tion system (IDS), the HG-GA-SVM model was used and 
compared with GA-SVM, PSO-SVM, BGSA-SVM, ran-
dom forest, and Bayes net. In terms of classifier accuracy 
(approximately increase 2%), detection rate, false alarm 
rate, and runtime, HG-GA-SVM achieved overwhelming 
performance. Baliarsingh et al. [49] proposed a method 
known as memetic algorithm-based SVM (M-SVM), 
which was inspired by embedding social engineering opti-
mizer (SEO) in emperor penguin optimizer (EPO). SEO 
was considered a local search strategy, and EPO was used 
as a global optimization framework. The experiment was 
analyzed from two aspects, including binary-class data-
sets and multi-class datasets. It is observed from statisti-
cal results that the proposed method over other competent 
methods for gene selection and classification of microarray 
data. Based on the literature review, it can be found that 
researchers have never stopped exploring. According to the 
NFL theorem, it motivated us to propose a novel method 
to better tackle this problem.

3  Preliminary knowledge

3.1  Barnacle mating optimizer

Barnacles are microorganisms that attach themselves to 
objects in the water. The long penis is their main feature. 
Their mating group includes all neighbors and competitors 
within reach of their penis. Barnacle mating optimizer is 
inspired by the mating process of barnacles. By simulating 
three processes (i.e., initialization, selection process, and 
reproduction), the practical optimization problem is solved. 
Details are described as follows [35]:

Firstly, it is assumed that the candidate solution is barna-
cles, where the matrix of the population can be expressed 
using Eq. (1). The evaluation of the population and sorting 
process are done to locate the best solution so far at the top 
of X . Then, the parents to be mated are selected by Eqs. (2) 
and (3).



1252 Pattern Analysis and Applications (2021) 24:1249–1274

1 3

where N is the number of barnacle population, n is the num-
ber of control variables, and barnacle_d and barnacle_m 
represent the parents to be mated.

Since there are no specific equations to derive the repro-
duction process of barnacles, BMO emphasizes the genotype 
frequencies of parents to produce the offspring based on the 
Hardy–Weinberg principle [50, 51]. It is worth highlighting 
that the length of their penises ( pl ) plays an important role 
in determining the exploitation and exploration processes. 
Assuming pl = 7 , it can be seen from Fig. 1 that barnacle #1 
can only mate with one of the barnacles #2-#7. If the selec-
tion of barnacles to be mated is within the range of pl of Dad 
barnacle, the exploitation process is occurred. Equation (4) is 
proposed to produce new variables of offspring from barnacle 
parents.

where p is the normally distributed random number between 
[0, 1], q = (1 − p) , xN

barnacle_d
 and xN

barnacle_m
 represent the 

(1)X =

⎡
⎢⎢⎣

x1
1
… xn

1

⋮ ⋱ ⋮

x1
N
… xn

N

⎤
⎥⎥⎦

(2)barnacle_d = randperm(N)

(3)barnacle_m = randperm(N)

(4)x
N_new

i
= pxN

barnacle_d
+ qxN

barnacle_m

variables of Dad and Mum barnacles that have been selected 
in Eqs. (2) and (3). p and q represent the genotype frequen-
cies of Dad and Mum barnacles in the new offspring.

If barnacle #1 selects barnacle #8, it is over the limit. 
Thus, the normal mating process does not occur. At this 
time, the offspring is produced by the sperm cast process. In 
BMO, the sperm cast is regarded as the exploration process, 
which is expressed as follows.

where rand() is the random number between [0, 1].
It can be seen from Eq. (5) that the new offspring is pro-

duced by Mum barnacle since it obtains the sperms that are 
released into the water by other barnacles elsewhere. During 
the iteration, the position of the barnacle is updated accord-
ing to Eq. (4) or Eq. (5). Finally, the BMO can be defined to 
approximate the global optimum for optimization problems.

3.2  Support vector machine

For linear separable problems, the core idea of SVM is 
to find an optimal hyperplane that maximizes the margin 
between two classes. In this case, the generalization ability 
of the model is the strongest, and the classification result is 
the most robust. Some concepts in SVM are shown in Fig. 2.

I f  t h e  g i v e n  d a t a  s e t  i s 
D = (xi, yi), i = 1, ...,N, x ∈ Rd, y ∈ {±1} , the hyperplane is:

(5)x
n_new

i
= rand() × xn

barnacle_m

Fig. 1  Selection of mating process of BMO [35] (image of barnacles adopted from [52])
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Further, the maximizing margin is equivalent to minimiz-
ing ∥ � ∥2 . Introducing the slack variable � , 𝜉 > 0 represents 
that there are a small number of outliers. The penalty factor c 
is one of the critical parameters that represent the tolerance to 
outliers. The standard SVM model is as follows:

where � is the inertia weight, and b is a constant.
For the nonlinear case, SVM maps the data in the input 

space to the high-dimensional feature space. This idea is 
vividly shown in Fig. 3. The inner product of feature vectors 
needs to be calculated in nonlinear transformation. To avoid 
this obstacle, the kernel function k(⋅, ⋅) is introduced to express 
the result of the inner product. In this case, the SVM model can 
be transformed into the following dual problem:

where � represents the Lagrange multiplier.
In this paper, a widely applicable radial basis function 

(RBF) kernel is adopted, whose expression is:

where � represents the width of the RBF kernel.

(6)h(x) = �Tx + b

(7)

⎧⎪⎨⎪⎩

min
�, �i

1

2
‖�‖2 + c

N�
i=1

�i

s.t. yi(�
Tx + b) ≥ 1 − �i, i = 1, 2,… ,N

(8)

⎧⎪⎪⎨⎪⎪⎩

min
�

1

2

N�
i=1

N�
j=1

�i�jyiyjk(xi, xj) −

N�
i=1

�i

s.t.

N�
i=1

aiyi = 0, 0 ≤ �i ≤ c, i = 1, 2,… ,N

(9)k(xi, xj) = e(−�‖xi−xj‖2
)

The penalty factor c and kernel parameter � directly affect 
the generalization ability and complexity of SVM.

4  Application of proposed IBMO for FS 
and SVM optimization

In this section, the proposed model followed to use IBMO 
for FS and SVM optimization is described in detail. Firstly, 
two equation issues are addressed, including the representa-
tion of the solution and the definition of the fitness function. 
Secondly, the improvement ideas of IBMO are elaborated. 
In addition, the pseudocode and flowchart of IBMO are also 
presented. Finally, the flowchart of the proposed application 
model is given.

4.1  Two equation issues

4.1.1  Representation of the solution

In FS tasks, the solution is represented in binary form. Each 
variable is limited between [0, 1]. If the value is within (0.5, 
1], it is mapped to bit "1." Bit "1" means the correspond-
ing feature is reserved. If the value is within [0, 0.5], it is 
mapped to bit "0." Bit "0" means the corresponding fea-
ture is rejected. As shown in Fig. 4, the solution contains 
8 variables (i.e., 8 features). The 1st, 5th, and 6th features 
are selected.

In this paper, the first two variables of the solution are 
defined as the penalty factor c and kernel parameter � . Other 
variables correspond to the selected features. In other words, 
each solution has n variables in Eq. (1). After redefinition, 
each new solution, as shown in Eq. (10), has n + 2 variables.

Fig. 2  Linear classification based on SVM

Fig. 3  Nonlinear classification based on SVM

Fig. 4  A sample solution with 8 variables
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4.1.2  Definition of the fitness function

In this paper, a fitness function is required to evaluate the 
solution. FS is a multi-objective optimization problem, 
which needs to achieve fewer selected features and higher 
classification accuracy. To balance the relationship between 
the two, the fitness function in Eq. (11) is defined as follows:

where �R(D) is the error rate of the SVM classifier, |R| is 
the number of selected features, |N| is the total number of 
original features, � and � are two parameters corresponding 
to the impact of classification performance and feature size, 
� ∈ [0, 1] and �=(1 − �).

4.2  Description of IBMO

4.2.1  Strategy 1: Gaussian mutation

A well-designed optimizer should make full use of and gen-
eralize random operators in the early phase. In this way, the 
diversity of the population can be enhanced, and solutions 
can deeply explore each region of the feature space. At the 
same time, the tail of the Gaussian distribution is narrow, 
so the mutation has a higher probability to generate a new 
solution in the vicinity of the original position. Hence, the 
search process utilizes smaller steps to search each posi-
tion in the solution space. The Gaussian density function is 
defined as follows [53]:

where � represents expected value, �2 represents the vari-
ance. Assuming �=0, �2 = 1 , this equation is reduced to the 
generated random variable. The mutant position of barnacles 
can be expressed by Eq. (13).

where G(�) corresponds to the Gaussian step vector created 
by Eq. (12), � is the Gaussian random value between [0,1].

4.2.2  Strategy 2: conversion parameter based on logistic 
model

The well-organized optimizer should achieve a high level of 
exploration at the beginning of the search and more exploi-
tation in the last phase. In BMO, the value of pl plays an 

(10)xn+2
i

= [c�F1F2 …Fn]

(11)Fitness function = min(��R(D) + �
|R|
|N| )

(12)f (x) =
1√
2��2

e
−

(x−�)2

2�2

(13)x∗
i
= xi + G(�) ⋅ xi

important role in determining the exploitation and explo-
ration processes. The original paper concluded through 
experiments that when the value of pl is small, too many 
exploration processes occurred. Instead, too much exploita-
tion occurred. It is suggested that the selection of pl can be 
set between 50% and 70% of the total population size. In the 
original paper, the value of pl is set to a constant.

We bring out a mathematical model to change the value 
of pl so that it can be adjusted dynamically with the lapse 
of iteration. Thus, the logistic model is finally adopted, and 
its mathematical expression is [54]:

where plmax and plmin represent and the maximum and mini-
mum values of pl , respectively, t represents the number of 
iteration, and � represents the initial decay rate. Using the 
method of variable separation to solve Eq. (14), Eq. (15) is 
obtained.

It can be seen from Eq. (15) that the conversion param-
eter pl(t) = plmin when t = 0; while t → ∞ , pl(t) = plmax . 
The influence of the conversion parameter on the optimiza-
tion process is analyzed as follows. As mentioned above, 
a high level of exploration is required in the early phase, 
and a small value of pl can help the exploration process 
occur. Therefore, when t = 0, pl(t) = plmin . As the search 
progresses, the exploitation phase is normally performed 
after the exploration phase. When the number of iterations 
increases, the value of pl also increases according to Eq. 
(15). A larger value of pl is beneficial to the exploitation 
process. By dynamic conversion parameter, a reasonable 
and fine balance between the exploration and exploitation 
is achieved.

