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a learning framework. For instance, in the semi-supervised 
learning, the classifier is allowed to use unlabeled data from 
underlying classes for improving its classification accuracy 
[5, 28]. In universum learning, we might use unlabeled data 
samples that do not belong to either classes [29, 32]. Inte-
grating pre-defined additional information into a learning 
framework would usually yield improvement in the classifi-
cation results and obtaining better insight into data.

In this paper, we support the above hypothesis and show 
that neutral instances can be easily handled with a use of 
Tri-Class SVM model [2]. Our motivation of including 
neutral class in a training comes from cheminformatics and 
computer-aided drug design, in which we focus on detect-
ing compounds acting on a particular protein (biological 
receptor). A compound is considered active if its binding 
constant Ki ∈ [0,+∞) (measured in a laboratory) is lower 
than a threshold a = 102, while for inactive compounds a 
binding constant must be greater than b = 1031 [31]. Conse-
quently, we get a third class of compounds with an interme-
diate activity level such that Ki ∈ [102, 103], which forms a 
neutral class. Although it is a common practice to ignore this 
neutral class in the learning process [26], we show that its 
use allows to explore the chemical space better, see Fig. 1.

Tri-Class SVM [2] is a generalization of classical SVM 
[8], which builds a single learning model for three-class 
problems and avoids pairwise coupling strategy. To use 
instances of neutral class in the learning process, we develop 
its two parameterizations: SVM{0} and SVM[−1,1]. In analogy 
to classical SVM, we look for such a hyperplane which max-
imizes the margin between positive and negative examples 

Abstract  In many real binary classification problems, in 
addition to the presence of positive and negative classes, 
we are also given the examples of third neutral class, i.e., 
the examples with uncertain or intermediate state between 
positive and negative. Although it is a common practice to 
ignore the neutral class in a learning process, its appropri-
ate use can lead to the improvement in classification accu-
racy. In this paper, to include neutral examples in a training 
stage, we adapt two variants of Tri-Class SVM (proposed by 
Angulo et al. in Neural Process Lett 23(1):89–101, 2006), 
the method designed to solve three-class problems with a 
use of single learning model. In analogy to classical SVM, 
we look for such a hyperplane, which maximizes the margin 
between positive and negative instances and which is local-
ized as close to the neutral class as possible. In addition to 
original Angulo’s paper, we give a new interpretation of the 
model and show that it can be easily implemented in the pri-
mal. Our experiments demonstrate that considered methods 
obtain better results in binary classification problems than 
classical SVM and semi-supervised SVM.
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1  Introduction

One of the machine learning paradigms states that one 
should take into account all existing information in building 
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and is localized as close to the neutral class as possible. 
The difference between introduced methods stems from the 
way of penalizing the model for inappropriate classifica-
tion of instances of neutral class: SVM{0} aims at fitting the 
hyperplane along the neutral set, while SVM[−1,1] allows the 
neutral class to “move” freely in the whole space between 
the positive and negative classes, see Fig. 2 for a compari-
son between these methods and two classical approaches, 
SVM and S3VM (semi-supervised SVM). Contrary to the 
original formulation of Tri-Class SVM, we show that both 
models can be easily optimized and implemented in the pri-
mal: to find the solution of SVM{0} one can use subgradient 
approach, while SVM[−1,1] fits perfectly into the classical 
SVM procedure if we slightly modify a considered dataset2, 
see Theorem 1.

We showed experimentally that SVM[−1,1] usually leads 
to the improvement in the accuracy of binary classification 

given by classical SVM and S3VM, when an adequate 
sample of instances of neutral class is available. Moreover, 
the experimental study demonstrated that SVM{0} is able 
to explore less common patterns of data. In particular, we 
showed that a decision boundary constructed for ligands of 
one biological target (classification problem) delivers a sub-
stantial knowledge concerning other proteins (other classifi-
cation problem), which could have practical consequences in 
cheminformatics and computer-aided drug design.

The paper is organized as follows. Next section com-
pares our model with related methods. Section 3 presents 
the theory behind our model. In fourth section, we pre-
sent the results of the experiments. Finally, a conclusion is 
formulated.

