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Abstract
Many physically challenged people are unable to operate standard electronic equipment or computer input devices. They 
need special assistive technologies and one of the options is the head operated interface. Face-oriented algorithms often 
assume a particular level of lighting with adequate intensity and spatial configuration. In the paper, we propose a thermal-
imaging-based algorithm of head operating typing. It does not assume the visible light illumination. We investigated, in 
context of thermal imagery, several contemporary general purpose object detectors known to be accurate in case of images 
captured by the visible light camera. Then, a selected face detector is employed in the head operated interface analysing head 
movements in the thermal spectrum. The attention has been focused on the problem of touchless typing which is performed 
in the existing solutions either through the camera mouse or through traverse procedure with an addition mechanism (like 
eye blink or mouth open) needed for clicking events in both cases. Our novel solution for touchless typing with head move-
ments combines the thermal imaging for capturing user action with the hierarchical letter selection procedure. The solution 
employed allows to reach any alphabet character in just three steps, i.e. with directional head movements, without the need 
of any additional mechanisms for clicking events.

Keywords  Thermovision · Face detection · Human–computer interaction · Touchless typing · Typing with head 
movements · Virtual keyboard

1  Introduction

Many physically challenged people are unable to operate 
standard electronic equipment or typical computer input 
devices. At the same time, new solutions for human–com-
puter interfaces introduce touchless interaction and offer 
hands-free control using gestures. Unfortunately, not all of 
these natural user interfaces are applicable for users with 
motor impairments. People with physical handicap need spe-
cial assistive technologies designed particularly for them. 
The head operated interface constitutes one of the options. 
It primarily provides its users with means for operation in 
the electronic world, information access, computer-mediated 

communication with others, etc. Finally, it improves their 
independence in everyday life and increases their participa-
tion in social activities. Several alternative techniques for 
touchless interfaces exist and the most popular ones include 
[19]: hand gesture recognition, brain computer interfaces, 
eye tracking, speech recognition and silent speech recogni-
tion (lip movement analysis). As it was noted, not all alter-
natives can be applicable for everyone and the choice of the 
appropriate solution is dependent on the specific form of 
disability.

Head operated interface offers touchless interaction 
through the analysis of the movements of user’s head. 
Thanks to the detection and tracking of the user’s face or 
facial features, it is possible to execute certain actions in no-
contact interface. From the historical perspective, the first 
solutions employed markers attached to distinctive parts of 
the user’s face. With a marker attached e.g. to the middle of 
the forehead, the process of the detection and tracking was 
simplified. Thanks to the progress in computer vision and 
pattern recognition, current solutions widely operate without 
the need for additional facilities.
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Existing head operated approaches, in general, focus 
on conventional mouse replacement offering the camera 
mouse interface (e.g. [24, 36]). The interaction is based on 
the pointer manipulation through head movements in the 
Graphical User Interface (GUI). Rotation and translation of 
the head are denoted as rigid motions [36]. For confirmation 
purposes (i.e. clicking events), different non-rigid motions 
are employed. Some of the examples include: eye blinks [24, 
30, 37], mouth shape changes (opening, closing or stretch-
ing) [5, 14, 33, 36], brows movements [14] or cheeks twitch.

With the help of rigid and non-rigid motion modelling 
a successful mouse alternative can be achieved, which is 
sufficient in most cases. However, human–computer interac-
tion, besides the pointer manipulation, often requires a text 
input. Text entry in the camera mouse approach is usually 
performed on the standard on-screen QWERTY keyboard 
through pointer manipulation. The process is not comfort-
able, requires substantial precision, is tedious and time-con-
suming. Another possibility is the traverse procedure where 
keys or groups are accessed in sequence according to the 
direction of the head movement.

As it was observed, current research on non-haptic inter-
faces based on computer vision methods predominantly 
focus on visible spectrum omitting the thermal imaging. It 
should be remembered, that face-oriented algorithms often 
assume a certain level of illumination (in terms of intensity 
and spatial configuration). On the other hand, there are many 
situations when environmental conditions are not fully con-
trolled [10]. Figure 1 presents two sets of face images taken 
at the same moment using visible spectrum (left column) 
and thermal cameras (right column) placed side by side. In 
the first case (first row), there is a strong directional sun-
light coming from a window. The second case (second row) 

presents a scene of a poorly lit room. Both cases present a 
challenge for visible light imagery. In such case, thermal 
imaging seems to be a good choice. Images registered by 
infrared or thermal sensors can be used to perform face 
detection and recognition without the necessity to properly 
illuminate the subject [7, 21]. As can be seen from examples 
presented in Fig. 1, thermal images are definitely more stable 
in context of diversified lighting, particularly in severe light-
ing conditions. Moreover, in a broader biometrical context, 
such data are resistant to spoofing attempts (e.g. using previ-
ously captured photo or video stream [34]).

In this paper, a novel solution for touchless typing with 
head movements is introduced. It combines the thermal 
imaging for capturing user actions with the hierarchical let-
ter selection procedure we proposed earlier in [27]. Thermal 
imaging makes the algorithm independent on the lighting 
parameters, hence making it possible to work in complete 
darkness. The hierarchical character selection procedure 
offers substantial acceleration of the typing process. It 
requires three directional head movements only to reach base 
character without any additional mechanism for confirma-
tion (eye blink, mouth open or other).