4.2.3  Strategy 3: refraction‑learning

In Fig. 5, some concepts about refraction are noted [55]. 
x ∈ [a, b] . o is the center point of [a, b] . The refraction index 
� is calculated by Eq. (16).

Let the rate k = h

h
�  , Eq. (16) can be transformed into the 

following form:

(14)

⎧
⎪⎨⎪⎩

dpl(t)

dt
= � ⋅ (1 −

pl(t)

plmax

) ⋅ pl(t)

pl(0) = plmin

(15)pl(t) =
plmax

1 + (
plmax

plmin

− 1) ⋅ e−�t

(16)�=
sin �1

sin �2
=

((a + b)∕2 − x)∕h

(x
�
− (a + b)∕2)∕h

�
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where a represents the upper bound and b represents the 
lower bound.

x
′ is called the opposite solution of x based on refraction-

learning. Generally, Eq. (17) can be extended to n-dimen-
sional space.

(17)x
�

=(a + b)∕2 + (a + b)∕(2k�) − x∕k�

(18)x
�

j
=(aj + bj)∕2 + (aj + bj)∕(2k�) − xj∕k�

where aj represents the jth dimension of upper bound, bj 
represents the jth dimension of the lower bound. xj and x′

j
 are 

the jth dimension of x and x′ , respectively.
More exploitation are often required in the last phase. But 

there is the possibility of trapping in the local optimum. In 
the last phase of BMO, the refraction-learning strategy is 
introduced to overcome this drawback. The global optimal 
solution is carried out refraction-learning strategy to gener-
ate the opposite solution by Eq. (18). Then, they will be 
evaluated and updated.

4.2.4  Additional details on IBMO

The native BMO has some drawbacks such as low search 
accuracy and easy to trapped in the local optimum. In this 
paper, three strategies are introduced to improve the perfor-
mance of the algorithm. Firstly, Gaussian mutation is applied 
to initial barnacles to enhance the diversity of the popula-
tion. Secondly, the logistic model is adopted to realize the 
dynamic conversion of the important parameter pl , so as to 
achieve a fine balance between exploration and exploitation. 
Finally, the global optimal solution is carried out the refrac-
tion-learning strategy to generate the opposite solution. By 
evaluating and updating them, the algorithm has a higher 
probability of escaping the local optimum. These strategies 
are considered from different levels of the algorithm. A more 
detailed analysis has also been mentioned above. The pseu-
docode of IBMO is described in Algorithm 1. The intuitive 
and detailed process of IBMO is shown in  Fig. 6.

Fig. 5  Refraction-learning process in one-dimensional space [55]
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4.2.5  Computational complexity analysis of IBMO

The computational complexity of IBMO is mainly related 
to dimension (D), population size (N), maximum iteration 
times (T), and cost of fitness function (F). To sum up, the 
computational complexity analysis focuses on four compo-
nents: initialization, fitness evaluation, sorting, and barnacle 
updating. Note that the computational complexity of initiali-
zation is O(N) , fitness evaluation is O(T × N × F) , sorting 
is O(T × NlogN) , and barnacle updating is O(T × N × D) . 
Hence, the overall computational complexity of IBMO can 
be expressed as follows:

4.3  IBMO for FS and SVM optimization

The proposed method commences by dividing the preproc-
essed dataset into training and testing sets. After that, the 
most optimal model is achieved by using tenfold cross-val-
idation. IBMO starts executing the random vector gener-
ated by Eq. (10). Then, SVM begins its training process by 
running the training set with selected features. During this 
phase, the inner cross-validation is carried out to produce 

(19)

O(IBMO) =

(
O(initialization) + O(fitness evaluation)

+O(sorting) + O(barnacle updating)

)

(20)O(IBMO) =

(
O(N) + O(T × N × F)+

O(T × NlogN) + O(T × N × D)

)
= O(N × (1 + T × (F + logN + D)))

a more robust model and avoid over fitting. IBMO will 
receive the fitness function value at the end of the training 
process. All the previous steps are repeated until the termi-
nation criterion (i.e., the maximum number of iterations) 
is met. Finally, the proposed method reports the optimal 
individual. The final selected individuals are applied to the 
testing phase. Figure 7 shows the framework of the proposed 
method.

5  Experimental design and results

5.1  Preparatory works

To validate the efficiency of the proposed method, 20 
standard datasets from UCI are utilized [56]. Table 1 
reports the details of the selected datasets, such as the 

number of features, instances, and classes. As can be seen, 
some datasets are considered high-dimensional datasets 
because they have thousands of features. It will make our 
work more challenging and generate more comprehensive 
results. Before using the datasets, it is essential to preproc-
ess them. This process is divided into two steps. Firstly, all 
the features are converted into numeric form. For exam-
ple, in the Hepatitis dataset, males and females can be 
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Calculate the fitness of
each initial barnacle

Sort to locate the best
solution at the top of X

Set the value of pl using
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using Eqs. (2) and (3)
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goes beyond the
search space and
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Eq. (5)
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generation using
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Perform the
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for the global optimal
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(18)
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Sort and update the
best solutiont=t+1 Return the best
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End
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Yes
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Fig. 6  Flowchart of the IBMO algorithm
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converted into 0 and 1, respectively. Then, the min–max 
normalization is used to scale the features to [0, 1]. In this 
way, the effect of numeric magnitude on feature weights 
can be alleviated. Equation (21) is provided.

where Fnorm represents the normalized feature, and Fmin and 
Fmax are the minimum and maximum values of the targeted 
feature F , respectively.

LIBSVM is used for the SVM classifier [57]. Tenfold 
cross-validation is used to obtain unbiased classification 
results. This method divides each dataset into ten equal 
parts. Nine folds are used for training and the rest of one 
fold for testing. Then, this process is repeated ten times 

(21)Fnorm =
F − Fmin

Fmax − Fmin

to ensure that each part is used as the testing set. Figure 8 
shows the diagram of tenfold cross-validation for a single 
run.

The proposed method is compared with 6 state-of-the-
art methods, including PSO [37], GOA [38], SSA [39], 
HHO [40], TLBO [41], and HG-GA [42], based on some 
evaluation metrics. The maximum of iterations for all 
algorithms is 100, and the population size is 30. We follow 
the same parameters in the original papers. The parameter 
settings of algorithms are shown in Table 2. Moreover, 
the parameter � in the fitness function is set to 0.99, the 
parameter � is set to 0.01 according to domain-specific 
knowledge [58, 59]. In the same experimental conditions, 
the fairness of comparison is guaranteed. Table 3 shows 
these details. To prevent the random nature of the test 
results, each experiment is run 10 times independently.

5.2  Evaluation metric

• Classification accuracy this metric evaluates the accu-
rate of the classifier in predicting the right class using 
selected feature subsets.

• Selection size this metric evaluates the size of the opti-
mal feature subset obtained by the search algorithm.

• Fitness value this metric combines the above two fac-
tors as the fitness function in FS optimization prob-
lems.

• Running time this metric reflects the execution speed of 
the method.

• P-value this metric is used to detect significant differ-
ences between two methods based on two nonparametric 
statistical tests (i.e., Wilcoxon rank-sum test and Fried-
man’s test).

5.3  Simulation results and discussions

5.3.1  Impact of control parameters

As discussed in Sect.  4.2, the conversion parameter 
strategy based on the logistic model allows IBMO to 
smoothly transit between exploration and exploitation. The 
refraction-learning strategy is more effective to enhance 
exploitation during the evolution. However, some control 
parameters are crucial to improve the performance of the 
algorithm. The purpose of this subsection is to analyze the 
sensitivity of these control parameters and to provide the 
theoretical basis for the following experiments.

In Eq. (15), the parameter � controls the changing trend 
of the pl value. For intuitive comparison, Fig. 9 shows the 
fixed pl value in BMO and different pl values in IBMO 
with �=0.1, 0.05, 0.03 . In BMO, the original paper sug-
gests that the pl value is set to 70% of the population size. 
In IBMO, the plmin and plmax values are set to 50% and 
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80% of the population size, respectively. To investigate 
the sensitivity of the parameter � , 23 classical benchmark 
functions from Tables 4, 5, 6 are implemented to evaluate 
the performance of IBMO with different � . Table 7 sum-
marizes the average fitness values of IBMO using different 
� for 23 functions. Table 7 shows that there is no regular 
increase or decrease in the average as the � changes. IBMO 

with �=0.05 can get better results except for function F8. 
This is because the conversion parameter strategy based on 
the logistic model with �=0.05 makes IBMO more effec-
tive in the transition between global and local terms.

In Eq. (18), the refraction index � and the rate k affect 
the position of the opposite solution in the search space. 
The refraction index � is studied using 4 different values 

Table 1  Description of datasets # Dataset No. of features No. of instances No. of classes Category

1 Iris 4 150 3 Low dimensionality
2 Tic-tac-toe 9 958 2 Low dimensionality
3 Breast Cancer 9 699 2 Low dimensionality
4 ILPD 10 583 2 Low dimensionality
5 Wine 13 178 3 Low dimensionality
6 Congressional VR 16 435 2 Low dimensionality
7 Zoo 16 101 7 Low dimensionality
8 Lymphography 18 148 4 Low dimensionality
9 Hepatitis 19 155 2 Low dimensionality
10 Parkinsons 22 195 2 Low dimensionality
11 Flags 30 194 8 Low dimensionality
12 Dermatology 34 366 6 Low dimensionality
13 Ionosphere 34 351 2 Low dimensionality
14 Soybean small 35 47 4 Low dimensionality
15 Lung cancer 56 32 3 Low dimensionality
16 Sonar 60 208 2 Low dimensionality
17 Gastrointestinal lesions 698 76 3 High dimensionality
18 DBWorld e-mails 4702 64 2 High dimensionality
19 Arcene 10,000 900 2 High dimensionality
20 Amazon reviews 10,000 1500 50 High dimensionality

Fig. 8  Diagram of tenfold cross-validation
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( �=1, 10, 100, 1000 ). The rate k is also set to the same 
values ( k=1, 10, 100, 1000 ). Different types of functions 
are tested to find the optimal combination of parameters � 
and k . Table 8 gives the results of average fitness values. 
As can be inferred from Table 8, IBMO with �=1 and k=1 
obtains relatively weak results. Some similar results are 
obtained by other cases. Figure 10 is used to explain the 
impact of parameter combinations on the refraction-learn-
ing strategy. The current solution, the opposite solution, 
and the optimal solution are shown in Fig. 10. When �=1 
and k=1 , Eq. (18) can be simplified to x�

j
=aj + bj − xj , and 

the opposite solution corresponding to the current solution 
x is x′

1
 . By tuning parameters � and k , the opposite solution 

Table 2  Parameter settings of 
algorithms

Reference Algorithm Parameters Value

[37] PSO Inertia weight wmax 0.95
Inertia weight wmin 0.05
Learning factors c1 and c2 2
Velocity vmax  + 200
Velocity vmin −200