2 � Related work

Neutral class usually appears in topics concerning natural 
language processing such as sentiment analysis or opinion 
mining [1], but it is also present in chemistry, medicine [12], 

Fig. 1   Separation of active (red), middle active (green) and inactive 
compounds (blue) by classical SVM and our two variants of Tri-Class 
SVM. While SVM ignores completely the presence of neutral class, 

SVM[−1,1] and SVM{0} try to arrange it within the margin or directly 
on a decision boundary, respectively (color figure online)

2  We can simply double the examples of the neutral class and add 
them to positive as well as to negative class.
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Fig. 2   Decision boundaries and 
corresponding densities esti-
mated from positive and nega-
tive classes (red) compared with 
densities estimated from neutral 
class (green) after projecting 
onto vector normal to the deci-
sion boundary. SVM[−1,1] fits 
such a decision boundary (solid 
line) to separate instances of 
positive and negative classes 
and to keep examples of neutral 
class within the margin (dotted 
lines) 1(c). It gives slightly 
similar effect to classical SVM, 
which, however, ignores the 
presence of neutral class 1(a). 
SVM{0}, in addition to separat-
ing positive from negative class, 
tries to build a decision bound-
ary along the neutral class 1(d) 
which in turn is similar to the 
results produced by S3VM 2(b) 
(color figure online)
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etc. Although the authors are aware of its importance, many 
of them ignore it and do not take it into account in both 
training and testing models [14, 34]. Clearly, this destroys 
a dataset since a particular group of instances are removed 
from a data space. Moreover, the removal of neutral class 
contradicts the well-known paradigm of machine learning 
which says that all available information should be used.

Another approach relies on using typical multi-class clas-
sifiers to handle neutral examples [24, 30]. Unfortunately, 
this methodology does not use internal relation between 
positive/negative and neutral classes. Moreover, the use of 
SVM in multi-class problem requires the construction of 3 
base classifiers, which increases the complexity of the model 
[9]. Koppel and Schler [20, 21] showed that classical pair-
wise coupling methods do not work well with neutral class. 
Instead of selecting a class label based on majority voting in 
one-vs-one SVM, they proposed to use a stack, which allows 
for making a decision based on the ordering of support func-
tions of base classifiers. There is also an extension of this 
strategy, where two binary classifiers (positive/non-positive, 
and negative/nonnegative) are trained, which corresponds to 
one-vs-all approach3. The authors of [33] use a hierarchical 
classification system, where the neutrality is determined first 
and the polarity is determined second.

In the context of sentiment analysis, Xia et al. [35] cre-
ated a method, in which a classifier learns from pairs of 
sentiment-reversed reviews. Although the authors showed 
high performance of this technique, it is difficult to gener-
alize their algorithm to other domains, because it requires 
the generation of opposite reversed reviews with opposite 
sentiments. To tackle a classification problem, where classes 
have specific ordering, ranking methods are also used [27]. 
This approach can be used for more than three classes, but its 
optimization is computationally hard in a comparison with 
typical classification models [10].

Including neutral examples to learning process is signifi-
cantly different reasoning from the one used by semi-supervised 
SVM (S3VM), in which the unlabeled elements are considered 
as the instances of positive or negative class [18], see Fig. 2. 
To find a solution of S3VM problem, a lot of approximation 
schemes were designed [23, 25, 32]; however, most implemen-
tations still suffer from high computational cost.

Presented model is an adaptation of Tri-Class SVM pro-
posed by Angulo et al. [2], which deals with general three-
class problems by encapsulating a third class in a �-tube 
(the area with a width � along the separation hyperplane). 
We extended the above strategy to include the instances of 
neutral class directly on a decision boundary in the case 
of SVM{0} or within the margin in the case of SVM[−1,1].  
Combining the ideas from universum learning [6, 7], we 

present that this formulation suits well into the problem of 
learning with neutral class. In addition to Tri-Class SVM, 
we show that both considered models can be easily and effi-
ciently optimized in the primal.

Analogical approach to SVM{0} could also be applied to 
classifiers related to SVM. In the case of logistic regression, 
one could maximize the probability that neutral examples 
are equally likely to belong to both positive and negative 
classes, i.e., its posterior probability equals 0.5. Transform-
ing SVM[−1,1] to the case of logistic regression could be 
harder, because there is no margin in classical formulation 
of logistic regression.