The rest of this paper is organized as follows: Sect. 2 pre-
sents some related works. Research on head operated inter-
faces is referred here together with face detection and track-
ing. The section includes keyboard layouts discussion. The 
main concepts of the interface are presented in Sect. 3 where 
the appropriate on-screen layout and adequate interaction 
techniques are introduced. In Sect. 4, several contemporary 
general purpose object detectors are investigated, addressed 
in the literature as effective in case of visible light illumina-
tion. They are applied to the face detection and tracking in 
thermal spectrum images. Finally, the proposed interface is 
evaluated and the results are analysed in Sect. 5. The article 
ends with a summary including conclusions and the discus-
sion of the results.

2 � Related works

According to the authors’ best knowledge, there is no similar 
solution available on both commercial market, but also in 
the scientific literature. Hence, the review of related works 
was done on a basis of general head operated interfaces and 
elementary approaches which are combined in the presented 
system, i.e. face detection, face tracking, and also keyboard 
layouts.

2.1 � Head operated interfaces

Based on the concept of camera mouse, some interfaces 
have been reported in the scientific literature. Different 
approaches are utilized to handle pointer manipulation in 

Fig. 1   Comparison of face images taken at the same moment in unfa-
vourable lighting conditions using visible (left) and thermal (right) 
camera
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GUI using head movements. In [5, 23] and [37] the position 
of user’s nostrils related to the face region is used. Interest-
ingly, in [5], a depth imaging technique is adapted. From 
a depth image, the nose position and the mouth status are 
detected and used for steering. In [30] and [33], the mouse 
cursor navigation is based on the estimation of eyes in the 
image plane. The mouse control in [36] is obtained by 3D 
head pose evaluation. The 3D pose estimation for camera 
mouse is also employed in [24]. As can be observed, some 
of the proposed solutions focus on tracking user’s face only, 
while other proposals address facial features.

The conventional mouse replacement in non-contact head 
operated interfaces is an important research topic. Text typ-
ing in such environment, as it was mentioned before, is usu-
ally offered through on-screen keyboard operated by point-
ing mechanism or traverse procedure. A few examples can 
be found in literature: [14, 26] and [33]. Some solutions have 
also been shared publicly as open source projects [1] and 
[28]. The Assistive Context-Aware Toolkit (ACAT) [1] was 
originally created for Professor Stephen Hawking. Beside 
typing it offers tools for wide range of applications like 
documents management or Internet navigation. It can oper-
ate with eye blinks, eyebrows movements, cheeks twitch or 
mouth opening. The QVirtboard offers mouse replacement 
through face movement detection and a dedicated keyboard 
operating with the traverse procedure. It also supports other 
modes of control (eye tracking or hand movements) [25, 28].

Text typing by head movement analysis can be time-
consuming. In the traverse procedure it requires many steps 
to reach the intended letter. On the other hand, in the point-
ing approach, it needs a significant precision. Nevertheless, 
since head operated interface may be the only solution for 
some people making an access to information or communi-
cation possible, improvements in existing or creating new 
ideas are necessary.

2.2 � Face detection and tracking

The foundations of head operated interfaces are detection 
and tracking of face or facial features. The problem of human 
face detection in static images is quite well researched, and 
there are many complete solutions available [7, 12, 38]. 
From the practical point of view, it is equivalent to the deter-
mination of the scene area containing the searched face. The 
false positive rate, in such case, should be as low as 10−6 

[38]; however, it is true for objects captured under similar 
imaging conditions (at the learning and testing stages). In 
such case, it is important to select proper discriminative fea-
tures used to build a face model.

In case of thermal imaging, a visual representation of 
faces depends mostly on camera calibration parameters, 
which may not be reproducible. Exemplary facial portraits 
in terms of different camera calibration parameters are pre-
sented in Fig. 2. As it can be seen, many parts of faces are 
represented in different manner; thus, it makes the discussed 
task particularly difficult, and highly dependant on training 
samples availability.

The other important aspects of this problem are the 
mechanisms for feature matching and scanning of the source 
image. Hence, since we have no information about probable 
face position and its size, it is required to perform search 
procedure in all possible locations, taking into considera-
tion all probable window (or image) scales, which increases 
the overall computational overhead. In the task discussed 
in this paper, the searching area and the scale pyramid can 
be significantly reduced, assuming constant and predictable 
position of user’s head.

Later, in the paper, we focus on feature extractors and 
classifiers that enable proper facial portrait detection in 
thermal images. The algorithms were selected taking into 
consideration the computational complexity, the simplicity 
of implementation and the accuracy. Hence, we have investi-
gated several well-known and recently proposed approaches.

In the next stage, the detected face is tracked in order to 
capture its movement. Recently, different methods of general 
object tracking have been proposed, yet it still remains chal-
lenging due to factors like abrupt appearance changes and 
severe object occlusions.

Face trackers use different approaches, which primarily 
focus on designing sophisticated appearance models and/or 
motion models to deal with challenging factors such as scale 
variations, three-dimensional rotations and illumination 
changes. There are three general classes of object trackers 
[40]: point trackers, kernel trackers, and silhouette trackers.