[38] GOA Parameter cmin 0.00001
Parameter cmax 1

[39] SSA Control parameter c1 [2,e−16]
Random parameters c2, c3 (0,1)

[40] HHO Initial energy E0 (−1,1)
Jump strength J (0,2)
Escape probability r 0.5
Random parameters r1, r2, r3, r4 [0,1]

[41] TLBO Teaching factor TF 1
Random number r [0,1]

[42] HG-GA Crossover rate 0.8
Mutation rate 0.02
Weight for detection rate DW 0.80
Weight for false alarm rate FAW 0.05
Weight for feature subset size FW 0.15

BMO Penis length pl 70% population size

Table 3  Details of experimental conditions

Name Settings

Hardware
CPU Intel(R) Core(TM) 

i5-4210U processor
Frequency 1.70 GHz
RAM 4 GB
Hard drive 500 GB
Software
Operating system Windows 10 (64 bits)
Language MATLAB R2016b

20 40 60 80 100

Iteration

15

18

21

24

pl
va

lu
e

Conversion parameter

BMO
IBMO( =0.1)
IBMO( =0.05)
IBMO( =0.03)

Fig. 9  Comparison of the control parameter �

Table 4  Unimodal benchmark functions

F Description Dim Range fmin

F1
f (x) =

n∑
i=1

x2
i

30 [−100,100] 0

F2 f (x) =
∑n

i=1
��xi�� +

∏n

i=1
��xi�� 30 [−10,10] 0

F3
f (x) =

∑n

i=1

�∑i

j−1
xj

�2 30 [−100,100] 0

F4 f (x) = max{||xi||, 1 < i < n} 30 [−100,100] 0
F5 f (x) =

∑n−1

i=1

�
100(xi+1 − x2

i
)2 + (xi − 1)2

�30 [−30,30] 0

F6 f (x) =
∑n

i=1

��
xi + 0.5

��2 30 [−100,100] 0

F7 f (x) =
∑n

i=1
ix4

i
+ random[0, 1) 30 [−1.28,1.28] 0
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x
′

2
 can be closer to the optimal solution. The proper com-

bination of parameters increases the probability of escap-
ing the local optimum. In addition, the larger � and k val-
ues result in unchanged in the performance of the 

algorithm. We finally use the values of 100 and 1000 for � 
and k , respectively.

Table 5  Multimodal benchmark functions

F Description Dim Range fmin

F8 f (x) =
∑n

i=1
−xi sin

�√
xi

�
30 [−500,500] −418.9829 × Dim

F9 f (x) =
∑n

i=1

�
x2
i
− 10 cos

�
2�xi

�
+ 10

�
30 [−5.12,5.12] 0

F10
f (x) = −20 exp

�
−0.2

�
1

n

∑n

i=1
x2
i

�
− exp

�
1

n

∑n

i=1
cos

�
2�xi

��
+ 20 + e

30 [−32,32] 0

F11 f (x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�
xi√
i

�
+ 1

30 [−600,600] 0

F12 f (x) =
𝜋

n
{10 sin

�
𝜋y1

�
+
�n−1

i=1

�
yi − 1

�2
1 + 10 sin

2
�
𝜋yi+1

�
+
�
yn − 1

�2
}

+
�n

i=1
u
�
xi, 10, 100, 4

�

yi = 1 +
xi + 1

4
u
�
xi, a, k,m

�
=

⎧⎪⎨⎪⎩

k
�
xi − a

�m
0

k
�
−xi − a

�m
xi > a

−a < xi < a

xi < a

30 [−50,50] 0

F13
f (x) = 0.1{ sin2

(
3�x1

)
+
∑n

i=1

(
xi − 1

)2[
1 + sin

2
(
3�xi + 1

)]
+
(
xn − 1

)2

×
[
1 + sin

2
(
2�xn

)]
} +

∑n

i=1
u
(
xi, 5, 100, 4

)
30 [−50,50] 0

Table 6  Fixed-dimension multimodal benchmark functions

F Description Dim Range fmin

F14
f (x) =

�
1

500
+
∑25

j=1

1

j+
∑2

i=1 (xi−aij)
6

�−1 2 [-65,65] 1

F15
f (x) =

∑11

i=1

�
ai −

x1(b2i +bix2)
b2
i
+bix3+x4

�2 4 [−5,5] 0.0003

F16 f (x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [−5,5] −1.0316

F17
f (x) =

(
x2 −

5.1

4p2
x2
1
+

5

p
x1 − 6

)2

+ 10

(
1 −

1

8p

)
cos x1 + 10

2 [−5,5] 0.398

F18 f (x) =
[
1 +

(
x1 + x2 + 1

)2(
19 − 14x1 + 3x2

1
− 14x2 + 6x1x2 + 3x2

2

)]
×

[
30 +

(
2x1 − 3x2

)2
×
(
18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2

)]
2 [−2,2] 3

F19
f (x) = −

4∑
i=1

ci

�
−
∑3

j=1
aij
�
xj − pij

�2� 3 [1, 3]  − 3.86

F20
f (x) = −

4∑
i=1

ci exp

�
−

6∑
j=1

aij
�
xj − pij

�2
�

6 [0,1]  − 3.32

F21
f (x) = −

∑5

i=1

��
X − ai

��
X − ai

�T
+ ci

�−1 4 [0,10]  − 10.1532

F22
f (x) = −

∑7

i=1

��
X − ai

��
X − ai

�T
+ ci

�−1 4 [0,10]  − 10.4028

F23
f (x) = −

∑10

i=1

��
X − ai

��
X − ai

�T
+ ci

�−1 4 [0,10] –10.5363
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5.3.2  Impact of three strategies

The purpose of this subsection is to study the impact of each 
improvement strategy. Five different types of algorithms are 
shown in Table 9. If the corresponding strategy is used in 
BMO, it is represented by "1." Otherwise it is represented 
by "0." 23 classical benchmark functions are implemented 
to evaluate performance. We report the average (avg) and 
standard deviation (std) of fitness values in Table 10. The 
best results are displayed in bold. By referring to Table 10, 
it can be found that IBMO’s avg and std are the smallest in 
most cases. BMO-1, BMO-2, and BMO-3 are also smaller 
than the native BMO. These promising results show that 
each strategy can improve the performance of the native 
algorithm, and the combination effect is better. Convergence 
accuracy and stability are the main gains. To visualize the 
data, Fig. 11 shows the trend of fitness values of F1, F10, 
and F14. In Sect. 4.2, the gain effect of each strategy has 
been analyzed and elaborated. Now, it is further confirmed 
by the convergence curve. To sum up, IBMO can achieve 
excellent performance on almost all benchmark functions, 
which can be concluded that the results are not accidental, 
and the improvement is significant.

5.3.3  Results on low‑dimensional datasets

Sixteen low-dimensional datasets are used in this subsection 
to compare the performance of the proposed IBMO-SVM 
with novel compared algorithms. The quantitative and quali-
tative analyses are as follows. Table 11 shows the average 
and standard deviation of classification accuracy. Inspecting 
the results in this table, it can be observed that IBMO-SVM 
performs better than others. In terms of average, IBMO 
obtains the highest results on 68.75% of the datasets, while 
SSA, HHO, and HG-GA can outperform IBMO on 12.5%, 
12.5%, and 6.25% of the datasets, respectively. In terms of 
standard deviation, IBMO-SVM obtains the smallest results 
on 62.5% of the datasets. Both optimizers obtain the same 
std value on one dataset (i.e., ILPD). Figure 12 exhibits 
the results of box charts of eight algorithms on Iris, Wine, 
Parkinsons, and Sonar. In these figures, it can be seen that 
IBMO can achieve higher and more centralized data, and no 
many outliers. The metric of classification accuracy proves 
the stability of IBMO and the capability to search the prom-
ising regions in the search space.

The number of selected features is another important met-
ric for wrapper FS methods. Table 12 shows a comparison 
for the average number of selected features on all datasets. 
Further analyzing reported results, IBMO can select the 
most significant features on 11 out of 16 datasets. But for 
the Breast Cancer dataset, our method also ranks the second. 
Based on the results obtained, it can be observed that IBMO 
significantly outperforms others in minimizing the number 
of selected features.

The fitness function involves two metrics: classification 
accuracy and feature selection ratio. Table 13 presents the 
best, worst, avg, and std of fitness values of eight algorithms. 
IBMO contributes to the best fitness values on 56.25% of 
the datasets, the lowest avg values on 68.75% of the data-
sets, and the lowest std values on 75% of the datasets. Thus, 
IBMO perceives the most consistent results. Figure 13 com-
pares the convergence behavior of different algorithms. As 
can be seen from Fig. 13, IBMO provides the lowest position 
curves compared with other state-of-the-art algorithms, and 
occasionally escapes from the local optimum to continue 
searching effective spaces. Overall, IBMO-SVM shows the 
best convergence behavior on real-world datasets. This also 
indicates the substantial impact of the proposed improve-
ments on the native BMO.

Running time metric indicates the execution speed of an 
algorithm. The average running time (in second) is given 
in Table 14. Taking Zoo dataset as an example, the running 
time is sorted as follows: TLBO > SSA > GOA > BMO > IB
MO > PSO > HG-GA > HHO. Table 14 shows that for almost 
all datasets, the running time by the proposed method is 
ranked in the middle of the eight algorithms. In addition, the 
running time of IBMO is slightly higher than that of BMO. 