3 � Theoretical model

For a convenience of the reader, we start with a formulation 
of classical SVM and next motivate the construction of cost 
functions for SVM{0} and SVM[−1,1]. After that we discuss 
their relation with Tri-Class SVM and present optimization 
procedures used in the paper.

Let us recall that SVM [4, Chapter 2.3] aims at finding 
such an affine function x → vTx + b which minimizes the 
cost function given by

where X = (xi)i is a dataset and yi = ± 1 denotes the class 
membership of xi. The first term 1

2
‖v‖2 plays the regulariza-

tion role, while the expression max(0, 1 − yi(v
Txi + b)) meas-

ures a distance of the point vTxi + b from the set [1,+∞), 
for yi = +1 (or from (−∞,−1], for yi = −1). Thus, we may 
rewrite the above formula in the form

where the last two terms introduce a penalty for inappropri-
ate classification. The final classification of point x is based 
on the sign of vTx + b.

To define our model, we need to introduce the instances of 
additional neutral class to a dataset X. By the realizations of 
neutral class, we understand the elements with an intermediate 
state between positive and negative states. As an example one 
can consider a group of patients, who are diagnosed to be in 
the early stage of illness. In our model, we base on the observa-
tion that instances of a neutral class should lay somewhere in 
the middle between positive and negative classes. Clearly, this 
assumption may not be true in a given representation, and then 

(1)
SVM(v, b) =

1

2
‖v‖2 + C

∑
yi=−1

max(0, 1 + (vTxi + b))

+C
∑
yi=1

max(0, 1 − (vTxi + b)),

SVM(v, b) =
1

2
‖v‖2 + C

∑
yi=−1

dist(vTxi + b;(−∞,−1])

+C
∑
yi=1

dist(vTxi + b;[1,∞)),

3  https://lingpipe-blog.com/2008/01/02/positive-negative-and-neu-
tral-sentiment/.

https://lingpipe-blog.com/2008/01/02/positive-negative-and-neutral-sentiment/.
https://lingpipe-blog.com/2008/01/02/positive-negative-and-neutral-sentiment/.
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the application of some kernel functions is needed. Neverthe-
less, this issue will not be investigated in this paper. We put 
y = 0 to denote the label of elements of neutral class.

The expression (1) allows to formulate two natural addi-
tions to the SVM cost function in the case we are given a 
neutral class:

•	 we can penalize a point x from the neutral class by a dis-
tance of vTx + b from zero; in this case as the additional 
cost we put |vTxi + b|,

•	 we can penalize a point x from the neutral class by a 
distance of vTx + b from the interval [−1, 1]; in this case 
the additional cost equals dist(vTxi + b, [−1, 1]).

One can easily observe that

Thus, we obtain two models, which will be referred as 
SVM{0} and SVM[−1,1], with the cost functions given by

where SVM(v, b) is formulated by (1) and �(r) denotes a dis-
tance of point r from the set [−1, 1] (2). Observe that SVM{0} 
wants to fit the barrier along the neutral set, while SVM[−1,1] 
allows the neutral class to “move” freely in the whole space 
between the positive and negative classes, see Fig. 2.

Both models are variants of general Tri-Class SVM that 
allows to deal with three-class problems by building a single 
SVM machine. SVM{0} corresponds to � = 0 in [2, eq. 12], 
while SVM[−1,1] is parameterized by � = 1. We show that 
our models can be easily implemented in the primal, which 
is different from a typical way of realizing Tri-Class SVM.

Remark 1  In practice, there might occur a problem of 
imbalanced classes. If the size of neutral class is signifi-
cantly greater (or smaller) than the remaining data, our 
model will fit stronger to this class. To reduce this negative 
effect, one could introduce an additional parameter D > 0,  
which varies the importance of neutral class. Then, the 
above cost functions are given by

(2)

�(r) ∶= dist(r, [−1, 1])

= max(0,−r − 1) +max(0, r − 1)

= max(0, r + 1) + max(0, 1 − r) − 2.