In most cases, each tracked face is associated with an 
information about its bounding box, last and predicted posi-
tion and a serial number (or identification number). One of 
the most popular tools is the Kalman filter. It predicts further 
positions of objects [6], based on the idea of frame-to-frame 
analysis. It works in a stepwise manner using predicted 

Fig. 2   Exemplary images 
taken with different tempera-
ture calibration parameters: 
25.4–35.7 ◦ C, 25.4–36.6 ◦ C, 
and 26–36.9 ◦ C, respectively 
(images from [16])
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position or correspondence between their last position and 
foreground blobs (faces).

Another very popular method is Mean-Shift algorithm 
[40] since it is independent on the object appearance; 
hence, it makes it possible to track objects that are partially 
occluded or change their silhouettes over time.

As it was noted in [40], selecting proper features plays 
a crucial role in tracking. In the presented approach, where 
characteristic points on the face are selected, the optical 
flow seems to be the proper method. It is based on a dense 
field of displacement vectors which defines the translation 
of certain pixel in an image. It is often based on the about 
brightness constancy of corresponding pixels in consecutive 
frames. One of the most popular applications of optical flow 
is a tracker described in [20]. Thanks to its features, it was 
incorporated to our algorithm.

2.3 � Layout of the keyboard

The QWERTY keyboard has been designed in the 19th cen-
tury and still remains the standard, although more efficient 
and ergonomic layouts have been introduced. Many argue 
that the QWERTY key arrangement is not suited for current 
needs and interfaces. It is an issue in case of non-contact 
interfaces or mobile devices. Changes in the form of interac-
tion are introduced and swipe typing (employed also in the 
QWERTY keyboard) or swipe gestures are the examples. 
Another trend is the reduction of the number of keys. Dif-
ferent characters are often placed on individual keys or in 
the sectors similar to the older phone keyboards. The 8pen 
keyboard (http://www.8pen.com/) and the 5-Tiles (http://
fivet​iles.com/) are good examples of such trend. The key-
board in the 8pen is divided into four directional sectors 
(top, bottom, left or right) with specifically arranged let-
ters on the borders. The characters are accessible by circular 
swipe movements through directional sectors and the central 
sector. In the 5-Tiles keyboard, five separate areas (tiles) are 
sufficient to type. The typing proceeds with keystrokes and 
swipe gestures simultaneously. Although such new alterna-
tives to the QWERTY key arrangement can be a source of 
inspiration for head typing interface, there are many dif-
ficulties in the adaptation process. Interactions like swipe 
gestures, circular movements or, sometimes, key-pressing 
present a substantial challenge.

Users are reluctant to learn new key arrangements and 
it seems that the only widely acceptable alternative to the 
QWERTY key arrangement is the alphabetical order. The 
alphabetical arrangement of characters has been successfully 

used in 12-keys mobile phone or 5-keys pagers. Nowadays, 
it is still frequently employed and the 5-Tiles or smart TVs 
are the examples. The alphabetical arrangement of charac-
ters can occur in a single-row or a multi-row layouts. The 
first solution is particularly interesting from the perspective 
of head operated interfaces. In our previous work [26], we 
demonstrated that such keyboard can be operated with only 
directional head movements without the need for additional 
gestures like eye blink or mouth opening for confirmation. 
To achieve this, in the most primary version, left and right 
directional movements are mapped to shifts of the active 
letter on the on-screen keyboard. The nodding gesture (tilt 
of the head down, denoted as downward direction) is inter-
preted as pressing while the opposite upward gesture is used 
for backspace.

The frequent need of moving through many characters in 
the single row of the alphabetical keyboard is a fundamen-
tal problem. Suggestions or dictionary support which may 
deactivate letters, similarly as in GPS navigation devices 
when typing the name of desired town, can alleviate the 
problem. Completely different approach has been proposed 
in the 3-Steps Keyboard [27] where any keyboard letter can 
be accessed with only three directional head movements. 
Since this concept is employed and extended in the current 
paper, it will be thoroughly presented hereafter.

3 � Interface concept

To achieve the goal of imperceptible and user-friendly head 
operated interface for text entry, the appropriate on-screen 
layout and adequate interaction techniques are required.

3.1 � 3‑Steps Keyboard

The 3-Steps Keyboard offers a new concept to touchless 
typing with head movements. It utilizes directional head 
movements and any keyboard letter can be accessed with 
just three steps (directional head movements). The keyboard 
has the form of a single row with alphabetically arranged 
characters as presented in Fig. 3. As it can be seen, keys are 
vertically translated in relation to each other and form dis-
tinctive groups. This presentation form has the aim to guide 
the user according to the appropriate interaction model. The 
displacement indicates the direction which has to be taken 
in order to reach certain group and individual characters.

The access to all the keys in the 3-Steps Keyboard is 
hierarchical and requires three consecutive directional head 

Fig. 3   The layout of the reduced 
interaction 3-Steps Keyboard 
[27]

http://www.8pen.com/
http://fivetiles.com/
http://fivetiles.com/
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movements. In the first step, the user selects the main group. 
There are four groups, each consisting of 8 keys. The first 
and the fourth groups are located on the same level, while 
the two middle ones are shifted, one upward and the other 
downward, respectively. The movement of the head in one of 
four main directions selects the appropriate group in the fol-
lowing way: the first group is selected with the left-direction 
movement, the second with the up movement, the third with 
the down movement, and the fourth with the movement to 
the right [27]. When the main group is selected, the others 
are deactivated (darkened) as depicted in Fig. 4.