Table 7  Average fitness values of IBMO using different λ 

F 0.1 0.05 0.03

F1 0.00E + 00 0.00E + 00 0.00E + 00
F2 0.00E + 00 0.00E + 00 0.00E + 00
F3 0.00E + 00 0.00E + 00 0.00E + 00
F4 0.00E + 00 0.00E + 00 0.00E + 00
F5 2.82E + 01 2.60E + 01 2.82E + 01
F6 2.14E−02 1.77E-03 2.09E-02
F7 4.87E−03 5.92E−04 6.26E−04
F8 −6.81E + 03 −6.97E + 03 −7.48E + 03
F9 0.00E + 00 0.00E + 00 0.00E + 00
F10 2.80E−18 1.67E−21 9.04E−19
F11 0.00E + 00 0.00E + 00 0.00E + 00
F12 9.54E−02 9.13E−02 9.79E−02
F13 2.98E−02 2.98E−02 7.00E−02
F14 1.27E + 00 1.00E + 00 1.27E + 00
F15 3.79E−04 3.44E−04 3.75E−04
F16 −1.03E + 00 −1.03E + 00 −1.03E + 00
F17 3.98E−01 3.98E−01 3.98E−01
F18 3.00E + 00 3.00E + 00 3.00E + 00
F19 −3.00E−01 −2.29E + 00 −1.16E + 00
F20 −3.28E + 00 −3.31E + 00 −3.30E + 00
F21 −6.06E + 00 −9.01E + 00 −5.96E + 00
F22 −9.03E + 00 −1.01E + 01 −8.09E + 00
F23 −8.13E + 00 −8.21E + 00 −8.00E + 00
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We have analyzed the time complexity in Sect. 4.2.5, and the 
combination of three strategies leads to these slight changes. 
To improve the overall performance of BMO, it cannot guar-
antee to obtain all optimal parameters on all cases. So the 
running time of IBMO is acceptable.

To detect significant differences between proposed 
IBMO-SVM versus compared algorithms, we apply a sta-
tistical test based on the Wilcoxon rank-sum test. The null 
hypothesis H0 represents the statement of no difference, 
whereas the alternative hypothesis H1 represents the pres-
ence of significant differences. A p-value represents the 
probability of observing given results at the 0.05 signifi-
cance level. The p-value less than 0.05 represents a strong 
evidence against H0 [60, 61]. Table 15 exhibits the results, 
where the p-value greater than 0.05 is bold. According to 
this table, the superiority of IBMO-SVM is statistically sig-
nificant on most the datasets because most of the p-values 
are less than 0.05. On the whole, it is observed from the 
above study that the overall performance of IBMO-SVM 
is better than other compared algorithms for all evaluation 
metrics on the low-dimensional datasets.

5.3.4  Results on high‑dimensional datasets

After analyzing the above results, four high-dimensional 
datasets are implemented to further evaluate the overall per-
formance of the proposed algorithm. It is a challenging task 
that can make the experiments more comprehensive and the 
results more convincing.

Table 8  Average fitness values of IBMO using different combinations of η and k 

F η = 1, k = 1 η = 1, k = 10 or 
η = 10, k = 1

η = 10, k = 10 η = 10, k = 100 or 
η = 100, k = 10

η = 100, k = 100 η = 100, k = 1000 or 
η = 1000, k = 100

η = 1000, k = 1000

F1 5.99E−40 7.93E−199 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F2 7.37E−26 1.28E−99 8.72E−199 1.11E−296 0.00E + 00 0.00E + 00 0.00E + 00
F3 1.72E−38 4.88E−199 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F4 2.15E−23 3.77E−100 2.03E−198 6.74E−298 0.00E + 00 0.00E + 00 0.00E + 00
F5 2.83E + 01 2.79E + 01 2.83E + 01 2.84E + 01 2.80E + 01 2.60E + 01 2.85E + 01
F6 1.56E + 00 2.00E + 00 1.45E + 00 1.78E + 00 1.76E + 00 1.77E−03 2.39E + 00
F7 6.82E−04 3.75E−03 6.93E−04 1.29E−03 1.26E−03 5.92E−04 1.14E−03
F8 −7.27E + 03 −6.95E + 03 −6.59E + 03 −6.90E + 03 −6.95E + 03 −6.97E + 03 −6.56E + 03
F9 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F10 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 1.67E−21 8.88E−16
F11 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F12 1.29E−01 1.03E−01 1.66E−01 1.10E−01 1.09E−01 9.13E−02 8.80E−02
F13 2.98E + 00 2.97E + 00 2.97E + 00 2.98E + 00 2.97E + 00 2.98E−02 2.97E + 00
F14 2.98E + 00 2.98E + 00 1.27E + 01 9.98E−01 1.08E + 01 1.00E + 00 9.98E−01
F15 7.75E−04 6.04E−04 5.23E−04 7.52E−04 4.03E−04 3.44E−04 8.00E−04
F16 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00
F17 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01
F18 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00
F19 −2.12E + 00 −2.20E + 00 −2.81E + 00 −1.67E + 00 −2.85E + 00 −2.29E + 00 −1.77E + 00
F20 −3.30E + 00 −3.32E + 00 −3.20E + 00 −3.20E + 00 −3.20E + 00 −3.31E + 00 −3.32E + 00
F21 −5.06E + 00 −5.06E + 00 −5.06E + 00 −5.06E + 00 −5.06E + 00 −9.01E + 00 −5.06E + 00
F22 −5.09E + 00 −5.09E + 00 −5.09E + 00 −5.09E + 00 −5.09E + 00 −1.01E + 01 −5.09E + 00
F23 −5.13E + 00 −5.13E + 00 −5.13E + 00 −5.13E + 00 −5.13E + 00 −8.21E + 00 −5.13E + 00

Fig. 10  Comparison of the control parameters � and k

Table 9  Various BMOs with three strategies

# Algorithm Gaussian 
mutation

Conversion 
parameter

Refrac-
tion-
learning

1 BMO 0 0 0
2 BMO–1 1 0 0
3 BMO–2 0 1 0
4 BMO–3 0 0 1
5 IBMO 1 1 1
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For high-dimensional datasets, the dimension of feature 
vectors is often larger than the capacity of available training 
samples. In the classification task, it often leads to the curse 
of dimensionality or empty space phenomenon [30]. Only a 

few of the thousands of features are important. Many clas-
sification methods with good performance become poor or 
even fail on testing high-dimensional datasets. This is the 
motivation and design purpose of this subsection. Further, 

Table 10  Results of fitness 
values of various BMOs

F BMO BMO-1 BMO-2 BMO-3 IBMO

F1 Avg 1.12E-36 1.16E−37 1.00E−56 2.07E−49 0.00E + 00
Std 3.37E−36 2.24E−37 2.69E−56 7.84E−49 0.00E + 00

F2 Avg 9.33E−21 7.75E−22 3.17E−46 3.50E−30 0.00E + 00
Std 2.77E−20 1.55E−21 1.16E−46 7.21E−30 0.00E + 00

F3 Avg 1.00E−28 1.00E−34 1.90E−57 2.48E−53 0.00E + 00
Std 3.01E−28 2.75E−34 4.89E−57 9.68E−53 0.00E + 00

F4 Avg 8.18E−19 2.75E−19 1.04E−28 6.41E−27 0.00E + 00
Std 2.31E−18 7.43E−19 2.97E−28 1.58E−27 0.00E + 00

F5 Avg 2.84E + 01 2.82E + 01 2.83E + 01 2.74E + 01 2.60E + 01
Std 1.89E−01 3.04E−01 1.62E−01 2.83E−01 1.50E−01

F6 Avg 7.18E−02 2.23E−03 2.06E−03 2.28E−02 1.77E−03
Std 3.39E−01 3.05E−01 2.62E−01 3.47E−01 1.36E−01

F7 Avg 2.47E−03 1.18E−03 9.16E−04 1.40E−03 5.92E−04
Std 2.62E−03 1.04E−03 6.98E−04 9.19E−04 3.91E−04

F8 Avg −6.39E + 03 −6.71E + 03 −6.45E + 03 −6.86E + 03 −6.97E + 03
Std 1.05E + 03 4.48E + 02 5.34E + 02 6.99E + 02 4.24E + 02

F9 Avg 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F10 Avg 8.88E−16 8.73E−20 4.25E−17 2.68E−16 1.67E−21
Std 3.98E−31 1.00E−33 2.81E−35 9.77E−36 3.02E−37

F11 Avg 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F12 Avg 1.21E−01 1.16E−01 9.83E−02 1.42E−01 9.13E−02
Std 3.34E−02 3.13E−02 2.87E−02 5.35E−02 2.20E−02

F13 Avg 2.83E−01 2.75E−01 6.98E−02 3.90E−01 2.98E−02
Std 4.21E−01 4.30E−01 1.82E−03 1.91E−03 1.13E−03

F14 Avg 2.29E + 00 1.53E + 00 1.99E + 00 1.59E + 00 1.00E + 00
Std 1.33E + 00 4.69E + 00 4.99E + 00 3.31E + 00 3.53E−01

F15 Avg 7.13E−03 8.29E−04 3.81E−04 8.53E−04 3.44E−04
Std 1.53E−03 1.95E−04 1.27E−04 1.87E−04 5.12E−05

F16 Avg −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00
Std 7.96E−19 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F17 Avg 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01
Std 2.06E−17 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F18 Avg 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00
Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F19 Avg −3.00E−01 −1.28E + 00 −3.00E−01 −3.00E−01 −2.29E + 00
Std 1.69E−16 1.04E−02 5.04E−18 9.01E−16 6.69E−20

F20 Avg −3.23E + 00 −3.29E + 00 −3.29E + 00 −3.27E + 00 −3.31E + 00
Std 6.82E−02 5.06E−02 5.45E−02 5.82E−02 4.67E−02

F21 Avg −5.57E + 00 −5.99E + 00 −7.06E + 00 −6.06E + 00 −9.01E + 00
Std 2.50E + 00 1.53E + 00 1.73E + 00 1.21E + 00 1.08E + 00

F22 Avg −6.15E + 00 −7.09E + 00 −9.02E + 00 −6.19E + 00 −1.01E + 01
Std 2.13E + 00 2.01E + 00 3.00E + 00 2.13E + 00 1.96E + 00

F23 Avg −6.21E + 00 −7.73E + 00 −8.13E + 00 −6.94E + 00 −8.21E + 00
Std 2.16E + 00 1.70E + 00 3.03E + 00 2.43E + 00 2.16E + 00
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the brief description of four high-dimensional datasets is 
shown in Table 16.

Table 17 compares the average and standard deviation 
of classification accuracy based on four high-dimensional 
datasets. Figure 14 also shows the feature selection ratio. 
Observing the results in Table 17 and Fig. 14, it can be seen 
that IBMO is far superior to other competitors in dealing 
with high-dimensional datasets. Taking the Gastrointesti-
nal lesions dataset as an example, the accuracy of IBMO 
is improved by 3.59% based on the native algorithm. Com-
pared with PSO, IBMO is no less than 10% higher. Ana-
lyzing the number of features, for the Arcene dataset, the 
feature selection ratio of IBMO is 0.51 and is ranked first. 
Generally, HHO is also a good FS method with strong com-
petitiveness. The fitness function is a comprehensive meas-
ure of the above two metrics. These results are shown in 
Table 18. It is not hard to see that the results are consistent 
and significant, and IBMO is still the champion algorithm.