SVM{0}(v, b) = SVM(v, b) + C
∑

i∶yi=0

|||v
Txi + b

|||,

SVM[−1,1](v, b) = SVM(v, b) + C
∑

i∶yi=0

�
(
vTxi + b

)
,

SVM{0}(v, b) = D ⋅ SVM(v, b) + C
∑

i∶yi=0

|||v
Txi + b

|||,

SVM[−1,1](v, b) = D ⋅ SVM(v, b) + C
∑

i∶yi=0

�
(
vTxi + b

)
.

This is an analogical strategy to dealing with data imbal-
ance to the one used in classical SVM, where parameter C 
for positive and negative classes is scaled by the ratios of 
respective classes [16].

Remark 2  Tri-Class SVM and our model assume that the 
examples of neutral class are localized close to the decision 
boundary between positive and negative classes. However, 
this assumption may not hold for a given data representa-
tion and the neutral samples can overlap with both positive 
and negative classes, which could drop the performance of 
the learning system. One way to deal with this problem is 
to decrease the importance of neutral class as described in 
previous remark.

Another way for resolving this issue relies on using kernel 
functions. The correct selection of kernel mapping allows for 
transforming data to another space, where the instances of 
neutral class lay in the middle between positive and negative 
examples and, in consequence, classes are linearly separable. 
The reader is referred to [2] for details of kernel approach 
for Tri-Class SVM.

SVM{0} can be solved by using a gradient4 approach. As 
one can verify the gradients of SVM{0} cost function with 
respect to v and b are given by

where H denotes the Heaviside function. The above formula 
allows the easy implementation of SVM{0} in any package, 
which contains the gradient descent method.

Now we are going to show that SVM[−1,1] can be used 
with existing SVM software. To do so, we have to just add 
the instances of neutral class both for the positive and nega-
tive classes. This observation is proven in the following 
theorem:

Theorem 1  Let X−1,0,1 denotes the sequence of elements 
of the respective classes. Then the following two functions 
are equal:

•	 SVM[−1,1]cost(v, b), for the data X−1,0,1,
•	 −2C ⋅ card(X0) + SVM(v, b), for the data with positive 

class X0 ∪ X+1 and negative class X−1 ∪ X0.

∇SVM{0}(v, b) =

[
v

0

]
+ C

∑

i∶yi=−1

H(1 + (vTxi + b))

[
xi
1

]

+ C
∑

i∶yi=0

sign(vTxi + b)

[
xi
1

]

− C
∑

i∶yi=1

H(1 − (vTxi + b))

[
xi
1

]

4  More precisely, a subgradient method.
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Proof  Clearly, SVM[−1,1] cost function for the data X−1,0,1 
with the constant C equals

where by (2),

On the other hand, SVM cost for the data with a positive 
class (X+1 ∪ X0) and a negative one (X−1 ∪ X0) is given by

Let us denote by �(r) the following function:

By (2), we get that �  is a constant function such that 
�(r) = 2. Then, the difference between (3) and (4) equals

which completes the proof. □

(3)

1

2

‖‖‖v
2‖‖‖ + C

∑

i∶yi=−1

max(0, 1 + (vTxi + b))

+ C
∑

i∶yi=1

max(0, 1 − (vTxi + b))

+ C
∑

i∶yi=0

�(vTxi + b),

�(r) = max(0, r + 1) +max(0, 1 − r) − 2.

(4)

1

2

‖‖‖v
2‖‖‖ + C

∑

i∶yi=−1

max(0, 1 + (vTxi + b)

+C
∑

i∶yi=0

max(0, 1 + (vTxi + b))

+C
∑

i∶yi=1

max(0, 1 − (vTxi + b))

+C
∑

i∶yi=0

max(0, 1 − (vTxi + b)).

�(r) = �(r) −max(0, 1 + r) −max(0, 1 − r).

C
∑

i∶yi=0

�(vTxi + b)

− C
∑

i∶yi=0

max(0, 1 + (vTxi + b))

− C
∑

i∶yi=0

max(0, 1 − (vTxi + b))

= C
∑

i∶yi=0

�(vTxi + b)

= C
∑

i∶yi=0

(−2) = −2C ⋅ card(X0),

Observe, that by the above theorem we can reduce the 
problem of minimizing of the cost function for SVM[−1,1] to 
the problem of minimization of SVM for slightly modified 
dataset. Namely, we double the examples of the neutral class 
and add them to positive as well as to negative class.