After selecting the main group in the first step, a subgroup 
of two letters is marked in the second step. The procedure 
is similar, since subgroups are translated in relation to each 
other in the same manner as the main groups. A pair that 
corresponds to the head movement direction remains active, 
while the others are deactivated. The user proceeds to the 
third step where the choice of an appropriate letter contin-
ues with left or right directional movement. The selected 
letter is transcribed and the keyboard returns to the initial 
appearance with all the keys being active. The example of 
the interaction of ‘k’ character entry is presented in Fig. 5. 
As it was assumed, the character is reached with just three 
movements UDL (up, down, left).

Besides alphabetic characters, the 3-Steps Keyboard 
also provides an access to the other symbols. The extreme 
buttons represent backspace and space. Dot, comma and 
enter are also available for a direct selection. Numbers and 
other symbols are accessed by switching the keyboard state 
(accomplished by the second key and LLR combination of 
movements) [27].

3.2 � Interaction through head movements

The procedure of hierarchical letter selection offers con-
siderable acceleration in accessing the keyboard keys. 
The typing requires three consecutive directional head 
movements to reach base character without any additional 
mechanism for confirmation (eye blink, mouth opening, 
etc.). The most important is a recognition and an interpre-
tation of head actions. From the user’s perspective, head 
movements should be simple and straightforward, easy 
to understand, learn and operate. The simplest situation 
concerns vertical directions. The up and down directions 
are achieved with the rotary upward or downward nod ges-
ture (pitch). For the user, they are natural and very easy. 
More alternatives exist with horizontal directions. Left and 
right directions can be accomplished with head tilt (roll), 
rotation (yaw) or shift. Each individual has his/her own 
predispositions and the interface should not restrict any 
form of interaction.

For steering purposes we assume that the face is 
detected and specified by some surrounding frame (bound-
ing box). This frame’s central point is denoted with a 
pair of coordinates and represents a central position of 
the head. While the head moves, the centre coordinates 
change. Treating the initial coordinates as a base, any 
change of position allows to calculate the offset value 
in horizontal and vertical directions. On a basis of the 
solution presented in [27], we have adopted the following 
assumptions:

Fig. 4   Beginning of the interac-
tion with the 3-Steps Keyboard
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–	 reference head centre is surrounded by a neutral area 
defined by thresholds determined at the calibration 
stage;

–	 coordinates of the reference head centre are updated 
with small, natural user movements (adaptation);

–	 movements exceeding the threshold in any direction are 
used for steering;

–	 when no other action follows after directional move-
ment, it is assumed that no steering was intended, the 
user has taken a more comfortable position, and a new 
reference centre is calculated;

–	 the direction with a higher value of shift wins (e.g. dur-
ing horizontal head movements with the tilt approach 
the abscissa coordinate changes jointly with the ordi-
nate coordinate);

–	 diagonal movements are allowed to shorten the path 
(e.g. after performing the left gesture, user can directly 
move diagonally to the up position, instead of perform-
ing the left gesture with the return to the centre fol-
lowed by the up gesture with the return to the centre);

–	 after a new character is typed and the face returns to the 
central position the new reference centre is calculated 
(continuous adaptation of the user position);

The interaction with the keyboard interface is based on a 
recognition of the user actions performed with the head. In 
the following chapter, we provide the details of our investi-
gations regarding face detection and tracking in the thermal 
spectrum.

4 � Method description

The algorithm consists of several steps, which are depicted 
in the Fig. 6. It works in the loop, in which a final sequence 
of characters is entered. The timeout blocks are introduced 
to protect the algorithm from infinite loop formation.

4.1 � Face detection

The first step is to detect the user’s face in the image. We 
do not assume anything about the face, except that it is suf-
ficiently large (occupies more than approximately 25% of 
image area) and it is in the frontal orientation. The perfor-
mance of a face detector influences the whole process in 
terms of computational efficiency and accuracy. According 
to the previous research [11, 12], a detector based on Local 

Fig. 5   The layout of the reduced 
interaction 3-Steps Keyboard. 
Exemplary interaction: letter ‘a’ 
transcription with the left, up 
and left combination of move-
ments
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Binary Patterns is a natural candidate. It was chosen based 
on the highest recall rate, yet taking into consideration the 
lowest possible computational overhead [31].

In order to verify the above mentioned observations, 
we tested several approaches, that have been successfully 
applied to many object detection tasks [3, 38, 39], namely 
cascading classifiers based on Haar-like features (Haar), 
Histogram of Oriented Gradients (HOG) and Local Binary 
Patterns (LBP), together with HOG learned by Max-Margin 
Object Detection Algorithm (HOG + MMOD) and deep-
learning Convolutional Neural Networks (DNN). The first 
three detectors were implemented using Open Computer 
Vision library (OpenCV), while the remaining two were 
implemented using Deep-Learning Library – dlib [18]. The 
OpenCV implementation used an Intel i7 second-generation 
processor, while dlib programs used the NVidia GTX780 
GPU. The details of the experiments together with the dis-
cussion of the results are presented in [12].