Friedman’s test is a nonparametric statistical inference 
technique. It involves first ranking the data and then testing 
to see whether k ( k ≥ 3 ) samples are significantly different. 
Equation (22) is used to compute the Friedman statistic S for 
k samples with m sample size. R represents the rank 
obtained. S follows �2 distribution with degrees of freedom 
k − 1 . When S ≥ �2

(k−1)
 , the null hypothesis H0 can be 

rejected at 0.05 significance level [61].

Using the data obtained above as input, Table 19 pro-
vides the results of additional statistics structure, and 
Table 20 shows the ranking obtained by Friedman’s test. 
When the degree of freedom is 7 and the significance level 
is 0.05, the critical value of the test statistic is 14.067. The 
calculated Chi-square statistic is greater than 14.067, so 
the null hypothesis H0 can be rejected. Moreover, small 

(22)S =
12

mk(k + 1)

[
k∑

j=1

R2

j

]
− 3m(k + 1)
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Fig. 11  Convergence curves of various BMOs on F1, F10, and F14
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p-values cast doubt on the validity of H0 . In terms of the 
ranking obtained, IBMO has obtained the highest ranking 
and always shows excellent performance.

5.3.5  Comparison with other classifiers

To comprehensively verify the effectiveness, the proposed 
model is further compared with 4 other classifiers, including 
logistic regression (LR) [62], decision tree (DT) [13], feed-
forward neural network (FNN) [18], and k-nearest neighbor 
(kNN) [16]. To achieve a fair comparison, IBMO is also used 
for other classifiers with default parameter values to find 
feature subsets. k = 5 for kNN is used in this work. For each 
method, accuracy, sensitivity, and specificity are used to evalu-
ate the performance. The sensitivity can describe the propor-
tion of the identified positive classes to all positive classes, 

so it is also called the true positive rate. The sensitivity can 
present the proportion of the identified negative classes to all 
negative classes, so it is also called the true negative rate. They 
are defined in Eqs. (23) and (24), respectively.

where TP represents the true positive, FN  represents the 
false negative, TN represents the true negative, and FP rep-
resents the false positive.

Tables 21, 22, 23 report experimental results based on 
10 binary-class datasets. Regarding accuracy, our proposed 
method accomplishes the higher results on all datasets in 

(23)Sensitivity=
TP

TP + FN

(24)Specificity =
TN

TN + FP

Table 11  Comparison 
each algorithm based on 
classification accuracy

Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Iris Avg 0.9640 0.9687 0.9722 0.9867 0.9652 0.9667 0.9707 0.9893
Std 0.0294 0.0129 0.0027 0.0014 0.0253 0.0158 0.0080 0.0012

Tic-tac-toe Avg 0.8954 0.9083 0.9106 0.9209 0.8998 0.9005 0.9010 0.9317
Std 0.0073 0.0051 0.0042 0.0027 0.0065 0.0045 0.0033 0.0019

Breast Cancer Avg 0.9561 0.9649 0.9690 0.9831 0.9575 0.9617 0.9578 0.9790
Std 0.0125 0.0010 0.0009 0.0003 0.0102 0.0044 0.0014 0.0005

ILPD Avg 0.7218 0.7372 0.7386 0.7413 0.7358 0.7338 0.7386 0.7458
Std 0.0045 0.0025 0.0023 0.0017 0.0038 0.0009 0.0028 0.0009

Wine Avg 0.9555 0.9777 0.9748 0.9794 0.9596 0.9710 0.9748 0.9899
Std 0.1169 0.1099 0.1005 0.0090 0.1109 0.0798 0.1048 0.0053

Congressional VR Avg 0.9733 0.9733 0.9707 0.9784 0.9690 0.9698 0.9733 0.9741
Std 0.0050 0.0017 0.0017 0.0012 0.0047 0.0039 0.0024 0.0015

Zoo Avg 0.9327 0.9584 0.9723 0.9861 0.9465 0.9525 0.9644 0.9892
Std 0.0290 0.0146 0.0074 0.0068 0.0179 0.0094 0.0101 0.0044

Lymphography Avg 0.7757 0.8054 0.8189 0.8297 0.7797 0.8027 0.8157 0.8324
Std 0.0359 0.0066 0.0051 0.0027 0.0150 0.0146 0.0060 0.0019

Hepatitis Avg 0.8625 0.8791 0.8800 0.8811 0.8708 0.8736 0.8795 0.8832
Std 0.0232 0.0168 0.0099 0.0082 0.0215 0.0170 0.0100 0.0061

Parkinsons Avg 0.9437 0.9597 0.9605 0.9621 0.9482 0.9649 0.9513 0.9579
Std 0.0390 0.0126 0.0077 0.0038 0.0205 0.0029 0.0141 0.0105

Flags Avg 0.6686 0.6689 0.6841 0.6948 0.6680 0.6742 0.6730 0.6959
Std 0.0787 0.0188 0.0378 0.0154 0.0436 0.0200 0.0241 0.0056

Dermatology Avg 0.9291 0.9542 0.9883 0.9855 0.9399 0.9497 0.9574 0.9643
Std 0.0480 0.0158 0.0392 0.0011 0.0308 0.0143 0.0242 0.0055

Ionosphere Avg 0.9288 0.9344 0.9612 0.9429 0.9299 0.9362 0.9371 0.9558
Std 0.1178 0.0777 0.0073 0.0400 0.0834 0.0827 0.0539 0.0228

Soybean small Avg 0.9749 0.9891 0.9957 0.9980 0.9857 0.9866 0.9900 0.9996
Std 0.1392 0.0073 0.0051 0.0027 0.0085 0.0081 0.0049 0.0025

Lung cancer Avg 0.5438 0.5687 0.5838 0.6184 0.5575 0.5550 0.6313 0.6688
Std 0.0750 0.0500 0.0276 0.0306 0.0606 0.0480 0.0419 0.0250

Sonar Avg 0.8416 0.8886 0.8900 0.8904 0.8510 0.8754 0.8898 0.8981
Std 0.1140 0.0671 0.0559 0.0496 0.0887 0.0736 0.0524 0.0024
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Fig. 12  Box charts of each algorithm on Iris, Wine, Parkinsons, and Sonar

Table 12  Comparison each 
algorithm based on the average 
number of selected features

Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Iris 2.22 1.61 1.47 1.20 2.07 1.88 1.56 1.10
Tic-tac-toe 6.21 5.77 5.45 4.81 5.95 5.60 5.07 4.66
Breast Cancer 5.98 4.24 4.02 3.50 5.67 5.01 3.93 3.70
ILPD 6.20 4.82 4.66 4.44 5.79 5.02 5.33 4.40
Wine 8.36 6.34 5.99 5.88 8.21 8.63 6.22 5.60
Congressional VR 7.90 5.53 5.31 4.70 8.23 6.42 5.48 5.20
Zoo 9.74 6.06 5.60 5.56 11.80 8.64 6.01 5.40
Lymphography 11.40 7.86 7.22 6.74 11.05 8.98 6.96 6.43
Hepatitis 9.80 7.55 7.02 6.87 8.44 6.04 7.31 5.89
Parkinsons 12.20 9.00 8.89 8.61 16.86 8.22 11.61 9.17
Flags 18.47 11.60 10.20 9.62 15.67 13.00 12.60 9.09
Dermatology 15.60 12.42 8.49 10.66 21.28 13.60 10.82 9.40
Ionosphere 17.20 11.60 7.60 9.42 15.31 14.20 10.82 8.80
Soybean small 22.06 13.88 13.07 12.00 19.86 16.64 13.60 10.09
Lung cancer 28.00 24.80 22.09 21.40 26.81 24.64 25.33 18.65
Sonar 30.86 24.00 24.42 21.81 29.48 26.44 23.41 20.04
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Table 13  Comparison each 
algorithm based on fitness 
values

Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Iris Best 0.0387 0.0214 0.0307 0.0152 0.0282 0.0237 0.0180 0.0114
Worst 0.0519 0.0519 0.0453 0.0232 0.0332 0.0319 0.0353 0.0253
Avg 0.0493 0.0349 0.0340 0.0177 0.0312 0.0303 0.0318 0.0192
Std 0.0116 0.0093 0.0053 0.0019 0.0069 0.0040 0.0033 0.0016

Tic-tac-toe Best 0.0970 0.0955 0.0909 0.0533 0.1010 0.1009 0.0998 0.0686
Worst 0.1223 0.1101 0.1034 0.1009 0.2100 0.1134 0.1102 0.0809
Avg 0.1174 0.0972 0.0934 0.0837 0.1050 0.1096 0.1025 0.0700
Std 0.0753 0.0050 0.0046 0.0031 0.0056 0.0040 0.0039 0.0011

Breast Cancer Best 0.0589 0.0320 0.0301 0.0186 0.0445 0.0428 0.0428 0.0188
Worst 0.0489 0.0444 0.0408 0.0262 0.0490 0.0512 0.0457 0.0248
Avg 0.0533 0.0395 0.0328 0.0228 0.0468 0.0445 0.0440 0.0228
Std 0.0033 0.0016 0.0014 0.0011 0.0025 0.0019 0.0018 0.0010

ILPD Best 0.2780 0.2601 0.2601 0.2619 0.2591 0.2577 0.2601 0.2580
Worst 0.2858 0.2652 0.2646 0.2687 0.2816 0.2679 0.2638 0.2604
Avg 0.2816 0.2624 0.2612 0.2639 0.2659 0.2625 0.2618 0.2595
Std 0.0028 0.0024 0.0020 0.0025 0.0045 0.0032 0.0017 0.0010

Wine Best 0.0312 0.0184 0.0199 0.0167 0.0328 0.0191 0.0183 0.0099
Worst 0.0605 0.0431 0.0412 0.0287 0.0469 0.0457 0.0476 0.0201
Avg 0.0525 0.0270 0.0271 0.0269 0.0439 0.0376 0.0276 0.0119
Std 0.1152 0.0508 0.0320 0.0144 0.0985 0.0745 0.0245 0.0098

Congressional VR Best 0.0315 0.0281 0.0275 0.0196 0.0330 0.0287 0.0281 0.0196
Worst 0.0461 0.0324 0.0336 0.0324 0.0380 0.0349 0.0324 0.0281
Avg 0.0383 0.0295 0.0319 0.0290 0.0364 0.0308 0.0292 0.0241
Std 0.0058 0.0015 0.0024 0.0015 0.0049 0.0021 0.0036 0.0017