4 � Experiments

We evaluated our methods on several classification prob-
lems and compare the results with related methods. We used 
examples retrieved from UCI repository [3] and real datasets 
of chemical compounds [13].

All experiments were performed with a use of double 
fivefold cross-validation. In this approach, we randomly par-
titioned a dataset into five equally sized subsets. Then, a sin-
gle subset was retained as test data while the remaining four 
subsets were used in training. This process was repeated five 
times—each of five subsamples was used exactly once as the 
test data, and the results were averaged. To tune hyperpa-
rameter C, we applied analogical procedure on each training 
set: it was again divided into five parts, where one was used 
as validation set, while other four parts were used in train-
ing. We checked the range C ∈ {0.1, 1, 10, 100} and choose 
the this value of C, which provided the best average score 
reported on validation set to train a final classifier.

4.1 � Binary classification of UCI datasets

First, we have evaluated the proposed methods in binary 
classification task. For this purpose, two datasets from UCI 
repository were selected. The first one, Heart Disease, refers 
to the presence of heart disease in the patients. The chance 
of illness was quantified by an integer value ranging from 0 
to 4. We identified a negative class by a number 0 (no dis-
ease) while the positive class was linked with numbers 3 and 
4 (high level of disease). For a neutral class, we used inter-
mediate values 1 and 2. The second dataset, Housing, con-
cerns housing values in suburbs of Boston. The prices lower 
than 220,000$ were linked with a negative class, the prices 

Table 1   Summary of data used in the experiments

a We consider two representations of chemical compounds: estate con-
sists of 79 attributes, while extended contains 1024 features

Dataset X−1 X0 X+1 # features

Heart disease 164 91 48 13
Housing 277 108 121 13
5-HT1a 1057 1486 3575 79/1024a

5-HT6 351 456 1363 79/1024a
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greater than 260,000$ denoted a positive class, while the 
neutral class covered rest of values5, see Table 1 for details.

We investigated whether the presence of neutral class 
could help to obtain a better binary prediction. The classi-
fier was trained on a dataset containing instances of positive, 
negative and neutral class and then tested on the set of exam-
ples of positive and negative classes only. We compared 
the results returned by SVM{0} and SVM[−1,1] with classi-
cal SVM, which ignores the neutral class and with S3VM, 
which treats the examples of neutral class as unlabeled data 
(both implemented in SVMlight [17]).

We reported the mean value of Matthews Correlation 
Coefficient (MCC), which illustrates a type of correlation 
between prediction and ground truth [11]. It ranges from 
− 1 to 1; the values ± 1 mean perfect positive or negative 
correlation, respectively, while 0 denotes no correlation. 
The main reason for choosing MCC, instead of classical 
accuracy, was the fact that MCC is also a good measure for 
imbalanced datasets.

It is evident from the results placed in Table 2 (first two 
rows) that the introduction of the neutral class improved the 
performance of SVM. Moreover, our methods outperformed 
S3VM in the case of Housing dataset, which means that it 
is also important to identify the neutral class, not only to 
include additional examples to the training process. This 
experiment suggested that the strategy of incorporating the 
neutral class used by SVM[−1,1] is more profitable than the 
one applied by SVM{0}.

4.2 � Detection of active compounds

To investigate deeper the influence of the introduction of 
neutral class on the performance of binary classification, we 
considered two real datasets of chemical compounds. Before 
presenting the results, let us first describe the problem from 
chemical point of view. Chemical compounds are often rep-
resented as fingerprints, i.e., binary sequences which encode 
their selected structural features. Since different features 
can be taken into account, then a multitude of fingerprints 
were introduced. In the present study, we used Extended 

fingerprint (Ext), which consists of 1024 bits and is consid-
ered as one of the most powerful representations [36].