The benchmark set used in the experiments consists 
of WIZUT database [17], Caltech (Courtesy NASA/JPL-
Caltech) [16], OTCBVS Terravic Facial IR Database [22] 
and images taken from the Internet (UC). Collected faces 
include not only fully frontal portraits: some of them include 
glasses, head cover, or both. Ground-truth bounding boxes 
representing faces were marked manually, covering most 
informative facial part. The exemplary cropped faces used 
for training the detectors are presented in Fig. 7. The details 
of particular databases are given in Table 1.

We created two experimental setups, related to two 
possible application scenarios (called later experimen-
tal setups no. 1 and no. 2). The setup no. 1 recalls the 

Fig. 6   An algorithm of face tracking-based touchless text input

Fig. 7   Selected images used for training in the experimental setup no. 2
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situation, when a user uses the touchless interface in an 
indoor conditions, while the setup no. 2 resembles fully 
uncontrolled conditions. The training dataset in the setup 
no. 1 consists of WIZUT (b) images which contain frontal-
only faces captured in fully controlled laboratory condi-
tions, using single camera, while the training dataset in the 
setup no. 2 consists of all WIZUT (a)-(e) groups, Caltech 
and OTCBVS images. The latter images contain faces in 
various orientations, captured with various cameras and 
with different sensor calibration parameters.

The testing dataset in the setup no. 1 consists of the 
remaining images gathered in WIZUT (a), (c), (d), and 
(e), Caltech and OTCBVS. In the setup no. 2, the testing 
images come from UC.

The negative samples for cascading classifiers were 
provided in an automatic manner, depending on the clas-
sifier training method. They were extracted from various 
images captured in the thermal spectrum, collected from 
the Internet, containing no faces.

At the learning stage, in case of cascading classifiers 
based on Haar-like features, LBP and HOG, we used 
Gentle AdaBoost, with a varying numbers of positive/
negative samples and learning stages. As it can be seen 
(compare Tables 1 and 2), the actual number of posi-
tive samples is often larger than the maximum number 
of the images in the base dataset. It is caused by the fact 
that the training samples are created from altered images 
(by rotation, changes in brightness, with noise added, or 
cropped) in order to increase their variability. In case of 
HOG+MMOD and DNN, the number of positive samples 
is the only parameter.

The number of positive/negative samples and the num-
ber of training stages presented in Table 2 varies, since it 
presents several variants of training procedure. It should be 
noted that cascading classifiers use a limited number of sam-
ples at each training stage, while DNN uses all the samples. 
HOG+MMOD uses a doubled number of positive samples, 
extended by symmetrical copies of the original images. The 
number of iterations depends on the learning rate and is 
automatically calculated.

The quality of the detector is calculated by means of 
Intersection over Union–IoU, often employed in object 
detection challenges [8]. The evaluation procedure takes into 
consideration bounding boxes associated with the object(s) 
in the image: ground-truth bounding box(es) of an area Agt 
representing known object(s) and the predicted bounding 
box(es) from the model of an area Adet representing detected 
object(s). Its value is equal to the area of overlap between the 
bounding boxes divided by the area of their union:

An IoU score higher than 0.5 is often considered a good 
prediction. However, in order to increase the recall indica-
tor, we set the threshold to 0.3. Exemplary values of IoU for 
various detected faces are presented in Fig. 8.

In practice, in order to find a face in the image, we 
select the largest detected object. On the other hand, in 
the experimental evaluation, for each image, a matrix of 

(1)IoU =

Agt ∩ Adet

Agt ∪ Adet

.

Table 1   Face detector training/testing-datasets characteristics

Dataset WIZUT Caltech OTCBVS UC

No. images/faces 505 64 2000 63/123
No. subjects 101 28 20 123
Image width 320 285 320 167–1920
Image height 240 210 240 129–1215
Min. face size 119 × 124 69 × 73 96 × 120 22 × 26
Max. face size 182 × 178 121 × 135 144 × 212 354 × 317
Rotation angle [°] ± 45 ± 5 ± 20 n/a

Table 2   Training parameters for all detectors

Detector Cascade HOG+ 
MMOD

DNN

Haar HOG LBP

Pos. smpl. 800–1000 800–1500 500–1000 5138 2569
Neg. smpl. 2000–5000 4000 2000–4000 – –
No. stages 11–12 15–17 11–13 54 3500

Fig. 8   A comparison of various IoU scores: successful detection (the two first cases), border line detection (the third case) and unsuccessful 
detection (the last case)



849Pattern Analysis and Applications (2019) 22:841–855	

1 3

IoUs is calculated for all combinations of ground-truth 
and detected bounding boxes, and only the highest score 
is taken into consideration. As the performance metric, we 
selected precision and recall measures, taking into consid-
eration IoU values.

Several experiments have been performed, which 
involved trained detectors with various parameters, pre-
sented in Table 3, namely the size of search window, scal-
ing step in the image pyramid and candidates rejection 
rule based on the number of adjacent detections (number 
of neighbouring detection indicating true detection, in case 
of cascading classifiers).