Zoo Best 0.0430 0.0232 0.0244 0.0138 0.0596 0.0363 0.0334 0.0127
Worst 0.1214 0.0532 0.0428 0.0300 0.0694 0.0572 0.0534 0.0140
Avg 0.0708 0.0408 0.0347 0.0162 0.0673 0.0506 0.0392 0.0136
Std 0.0287 0.0144 0.0068 0.0084 0.0039 0.0079 0.0104 0.0009

Lymphography Best 0.1767 0.1901 0.1812 0.1620 0.2239 0.1768 0.1700 0.1572
Worst 0.2776 0.2046 0.1940 0.1905 0.2300 0.2180 0.1968 0.1767
Avg 0.2217 0.1982 0.1862 0.1766 0.2269 0.2054 0.1823 0.1689
Std 0.0356 0.0067 0.0046 0.0117 0.0020 0.0151 0.0088 0.0074

Hepatitis Best 0.1174 0.1060 0.1016 0.0950 0.1346 0.0985 0.1216 0.0816
Worst 0.1572 0.1488 0.1414 0.1430 0.1377 0.1572 0.1340 0.1469
Avg 0.1412 0.1237 0.1224 0.1203 0.1355 0.1298 0.1268 0.1179
Std 0.0241 0.0189 0.0172 0.0144 0.0223 0.0211 0.0166 0.0120

Parkinsons Best 0.0570 0.0312 0.0337 0.0338 0.0523 0.0312 0.0359 0.0370
Worst 0.0996 0.0662 0.0562 0.0432 0.0616 0.0493 0.0655 0.0610
Avg 0.0678 0.0459 0.0425 0.0414 0.0581 0.0396 0.0521 0.0490
Std 0.0103 0.0079 0.0040 0.0032 0.0097 0.0030 0.0038 0.0036

Flags Best 0.3221 0.2982 0.2635 0.2807 0.3277 0.3132 0.3002 0.2621
Worst 0.4895 0.3543 0.3600 0.3247 0.3398 0.3507 0.3323 0.3120
Avg 0.3303 0.3301 0.3156 0.3025 0.3385 0.3205 0.3254 0.3025
Std 0.0786 0.0189 0.0163 0.0077 0.0373 0.0176 0.0038 0.0022

Dermatology Best 0.0293 0.0196 0.0084 0.0111 0.0567 0.0278 0.0305 0.0238
Worst 0.0800 0.0672 0.0455 0.0177 0.0757 0.0803 0.0881 0.0418
Avg 0.0748 0.0465 0.0140 0.0156 0.0691 0.0500 0.0440 0.0372
Std 0.0469 0.0180 0.0392 0.0199 0.0494 0.0238 0.0206 0.0159
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comparison with 4 other classifiers. In terms of sensitivity, 
our proposed method accomplishes the higher results on 
70% of the datasets. On the Ionosphere dataset, even that 
our proposed method does not achieve better than kNN, 
but it ranks second. While looking at the specificity, our 
proposed method outperforms others on 90% of the data-
sets and achieves the best results with 1.000 of sensitivity 
on the DBWorld e-mails dataset. To sum up, our proposed 
method proves highly competitive results, and can more 
accurately identify positives and negatives.

6  Conclusions and future works

This paper proposes a novel classification model using 
IBMO for FS and parameter setting in SVM. The Gaussian 
mutation strategy is used to enhance population diversity. 
The conversion parameter strategy based on the logistic 
model is used to achieve a fine balance between explo-
ration and exploitation. The refraction-learning strategy 
helps the algorithm escape the local optimum. Thus, 
different strategies are designed at different evolution 

Table 13  (continued) Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Ionosphere Best 0.0638 0.0585 0.0392 0.0438 0.0467 0.0399 0.0404 0.0349

Worst 0.1500 0.1151 0.1029 0.0754 0.1005 0.0824 0.0913 0.0648

Avg 0.0780 0.0694 0.0465 0.0580 0.0772 0.0677 0.0631 0.0444

Std 0.0987 0.0821 0.0770 0.0555 0.0924 0.0798 0.0817 0.0349
Soybean small Best 0.0243 0.0036 0.0034 0.0021 0.0157 0.0129 0.0129 0.0034

Worst 0.3029 0.0277 0.0245 0.0070 0.0191 0.0345 0.0149 0.0051
Avg 0.0384 0.0148 0.0082 0.0051 0.0174 0.0179 0.0139 0.0042
Std 0.0030 0.0018 0.0013 0.0018 0.0042 0.0021 0.0007 0.0006

Lung cancer Best 0.3070 0.4292 0.3893 0.3263 0.4192 0.3902 0.3292 0.1504
Worst 0.4941 0.4404 0.4839 0.4842 0.4809 0.4532 0.3941 0.3906
Avg 0.4557 0.4398 0.4151 0.3834 0.4477 0.4400 0.3679 0.3336
Std 0.0743 0.0400 0.0314 0.0388 0.0608 0.0354 0.0974 0.0309

Sonar Best 0.0948 0.0532 0.0471 0.0432 0.0757 0.0697 0.0823 0.0384
Worst 0.2070 0.1857 0.2154 0.1416 0.1704 0.1543 0.1600 0.1352
Avg 0.1659 0.1102 0.1125 0.1139 0.1576 0.1299 0.1134 0.1029
Std 0.0883 0.0774 0.0628 0.0116 0.0830 0.0592 0.0422 0.0113
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Fig. 13  Convergence curves of each algorithm on ILPD, Zoo, Lymphography, Flags, Ionosphere, and Lung cancer
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Table 14  Comparison each 
algorithm based on average 
running time (in second)

Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Iris 31.01 28.93 29.78 42.34 28.17 29.66 25.90 26.15
Tic-tac-toe 711.36 406.69 407.40 1022.54 403.51 983.22 403.58 444.54
Breast Cancer 213.47 144.99 155.78 335.95 162.98 225.40 140.00 158.36
ILPD 240.68 208.91 217.87 474.93 196.91 237.18 225.72 228.19
Wine 37.44 37.40 37.39 60.76 35.77 49.12 36.49 37.20
Congressional VR 44.16 22.76 22.94 66.87 21.67 37.35 22.32 24.18
Zoo 31.29 27.67 27.45 56.04 26.07 41.84 27.82 29.88
Lymphography 39.76 34.33 36.38 65.61 35.19 42.75 35.92 37.63
Hepatitis 7.87 7.50 7.44 21.66 6.75 14.13 7.06 7.25
Parkinsons 37.19 28.46 29.11 65.44 27.65 40.70 27.03 27.45
Flags 117.67 90.44 103.11 175.02 100.69 128.24 103.00 113.70
Dermatology 266.10 206.43 214.18 270.56 211.24 260.53 233.82 237.77
Ionosphere 156.76 129.17 137.96 204.64 130.31 171.01 127.21 128.16
Soybean small 10.78 10.63 10.80 23.47 9.69 20.56 9.71 10.03
Lung cancer 6.39 6.17 6.41 16.58 5.81 11.93 5.79 6.11
Sonar 80.47 74.53 74.62 134.37 66.45 113.75 68.66 73.77

Table 15  P-values of the IBMO 
with compared algorithms

Dataset PSO GOA SSA HHO TLBO HG-GA BMO

Iris 6.35E-09 7.48E-11 9.38E-10 2.71E-13 4.60E-08 2.07E-11 6.43E-10
Tic-tac-toe 1.58E-12 5.46E-13 7.20E-13 3.18E-14 1.67E-10 9.85E-11 2.04E-09
Breast Cancer 1.94E-04 8.25E-07 4.71E-08 1.80E-09 6.28E-03 5.37E-06 4.01E-05
ILPD 1.35E-07 1.35E-06 1.28E-03 1.99E-11 3.31E-08 4.81E-02 4.27E-08
Wine 9.03E-13 7.64E-12 1.85E-13 5.50E-05 2.85E-04 9.00E-07 3.81E-09
Congressional VR 1.75E-02 5.98E-03 2.43E-03 7.43E-06 8.65E-02 1.29E-04 6.75E-06
Zoo 1.15E-05 2.47E-09 3.18E-09 8.63E-12 7.00E-04 2.24E-08 8.15E-08
Lymphography 3.16E-04 1.73E-06 2.00E-06 3.89E-09 1.55E-03 2.27E-07 5.24E-01
Hepatitis 1.43E-11 5.98E-11 6.72E-12 3.62E-13 5.19E-11 7.80E-10 2.22E-11
Parkinsons 6.64E-06 2.11E-07 3.75E-07 9.14E-09 7.53E-06 1.40E-06 7.08E-08
Flags 4.66E-03 3.12E-03 9.81E-01 1.11E-01 2.60E-03 2.84E-04 4.17E-01
Dermatology 1.00E-09 2.39E-13 6.71E-08 4.95E-14 7.81E-10 5.42E-12 4.35E-10
Ionosphere 2.71E-04 4.27E-05 4.16E-02 1.32E-11 1.03E-08 3.12E-09 2.39E-06
Soybean small 8.70E-03 5.34E-06 6.30E-05 2.03E-05 9.12E-02 3.56E-04 2.50E-05
Lung cancer 1.12E-10 1.07E-11 6.11E-11 7.02E-14 1.02E-08 2.67E-14 1.34E-10
Sonar 5.18E-14 9.72E-07 4.35E-08 6.87E-02 1.54E-11 8.43E-10 6.79E-08

Table 16  Description of four high-dimensional datasets [56]

Dataset Brief description

Gastrointestinal lesions This dataset contains the features extracted from a database of colonoscopic videos showing gastrointestinal lesions. 
There are features vectors for 76 lesions, and there are 3 types of lesions: hyperplasic, adenoma, and serrated 
adenoma

DBWorld e-mails This dataset contains 64 e-mails from DBWorld newsletter. We use them to train different algorithms in order to clas-
sify between "announces of conferences" and "everything else"

Arcene Arcene is obtained by merging three mass spectrometry datasets. The original features show the abundance of proteins 
in human sera having a given mass value. Based on these features, cancer patients and healthy patients should be 
separated

Amazon reviews This dataset is derived from the reviews in Amazon Commerce Website for authorship identification. It identifies 50 of 
the most active users. The number of reviews collected for each author is 30
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phases. To verify the impact of control parameters and 
introduced strategies, some experiments are done on 23 
classical benchmark functions. In addition, the proposed 
method is compared with 6 state-of-the-art methods such 
as PSO, GOA, SSA, HHO, TLBO, and HG-GA based on 
20 datasets where 4 datasets are high-dimensional. The 
comparisons and extensive results reveal that IBMO-SVM 
outperforms other wrapper methods using different evalua-
tion metrics. According to accuracy, sensitivity, and speci-
ficity, the proposed IBMO-SVM achieves superiority over 
the competitor classifiers.