The task undertaken in this experiment concerned the 
identification of compounds acting on two biological recep-
tors 5-HT1a and 5-HT6, the proteins responsible for the 
regulation of central nervous system [22]. Compounds clas-
sified by a learning system as active in virtual screening pro-
cess are usually further examined, and the most promising 
ones could be used in drug designing. The activity level is 
measured by a positive real valued number Ki: if Ki ≤ 100,  
then a compound is active, Ki > 1000 describes inactive 
compounds, while the compounds with 100 < Ki ≤ 1000 
are not classified to any of these groups and they are usually 
eliminated from a training stage. Table 1 presents details 
about chemical datasets.

In this experiment, we tested whether the introduction of 
compounds with intermediate activity levels allows to obtain 
better classification results. The experiment was conducted 
in the same manner as in previous subsection. The results 
presented in Table 2 (last two rows) show that SVM[−1,1] per-
formed better than SVM{0} in the case of high-dimensional 
binary data. Moreover, SVM[−1,1] also gave higher MCC 
scores than SVM and S3VM for both datasets.

4.3 � Chemical space exploration

As mentioned in previous subsection, compounds acting on 
a given biological receptor could be used in drug construc-
tion. However, in practice drug should act only on a single 
receptor. If a compound activates more than one target, then 
it often causes side effects. Therefore, we aim at finding such 
compounds which are active on one receptor and simultane-
ously are inactive on the other.

In this experiment, we would like to check out whether 
a decision boundary constructed for one biological target 
allows to separate compounds with respect to their activity 
on other target as well. More precisely, we trained a classi-
fier making use of actives, inactives and compounds with 
intermediate activity for one receptor and then test the per-
formance of constructed decision boundary in separating 
active and inactive compounds with respect to the second 
receptor. In this experiment, we included one more finger-
print, Estate fingerprint (Est), which contains only 79 bits 
and is considered as a basic fingerprint representation [15].

The results presented in Fig. 3 show that decision bound-
aries obtained from classical SVM and SVM[−1,1] for one 
receptor do not provide any significant information about the 
activity with respect to the second protein. The interesting 
thing is that such a substantial knowledge can be explored 
by SVM{0}. Negative MCC scores indicate that there is a 
negative correlation between predictions and ground truth. 
In other words, the compounds acting on the second recep-
tor are located on the same side of decision boundary 

Table 2   MCC scores reported on test sets for binary classification 
task

Bold values indicate the best result for each data set

Dataset SVM S3VM SVM{0} SVM[−1,1]

Heart disease 0.75 ± 0.02 0.80 ± 0.01 0.78 ± 0.02 0.80 ± 0.01
Housing 0.85 ± 0.02 0.83 ± 0.02 0.87 ± 0.01 0.87 ± 0.04
5-HT1a (Ext) 0.59 ± 0.02 0.59 ± 0.01 0.58 ± 0.01 0.62 ± 0.02
5-HT6 (Ext) 0.77 ± 0.02 0.74 ± 0.02 0.75 ± 0.01 0.77 ± 0.01

5  We also considered different thresholds for defining neutral class, 
but the results were similar the those presented in this paper.
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constructed by SVM{0} as the compounds inactive on the 
first receptor and conversely. Consequently, we found that 
the introduction of neutral class allowed to explore larger 
region of chemical space.

4.4 � Three‑class classification

Since both SVM{0} and SVM[−1,1] learn from the examples 
of three classes, we investigated their capabilities in 3-class 
classification problems. For simplicity, we assumed the fol-
lowing classification rule6 for an instance x:

•	 if vTx + b >
2

3
    then class (x) = +1.

•	 if vTx + b < −
2

3
    then class (x) = −1.

•	 otherwise,    class (x) = 0.

Proposed approaches were compared with one-vs-one and 
one-vs-all variants of classical SVM.

We considered two datasets of chemical compounds from 
previous subsections in Extended fingerprint and Estate fin-
gerprint representations. The goal was to predict actives, 
inactives and compounds with intermediate activity. Since 

we are dealing with multi-class problem, the results were 
measured by the accuracy, which is well defined for any 
number of classes [11].

The results placed in Table 3 show that SVM[−1,1] gave 
comparable accuracy to one-vs-one SVM strategy. On the 
other hand, both proposed methods outperformed one-vs-
all variant which occurred non-adequate in this example of 
data. It is worth to mention that SVM[−1,1] and SVM{0} build 
a single classification model while comparative approaches 
contain three different base SVM classifiers.