As it was mentioned above, the experiments were aimed 
at comparing the selected LBP-based face detector with 
the other ones taking into consideration the detection rate 
(precision and recall measures) as well as computational 
overhead. While the detection rate for rather easy images 
(see Table 4, setup no. 1) is very high (almost perfect), for 
images taken in more complex conditions (see Table 4, 
setup no. 2) drops.

It is clearly visible that cascading detectors process a 
single frame in the shortest time (see Table 5). t1 is a pro-
cessing time without using scale pyramid, while t2 is a pro-
cessing time with scale pyramid (scaling factor in Table 3). 
The first case mimics the application when a user sits close 
to the camera and the screen. On the other hand, DNN-
based solution, using more sophisticated computations, is 
the slowest one (regardless on the scaling method). Taking 
it into consideration, one can come to the conclusion that 
its use is not justified in the task discussed in this paper.

The results support the conclusion that when we take 
recall as the main indicator, having in mind the process-
ing time, the LBP-based detector should be used. Another 
interesting observation is that the detectors learnt with 
presented samples are able to detect also some faces in 
images taken in the visible spectrum (see Fig. 9). It leads 
to the conclusion that probably it is possible to construct 

a detector that works independently on the imaging tech-
nology. However, a confirmation would need some extra 
investigations.

4.2 � Face tracking

To capture head movements and convert them into the inter-
action with the keyboard, a feature-tracking algorithm is 
employed. It is initialized with a face detected at the previ-
ous stage and detects some distinctive initial points inside 
the face region. It should be noted that typical facial features 
can not be used, since they appear blurred and not clearly 

Table 3   Main parameters of evaluated detectors

Detector Haar/HOG/LBP HOG+MMOD DNN

Min window size 16 × 16 40 × 40 40 × 40

Max window size 360 × 360 80 × 80 200 × 200

Scaling factor 1.02 1.2 1.2
No. neighbours 2 1 1

Table 4   Precision/Recall rates 
for different detectors/setups 
together with single frame 
processing time ( t

1
–without 

scale pyramid, t
2
–with scale 

pyramid)

Detect. Haar HOG LBP HOG + MMOD DNN

Setup 1 2 1 2 1 2 1 2 1 2

Precision 0.74 0.46 0.89 0.63 0.75 0.47 0.91 0.87 0.90 0.88
Recall 0.92 0.46 0.90 0.49 0.95 0.51 0.90 0.37 0.98 0.30

Table 5   A comparison of single frame processing times [msec] ( t
1
—

without scale pyramid, t
2
—with scale pyramid)

Detect. Haar HOG LBP HOG + MMOD DNN

t
1

0.41 0.42 0.33 14 35
t
2

19 21 19 60 170

Fig. 9   Exemplary face detection results. The yellow solid line squares 
represent ground-truth, blue dotted line squares–HOG results, red 
dashed line–Haar results, green dash-dot line–LBP results, yellow 
solid line, rounded rectangles–HOG  +  MMOD results, and green 
rounded rectangles with dotted line–DNN results
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visible when using the thermal spectrum image, in oppo-
sition to visible light images [13]. Many other distinctive 
points (not related to particular face parts), however, can be 
easily detected.

We applied selected popular characteristic points detec-
tors on the thermal spectrum face images. Exemplary results 
for images from the WIZUT database [17] are presented in 
Fig. 10. We considered corners detected using FAST algo-
rithm (green squares) [29], Harris–Stephens features (blue x) 
[15] and SURF features (red circle) [4]. Unfortunately, they 
occurred to be less precise than Shi and Tomasi features (see 
Fig. 11). Most of the characteristic points are located on the 
outline of the face and in the area of facial features.

Hence, the procedure of distinctive point selection 
developed by Shi and Tomasi [32] has been chosen. Shi 
and Tomasi modified the original Harris–Stephens corner 
detector by replacing the scoring function which now takes 
into consideration the smaller eigenvalue from the pair 
(minimum eigenvalue algorithm) for a given region con-
sisting of an examined pixel and its neighbourhood. It is 

accepted as a corner when the smaller eigenvalue exceeds 
the predefined threshold.

Initially detected points are used for tracking. The 
Kanade—Lucas–Tomasi (KLT) feature-tracking proce-
dure is employed. The procedure has been introduced 
first in [20] by Kanade and Lucas as an image registra-
tion method, and it was modified later. For each point, 
the tracker attempts to find a counterpart point in the new 
frame. The procedure is iterative and the initial guess of 
the point locations is refined with each step. The region 
centred on an interest point is evaluated by computing the 
affine transformation between the corresponding patches in 
consecutive frames [35]. If the sum of square differences 
between the current patch and the projected patch exceeds 
the threshold, the feature is eliminated. Otherwise, the fea-
ture is still being tracked [35]. Finally, all matched pairs 
are used for calculation of the geometric transformation. It 
is afterwards applied to the bounding box of the previous 
face location. The centre of that bounding box serves for 
steering purposes.