Different directions for future work are suggested. 
Other real-world datasets can be further tested, such as 
the coronavirus disease (COVID-19) dataset. IBMO can 
also be explored in other optimization domains. Internet 
of Things, computer vision, and cloud computing are all 
the focus.

Table 17  Comparison 
each algorithm based on 
classification accuracy on high-
dimensional datasets

Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Gastrointestinal lesions avg 0.7651 0.8454 0.8500 0.8588 0.7840 0.8364 0.8409 0.8768
std 0.2334 0.1567 0.1200 0.0829 0.1431 0.1007 0.0955 0.0493

DBWorld e-mails avg 0.9275 0.9608 0.9677 0.9731 0.9483 0.9500 0.9625 0.9822
std 0.0040 0.0035 0.0087 0.0030 0.0051 0.0024 0.0037 0.0009

Arcene avg 0.8756 0.8830 0.9181 0.9044 0.8711 0.8814 0.8904 0.9429
std 0.0194 0.0188 0.0162 0.0093 0.0190 0.0175 0.0160 0.0080

Amazon reviews avg 0.6977 0.7632 0.7862 0.8008 0.7415 0.7717 0.7813 0.8164
std 0.1091 0.0800 0.0978 0.0646 0.1104 0.0593 0.0709 0.0138

Gastrointestin
al lesions

DBWorld e-mails
Arcene

Amazon reviews
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e 

se
le

ct
io

n 
ra

tio

Datasets

 PSO
 GOA
 SSA
 HHO
 TLBO
 HG-GA
 BMO
 IBMO

Fig. 14  Comparison each algorithm based on feature selection ratio 
on high-dimensional datasets

Table 18  Comparison each 
algorithm based on fitness 
values on high-dimensional 
datasets

Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Gastrointestinal lesions avg 0.2374 0.1553 0.1532 0.1479 0.2093 0.1669 0.1631 0.1270
std 0.2205 0.0576 0.0330 0.0150 0.1444 0.0463 0.0297 0.0066

DBWorld e-mails avg 0.0752 0.0418 0.0344 0.0320 0.0569 0.0545 0.0427 0.0232
std 0.0207 0.0075 0.0046 0.0029 0.0100 0.0057 0.0064 0.0028

Arcene avg 0.1310 0.1217 0.0871 0.1006 0.1342 0.1230 0.1145 0.0624
std 0.0784 0.0625 0.0500 0.0178 0.0502 0.0441 0.0479 0.0226

Amazon reviews avg 0.3104 0.2399 0.2162 0.2031 0.2627 0.2318 0.2220 0.1879
std 0.0105 0.0082 0.0079 0.0077 0.0146 0.0093 0.0088 0.0060

Table 19  Results of additional statistics structure

Dataset Chi-square p-value

Gastrointestinal lesions 29.53 1.1562E-04
DBWorld e-mails 27.80 2.3902E-04
Arcene 30.87 6.5795E-05
Amazon reviews 30.67 7.1619E-05



1272 Pattern Analysis and Applications (2021) 24:1249–1274

1 3

Acknowledgements This work was supported by Sanming University 
introduces high-level talents to start scientific research funding support 
project (20YG14), Guiding science and technology projects in Sanming 
City (2020-G-61), Educational research projects of young and middle-
aged teachers in Fujian Province (JAT200618), Scientific research and 
development fund of Sanming University (B202009).

Declarations 

Conflicts of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

References

 1. Han JKM, Pei J (2012) Data Preprocessing. In: Han J. Kamber 
M, Pei J (eds) Data Mining: Concepts and Techniques, 3rd edn. 
Morgan Kaufmann, California, pp 83–124

 2. Mafarja MM, Mirjalili S (2017) Hybrid whale optimization 
algorithm with simulated annealing for feature selection. Neu-
rocomputing 260:302–312

 3. Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, 
Mirjalili S (2019) Binary grasshopper optimization algorithm 
approaches for feature selection problems. Expert Syst Appl 
117:267–286

 4. Gu S, Cheng R, Jin Y (2018) Feature selection for high-dimen-
sional classification using a competitive swarm optimizer. Soft 
Comput 22:811–822

 5. Rejer I (2015) Genetic algorithm with aggressive mutation for 
feature selection in BCI feature space. Pattern Anal Applic 
18:485–492

 6. Zhang X, Mei C, Chen D, Li J (2016) Feature selection in mixed 
data: A method using a novel fuzzy rough set-based information 
entropy. Pattern Recognit 56:1–15

 7. Liu H, Yu L (2005) Toward integrating feature selection algo-
rithms for classification and clustering. IEEE Trans Knowl Data 
Eng 17(4):491–502

 8. Chen K, Zhou F, Yuan X (2019) Hybrid particle swarm opti-
mization with spiral-shaped mechanism for feature selection. 
Expert Syst Appl 128:140–156

 9. Unler A, Murat A, Chinnam RB (2011) mr2PSO: a maximum 
relevance minimum redundancy feature selection method based 
on swarm intelligence for support vector machine classification. 
Inf Sci 181(20):4625–4641

 10. Gheyas IA, Smith LS (2010) Feature subset selection in large 
dimensionality domains. Pattern Recognit 43(1):5–13

 11. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selec-
tion techniques in bioinformatics. Bioinf 23(19):2507–2517

 12. Wang M, Wu C, Wang L, Xiang D, Huang X (2019) A feature 
selection approach for hyperspectral image based on modified 
ant lion optimizer. Knowledge Based Syst 168:39–48

 13. Sadiq Md, Balaram VVSSS (2017) DTBC: decision tree 
based binary classification using with feature selection and 

Table 20  Results of ranking 
values based on Friedman’s test

Dataset PSO GOA SSA HHO TLBO HG-GA BMO IBMO

Gastrointestinal lesions 8.0 5.6 3.6 2.4 6.6 4.6 4.2 1.0
DBWorld e-mails 7.6 5.2 4.2 2.4 7.0 4.0 4.6 1.0
Arcene 7.6 5.8 3.4 2.2 7.2 5.0 3.6 1.2
Amazon reviews 7.6 5.4 4.0 2.2 7.4 4.2 4.2 1.0

Table 21  Comparison each classifier based on average accuracy on 
bi-class datasets

Dataset LR DT FNN kNN Our

Tic-tac-toe 0.7098 0.8225 0.8935 0.8594 0.9317
Breast Cancer 0.9585 0.9471 0.9628 0.9571 0.9790
ILPD 0.5575 0.6449 0.7135 0.6690 0.7458
Congressional VR 0.9306 0.9569 0.9698 0.9310 0.9741
Hepatitis 0.8461 0.8375 0.8750 0.8500 0.8832
Parkinsons 0.8236 0.8808 0.8513 0.8923 0.9579
Ionosphere 0.8815 0.8932 0.9218 0.9347 0.9558
Sonar 0.6875 0.7403 0.7596 0.8173 0.8981
DBWorld e-mails 0.9414 0.9473 0.9725 0.9786 0.9822
Arcene 0.9134 0.9100 0.9240 0.9367 0.9429

Table 22  Comparison each classifier based on average sensitivity on 
bi-class datasets

Dataset LR DT FNN kNN Our

Tic-tac-toe 0.9776 0.8898 1.0000 0.9784 1.0000
Breast Cancer 0.9520 0.9563 0.9738 0.9651 0.9821
ILPD 0.4014 0.7692 1.0000 0.8053 0.8712
Congressional VR 0.9777 0.9630 0.9907 0.9896 1.0000
Hepatitis 0.5898 0.6154 0.6385 0.6615 0.7607
Parkinsons 0.7292 0.7708 0.8717 0.8958 0.9250
Ionosphere 0.7637 0.8888 0.9013 1.0000 0.9548
Sonar 0.8041 0.7320 0.7113 0.7526 0.8650
DBWorld e-mails 0.8401 0.8903 0.9167 0.9539 0.9875
Arcene 0.7313 0.7934 0.8026 0.8452 0.8905

Table 23  Comparison each classifier based on average specificity on 
bi-class datasets

Dataset LR DT FNN kNN Our

Tic-tac-toe 0.7048 0.6958 0.7211 0.7350 0.7546
Breast Cancer 0.9363 0.9295 0.9497 0.9419 0.9710
ILPD 0.9461 0.3353 0.4545 0.3293 0.5455
Congressional VR 0.8400 0.8613 0.9261 0.9032 0.9535
Hepatitis 0.8724 0.8806 0.9403 0.9254 0.9699
Parkinsons 0.9327 0.9320 0.9728 0.9456 0.9921
Ionosphere 0.7967 0.8174 0.9384 0.9603 0.9767
Sonar 0.7855 0.7477 0.8018 0.8738 0.8800
DBWorld e-mails 0.8833 0.9132 0.9367 0.9876 1.0000
Arcene 0.7955 0.8089 0.8499 0.8656 0.9076



1273Pattern Analysis and Applications (2021) 24:1249–1274 

1 3

optimization for malaria infected erythrocyte detection. Int J 
Appl Eng Res 12:15923–15934

 14. Feng G, Guo J, Jing B, Sun T (2015) Feature subset selection 
using naive Bayes for text classification. Pattern Recognit Lett 
65:109–115

 15. Bhattacharya G, Ghosh K, Chowdhury AS (2017) Granger Cau-
sality Driven AHP for Feature Weighted kNN. Pattern Recognit 
66:425–436

 16. Udovychenko Y, Popov A, Chaikovsky I (2015) k-NN binary 
classification of heart failures using myocardial current den-
sity distribution maps. In: 2015 Signal Processing Symposium. 
IEEE, Poland, pp 1-

 17. Viegas E, Santin AO, França A, Jasinski R, Pedroni VA, 
Oliveira LS (2017) Towards an energy-efficient anomaly-based 
intrusion detection engine for embedded systems. IEEE Trans 
Comput 66(1):163–177

 18. Faris H, Aljarah I, Mirjalili S (2016) Training feedforward neu-
ral networks using multi-verse optimizer for binary classifica-
tion problems. Appl Intell 45:322–332

 19. Calvo-Zaragoza J, Toselli AH, Vidal E (2019) Hybrid hidden 
Markov models and artificial neural networks for handwritten 
music recognition in mensural notation. Pattern Anal Applic 
22:1573–1584

 20. Paul S, Magdon-Ismail M, Drineas P (2016) Feature selection 
for linear SVM with provable guarantees. Pattern Recognit 
60:205–214

 21. Manavalan B, Lee J (2017) SVMQA: support-vector machine-
based protein single-model quality assessment. Bioinf 
33(16):2496–2503