4.5 � Comparison with SVM‑rank

One can say that the proposed methods try to order the 
instances of underlying three classes along the vector normal 
to the decision boundary. In particular, if any disagreement 
occurs then the model is penalized7. This is similar to the 
reasoning used in ranking methods. Clearly, ranking tools 
have much wider applicability and allow to learn from any 
ranking, not only from ranking generated by 3-class prob-
lem. However, they are usually slow because all possible 
pairwise relations are considered.

To compare our methods with SVM-rank [19] in preserv-
ing the order generated by 3-class problem, we assumed that 
any instance from negative class precedes examples of neu-
tral class which in turn precede elements of positive class. 
We assumed that elements of the same class are not com-
parable. To measure the ranking performance, we count the 
number of comparable pairs, which lie in the correct order 
after classification and normalize it by the total number com-
parable pairs. This index which we call Rank-acc, can be 
seen as ranking accuracy.

The results presented in Table 4 show that the high-
est number of correctly ordered pairs was obtained by 
SVM[−1,1]. As mentioned SVM[−1,1] tries to keep instances 
of every class within disjoint regions of the space. There-
fore, every disagreement is automatically penalized by the 
model. On the other hand, the performance of SVM{0} was 
comparable to SVM-rank. Let us observe in Fig. 4 that 
SVM-rank tried to find such a vector (normal to decision 

Fig. 3   MCC scores in the case when the classifier was trained on one 
receptor and tested on the other

Table 3   Accuracies of three-class classification of chemical com-
pounds datasets

Bold values indicate the best result for each data set

Dataset One-vs-one One-vs-all SVM{0} SVM[−1,1]

HT1a (Est) 0.62 ± 0.02 0.49 ± 0.01 0.62 ± 0.02 0.63 ± 0.02
HT1a (Ext) 0.67 ± 0.02 0.62 ± 0.01 0.62 ± 0.0260.65 ± 0.02

HT6 (Est) 0.68 ± 0.02 0.62 ± 0.01 0.63 ± 0.02 0.68 ± 0.02
HT6 (Ext) 0.77 ± 0.02 0.75 ± 0.02 0.63 ± 0.020.76 ± 0.01

Table 4   Relative number of correctly ordered elements of three-class 
problem

Bold values indicate the best result for each data set

Dataset SVM-rank SVM{0} SVM[−1,1]

HT1a (Ext) 0.63 ± 0.02 0.62 ± 0.01 0.66 ± 0.02
HT6 (Ext) 0.82 ± 0.02 0.83 ± 0.02 0.87 ± 0.01

7  Clearly, a penalty can be also given if the ordering along the nor-
mal subspace agrees, but instances are not localized within assumed 
margins.

6  One could also find an optimal threshold in a cross-validation pro-
cedure.
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boundary) which allows to arrange (project) data in a wide 
range of one-dimensional subspace. This is characteristic 
to ranking methods. Although SVM[−1,1] projected data 
onto eight times lower range, its specialization to 3-class 
problems provided higher rate of ordering.

5 � Conclusion

In this paper, we discussed two versions of Tri-Class SVM 
to take into account the information contained in addi-
tional neutral class. Although both methods add a penalty 
for an inappropriate classification of instances of neutral 
class, the difference lies in their understanding of miss-
classification. SVM{0} uses more restrictive strategy and 
penalizes the model if an example of neutral class does 
not lie on a decision boundary, while in SVM[−1,1] we try 
to locate the elements of neutral class within the margin.

We examined proposed approaches in practical classi-
fication tasks. We showed that SVM[−1,1] can be useful in 
improving binary classification by including instances of 
the neutral class. The reasoning used in designing SVM{0} 
is different from a typical one used in most binary clas-
sifiers, as the neutral class can dominate the presence of 
positive and negative ones. The classifier is guided by 
the location of neutral class stronger than in the case of 
SVM[−1,1]. This unusual strategy allows to explore less 
common regions of data and obtain surprising results. 
In particular, we demonstrated that a decision boundary 
created for one biological target of chemical compounds 
could be used to classify compounds characteristic for the 
other protein. Such behavior could be useful in detecting 
potential drug candidates.
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