Fig. 10   Comparison of points 
detected on thermal face images 
from the WIZUT database 
[17] (first six persons, frontal 
images): FAST features (green 
square), Harris–Stephens 
features (blue x) and SURF 
features (red circle)

Fig. 11   Points detected using 
minimum eigenvalue algorithm 
on thermal face images from the 
WIZUT database [17] (first six 
persons, frontal images)
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In Fig. 12, the results of point tracker applied to thermal 
image sequence is presented. In this case, a user performs 
a sequence of actions representing an input of ’d’ letter by 
the following moves: left, downward and right. The black 
lines indicate the position of the reference centre (initial 
head position). Each row in the figure corresponds to the 
consecutive directional movements with subsequent images 
denoting: initial position, beginning of the gesture, maximal 
shift, on return and return to the starting position.

The algorithm of point tracking is known to be stable for 
images captured in the visible spectrum and rigid objects 
that do not change shape [35]. When tracking a face in the 
thermal spectrum for several seconds under extensive head 
movements many points can be lost. The assumptions for-
mulated in Sect. 3.2 allow to avoid that problem. After a 
new character is typed and the face returns to the central 
position, a new reference centre is calculated which forces 
new face detection and a selection of new points for track-
ing. The procedure is fast and imperceptible for the user. The 
initialization of new points is also performed when too many 
points are lost and, periodically, when the head is out of the 
neutral area. Without the described recalibration procedure, 
the tracking is unstable in longer terms and may result in 

an improper rotation and scaling of the bounding box of a 
tracked face as presented in Fig. 13.

5 � Interface evaluation

Evaluation of text entry methods is predominantly user-
based. Usually, the performance measures are collected 
while the participant performs the task of typing a given 
text phrase quickly with respect to accuracy. Unfortunately, 
while typing, users make errors. Substitutions, insertions, 
or deletions of letters appear. There are three approaches to 
error correction [2]: none, recommended, and forced. In the 
first case, it is prohibited to correct errors and each mistake 
is taken into account when measuring the error rate. A quite 
different approach is offered with the forced error correction 
where the participant has to correct all the errors giving as 
the result a text that is identical to the one presented. Such 
procedure lengthens the typing time but offers good basis 
for different interfaces comparisons. For an uncomfortable 
or error-prone interface, the measured time of the text input 
is significantly longer. Since the final text does not contain 
errors, beside the typing speed, the number or the ratio of 

Fig. 12   Results of point tracker: left-direction movement (top row), downward movement (middle row), right direction movements (bottom row)

Fig. 13   Errors that may occur during long tracking
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erroneous keystrokes are also considered as performance 
measures. In the recommended error correction condition, 
the participant is allowed to correct errors if he/she identifies 
them. Since the resultant text contains corrected and uncor-
rected errors, more elaborated error measures are required. 
They are based on counting the number of elementary opera-
tions required to correct wrongly transcribed text to the ideal 
one.

The evaluations of the proposed interface were user-based 
and have been performed with the third year computer sci-
ence students of the West Pomeranian University of Technol-
ogy, Szczecin, aged 22–23 years. The experiments have been 
organized during classes in Human–Computer Interaction 
Course and have lasted for a few months in a cyclic routine. 
Each new version of a prototype was evaluated by a group 
containing usually 6–12 students and after amendments and 
enhancements a new group continued testing. These experi-
ments, conducted at first using visible spectrum imaging, 
allowed to develop the interaction routine with the 3-Steps 
Keyboard through head movements adopted hereby to ther-
mal imagery. All the experiments have been conducted in 
the forced error correction condition.

The experimental setup is presented in Fig.  14. The 
experimental stand is situated perpendicularly to the bright 
window which in the normal daylight condition significantly 
impedes the work in the visible spectrum and hinders detec-
tion and tracking of faces. The hardware layer is a photo-
graphic stand, which consists of an infrared (IR) camera 
mounted on a 131 cm tall tripod with tubular and bull’s eye 
spirit levels, denoted as ‘1’ in Fig. 14. The IR camera is 
FLIR SC325, with 16-bit sensor of 320 × 240 pixels work-
ing at 60Hz , having 25◦ × 18.8◦ FOV, interfaced by Ethernet 
[9]. When setting the camera, the most important factor is a 
correct alignment of the lens that should capture the whole 
head of the subject.

The software part of the interface has been launched on 
a notebook equipped with the first generation Intel Core 
i7-740QM processor and 8 GB of RAM (‘2’ in Fig. 14). 
All experiments have been performed in front of the 24” 

Full HD screen (‘3’ in Fig. 14) attached to the notebook. 
The participants (‘4’ in Fig. 14) did not have access to other 
standard input devices. They have to type text quickly and 
accurately (the forced error correction condition) using head 
movements.

The text input by head movements using the 3-Steps 
Keyboard approach has been well received by volunteers 
participating in the conducted experiments. The results for a 
group of 14 participants are presented in Fig. 15. There is a 
cpm (chars per minute) measure acquired for each individual 
on the left-hand side and the number of errors committed 
on the right-hand side. No bar in the second case means 
that a certain participant made no mistakes. Each participant 
has to type the same sentence consisting of 28 characters. 
For the 3-Steps Keyboard operated in the thermal spectrum, 
the mean value of 10.23 cpm has been obtained with 3.18 
of standard deviation. The best participant achieved 16.31 
cpm and the worst – 5.25 cpm. Nine users did not make any 
mistake, four made one mistake, and one participant has to 
correct three letters.