 22. Liu Y, Bi J, Fan Z (2017) A method for multiclass sentiment 
classification based on an improved one-vsone (OVO) strat-
egy and the support vector machine (SVM) algorithm. Inf Sci 
394:38–52

 23. Cherkassky V (1997) The nature of statistical learning theory. 
IEEE Trans Neural Networks 8(6):1564

 24. Qin J, He Z (2005) A SVM face recognition method based 
on Gabor-featured key points. Int Conf Mach Learn Cybern 
8:5144–5149

 25. Chen R, Hsieh C (2006) Web page classification based on a 
support vector machine using a weighted vote schema. Expert 
Syst Appl 31(2):427–435

 26. Bahlmann C, Haasdonk B, Burkhardt H (2002) Online hand-
writing recognition with support vector machines - a kernel 
approach. In: Proceedings Eighth International Workshop on 
Frontiers in Handwriting Recognition, pp 49–54. https:// doi. 
org/ 10. 1109/ IWFHR. 2002. 10308 83

 27. Byvatov E, Schneider G (2003) Support vector machine applica-
tions in bioinformatics. Appl Bioinf 2(2):67–77

 28. Nguyen MH, Fdela T (2010) Optimal feature selection for support 
vector machines. Pattern Recognit 43(3):584–591

 29. Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik 
V (2000) Feature selection for SVMs. In: Proceedings of the 13th 
International Conference on Neural Information Processing Sys-
tems. MIT Press, Cambridge, pp 647–653

 30. Wójcik PI, Kurdziel M (2019) Training neural networks on high-
dimensional data using random projection. Pattern Anal Applic 
22:1221–1231

 31. Guyon I, Elisseeff A (2003) An introduction to variable and fea-
ture selection. J Mach Learn Res 3:1157–1182

 32. Blum C, Roli A (2003) Metaheuristics in combinatorial optimiza-
tion: overview and conceptual comparison. ACM Comput Surv 
35(3):268–308

 33. Selim SZ, Alsultan K (1991) A simulated annealing algorithm for 
the clustering problem. Pattern Recognit 24(10):1003–1008

 34. Sanchita G, Anindita D (2016) Evolutionary algorithm based 
techniques to handle big data. In: Mishra B, Dehuri S, Kim E, 

Wang GN (eds) Techniques and environments for big data analy-
sis. Springer, Cham, pp 113–158

 35. Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H (2020) Barna-
cles Mating Optimizer: A new bio-inspired algorithm for solv-
ing engineering optimization problems. Eng Appl Artif Intell 
87:103330

 36. Wolpert DH, Macready WG (1997) No free lunch theorems for 
optimization. IEEE Trans Evol Comput 1(1):67–82

 37. Huang C, Dun J (2008) A distributed PSO-SVM hybrid system 
with feature selection and parameter optimization. Appl Soft 
Comput 8:1381–1391

 38. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, 
Saadeh H (2018) Simultaneous feature selection and support 
vector machine optimization using the grasshopper optimization 
algorithm. Cognit Comput 10:478–495

 39. Al-Zoubi AM, Heidari AA, Habib M, Faris H, Aljarah I, Has-
sonah MA (2020) Salp Chain-Based Optimization of Support 
Vector Machines and Feature Weighting for Medical Diagnostic 
Information Systems. In: Faris H, Aljarah I (eds) Mirjalili S. 
Evolutionary machine learning techniques. algorithms for intel-
ligent systems. Springer, Singapore

 40. Houssein EH, Hosney ME, Oliva D, Mohamed WM, Hassabal-
lah M (2020) A novel hybrid Harris hawks optimization and 
support vector machines for drug design and discovery. Comput 
Chem Eng 133:106656

 41. Das SP, Padhy S (2018) A novel hybrid model using teaching–
learning-based optimization and a support vector machine for 
commodity futures index forecasting. Int J Mach Learn Cybern 
9:97–111

 42. Gauthama Raman MR, Somu N, Kirthivasan K, Liscano R, 
Shankar Sriram VS (2017) An efficient intrusion detection sys-
tem based on hypergraph – Genetic algorithm for parameter 
optimization and feature selection in support vector machine. 
Knowl Based Syst 134:1–12

 43. Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction 
using two-dimensional maximum embedding difference. Inf Sci 
274:55–69

 44. Wan M, Yang G, Gai S, Yang Z (2017) Two-dimensional dis-
criminant locality preserving projections (2DDLPP) and its 
application to feature extraction via fuzzy set. Multimed Tools 
Appl 76:355–371

 45. Wan M, Lai Z, Yang G, Yang Z, Zhang F, Zheng H (2017) Local 
graph embedding based on maximum margin criterion via fuzzy 
set. Fuzzy Sets Syst 318:120–131

 46. Zhao M, Fu C, Ji L, Tang K, Zhou M (2011) Feature selection 
and parameter optimization for support vector machines: a new 
approach based on genetic algorithm with feature chromosomes. 
Expert Syst Appl 38(5):5197–5204

 47. Zhang X, Chen W, Wang B, Chen X (2015) Intelligent fault 
diagnosis of rotating machinery using support vector machine 
with ant colony algorithm for synchronous feature selection and 
parameter optimization. Neurocomputing 167:260–279

 48. Tuba E, Strumberger I, Bezdan T, Bacanin N, Tuba M (2019) 
Classification and feature selection method for medical data-
sets by brain storm optimization algorithm and support vector 
machine. Procedia Comput Sci 162:307–315

 49. Baliarsingh SK, Ding W, Vipsita S, Bakshi S (2019) A memetic 
algorithm using emperor penguin and social engineering opti-
mization for medical data classification. Appl Soft Comput 
85:105773

 50. Guo S, Thompson EA (1992) Performing the exact test of 
hardy-weinberg proportion for multiple alleles. Biometrics 
48(2):361–372

 51. Crow JF (1999) Hardy Weinberg and language impediments. 
Genetics 152(3):821–825

https://doi.org/10.1109/IWFHR.2002.1030883
https://doi.org/10.1109/IWFHR.2002.1030883


1274 Pattern Analysis and Applications (2021) 24:1249–1274

1 3

 52. Brusca G, Brusca R (2002) Available from: http:// www. uas. 
alaska. edu/ arts_ scien ces/ natur alsci ences/ biolo gy/ tamone/ 
catal og/ arthr opoda/ balan us_ gland ula/ repro ducti on_ and_ devel 
opment. html

 53. Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced 
Moth-flame optimizer with mutation strategy for global optimiza-
tion. Inf Sci 492:181–203

 54. de Souza RMCR, Queiroz DCF, Cysneiros FJA (2011) Logistic 
regression-based pattern classifiers for symbolic interval data. Pat-
tern Anal Applic 14:273

 55. Long W, Wu T, Jiao J, Tang M, Xu M (2020) Refraction-learning-
based whale optimization algorithm for high-dimensional prob-
lems and parameter estimation of PV model. Eng Appl Artif Intell 
89:103457

 56. Dua D, Graff C (2019) UCI Machine Learning Repository. http:// 
archi ve. ics. uci. edu/ ml. Accessed 17 May 2020

 57. Chang C, Lin C (2011) LIBSVM: a library for support vector 
machines. ACM Trans Intell Syst Technol 2(27):1–27

 58. Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion 
approaches for feature selection. Neurocomputing 213:54–65

 59. Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Al-
Zoubi AM, Mirjalili S (2018) Evolutionary population dynamics 
and grasshopper optimization approaches for feature selection 
problems. Knowledge-Based Syst 145:25–45

 60. Taradeh M, Mafarja M, Heidari AA, Faris H, Aljarah I, Mirjalili 
S, Fujita H (2019) An evolutionary gravitational search-based 
feature selection. Inf Sci 497:219–239

 61. Derrac J, García S, Molina D, Herrera F (2011) A practical tuto-
rial on the use of nonparametric statistical tests as a methodology 
for comparing evolutionary and swarm intelligence algorithms. 
Swarm Evol Comput 1(1):3–18

 62. Sa’id AA, Rustam Z, Wibowo VVP, Setiawan QS, Laeli AR 
(2020) Linear support vector machine and logistic regression for 
cerebral infarction classification. In: 2020 International confer-
ence on decision aid sciences and application (DASA). pp 827–
831. https:// doi. org/ 10. 1109/ DASA5 1403. 2020. 93170 65

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Heming Jia received the Ph.D. 
degree in system engineering 
from Harbin Engineering Uni-
versity, China, in 2012. He is 
currently a professor in Sanming 
University. His research interests 
include nonlinear control theory 
and application, swarm optimi-
zation algorithm, image segmen-
tation, and feature selection.

Kangjian Sun was born in Jin-
zhou, China, in 1996. He 
received the B. E. degree from 
Northeast Forestry University, 
China, in 2019. He is currently 
pursuing the M. E. degree in 
control engineering from North-
east Forestry University. His 
research interests include swarm 
intelligence optimization, image 
segmentation, and feature 
selection.

http://www.uas.alaska.edu/arts_sciences/naturalsciences/biology/tamone/catalog/arthropoda/balanus_glandula/reproduction_and_development.html
http://www.uas.alaska.edu/arts_sciences/naturalsciences/biology/tamone/catalog/arthropoda/balanus_glandula/reproduction_and_development.html
http://www.uas.alaska.edu/arts_sciences/naturalsciences/biology/tamone/catalog/arthropoda/balanus_glandula/reproduction_and_development.html
http://www.uas.alaska.edu/arts_sciences/naturalsciences/biology/tamone/catalog/arthropoda/balanus_glandula/reproduction_and_development.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/DASA51403.2020.9317065

	Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization
	Abstract
	1 Introduction
	2 Related works
	3 Preliminary knowledge
	3.1 Barnacle mating optimizer
	3.2 Support vector machine

	4 Application of proposed IBMO for FS and SVM optimization
	4.1 Two equation issues
	4.1.1 Representation of the solution
	4.1.2 Definition of the fitness function

	4.2 Description of IBMO
	4.2.1 Strategy 1: Gaussian mutation
	4.2.2 Strategy 2: conversion parameter based on logistic model
	4.2.3 Strategy 3: refraction-learning
	4.2.4 Additional details on IBMO
	4.2.5 Computational complexity analysis of IBMO

	4.3 IBMO for FS and SVM optimization

	5 Experimental design and results
	5.1 Preparatory works
	5.2 Evaluation metric
	5.3 Simulation results and discussions
	5.3.1 Impact of control parameters
	5.3.2 Impact of three strategies
	5.3.3 Results on low-dimensional datasets
	5.3.4 Results on high-dimensional datasets
	5.3.5 Comparison with other classifiers


	6 Conclusions and future works
	Acknowledgements 
	References