Previously, we have reported the typing speed of 12–14 
cpm for the 3-Steps Keyboard operated in the visible spec-
trum in case of new users after a brief acquaintance [27]. In 
the thermal version of the interface, a mean value of 10.23 
cpm for a whole group has been obtained. The most prob-
able reason is the reduction of the time used to familiarize 
with the interface. When using the thermal version of the 
interface, the participants, after the explanation of the oper-
ating principles, proceeded to test typing of their name and 
surname, and immediately after, typed the test sequence. The 
previous experiments have been performed under classroom 
conditions, and participants were able to observe others and 
gather some experience.

To check whether the fact that the participants observed 
the others during the experiments influenced the final result 
and to provide the appropriate basis for comparisons, addi-
tional experiments using the visible spectrum have been 
conducted. Another group of 14 participants with no previ-
ous contact with the 3-Steps Keyboard have been gathered. 

Fig. 14   A prototype of the test bench
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Experiments have been performed in the similar manner as 
in the thermal version of the interface: participants after the 
explanation of the operating principles, proceeded individu-
ally to the typing of their name, surname, and finally the test 
sequence. There was no audience during that experiments. 
The experiments have been performed using the same setup 
as in the thermal stand presented in Fig. 14. The thermal 
camera has been replaced with the icon7 Cyris T620 web-
cam. To provide good lighting conditions for the visible 
spectrum, the outside light was suppressed by means of 
a window blind and artificial light was switched on. The 
results are presented in Fig. 16.

When the users did not have a possibility to observe the 
others during the experiments, hence no experience have 
been gathered so, as expected, lower cpm values have been 
obtained. These results are very similar to those observed in 
thermal version of the interface. The average value of cpm 
equals to 10.15 with 2.13 of the standard deviation. The 
fastest participant achieved speed of 14.61 and the slow-
est – 7.18. Six of the participants committed errors during 
experiments, wherein four users did two mistakes and two 

users – one mistake. It is interesting that in both cases (the 
thermal and the visible spectra) the participants who com-
mitted errors, despite the fact of forced error correction 
condition, did not achieved the longest times of typing and 
they were able to accomplish the task in a reasonably short 
time. Returning to the higher cpm reported in [27] (12–14 
cpm), it can be concluded that even a short time devoted to 
the observation of other participants during text entry can 
increase the performance of individuals.

Finally, in the context of target users, it must be noticed 
that the measuring of the typing speed for interfaces similar 
to the proposed one can be arguable. Depending on the type 
and the degree of disability, the usage of various solutions 
may be problematic or even impossible. Some users will 
cope better with one type of the interaction, while the other 
users will prefer other methods. For that reasons, the quality 
measures are not always reported by the researchers. What is 
more, the performance observed for disabled users, despite 
the fact that such interfaces are adopted for them, demon-
strate worse performance (e.g. average typing speed of the 
test phrase in the ’Spelling board’ [33] by able-bodied users 

Fig. 15   The results of the exper-
iments in the thermal spectrum

Fig. 16   The results of the exper-
iments in the visible spectrum
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reaches 16.95 while disabled users managed to complete 
the task with the mean value of 37.12 seconds [33] which is 
119% longer). Some typing speeds of vision-based interfaces 
are compared in [14] where the authors reference works 
with 25, 31 and 44 cpm for the camera mouse approach 
and pointing procedure. As it was mentioned before, the 
pointing procedure requires substantial precision and may 
be not adequate for some users. A letter-scanning (traverse) 
procedure [14] used in the interface proposed by Grauman 
et al. allows users to achieve 5.7 cpm.

6 � Summary

In this paper, a novel solution for touchless typing with head 
movements has been introduced. Its main concept is a fusion 
of the thermal imaging for capturing user action with the 
hierarchical letter selection procedure. Existing head oper-
ated interfaces require substantial precision when working 
in a camera mouse routine or suffer from a time-consuming 
process when operating with the traverse procedure. They 
also need a supplementary action (eye blinks, eyebrows 
movements, cheeks twitch, mouth opening or some others) 
to simulate the key stroke. The solution presented in this 
paper allows to reach an alphabet character in only three 
steps, i.e. directional head movements, excluding additional 
mechanisms for key-pressing. Despite not using the faster 
pointing procedure, the performance of our algorithm is 
decent. Its hierarchical nature of accessing characters, 
despite its uncommon nature, occurred to be easy for new 
users. In future, it is possible to further improve the interface 
by introducing a sentence-level suggestions.

The main target of the presented interface are people 
with disabilities. They need special assistive technologies 
which contribute to the improvement of their independence 
in everyday life and increase their participation in social 
activities. Considering the uncontrolled environment with 
dynamic lighting conditions, the usage of the thermal spec-
trum for capturing user action is justified. An evaluation of 
the selected thermal-imaging-based face detectors has been 
performed and presented in the paper. The results support 
the conclusion that when we take Recall as the main indica-
tor, having in mind the processing time, the LBP-based face 
detector should be used. On the other hand, the tracking is 
particularly efficient when we apply KLT routine.

In future, we plan to perform evaluations with target users 
(in the performed experiments there were no handicapped 
participants). We also plan to further investigate the possibil-
ity of constructing a universal face/head detector that works 
independently on the imaging technology. We observed that 
in many cases the detector prepared for the thermal spectrum 
was able to detect faces also in images taken in visible light.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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