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• Mariusz Kapruziak1

• Bogdan Olech1

Received: 13 April 2015 / Accepted: 20 December 2016 / Published online: 7 January 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Under study is an application of Ground Pene-

trating Radar (GPR) to landmine detection problem. We

focus on the detection of antitank mines carried out in the

3D GPR images, so-called C-scans, by means of a machine

learning approach. In that approach, we particularly pursue

a technique for fast extraction of image features based on

an initial calculation of multiple integral images. This

allows later to calculate each feature in constant time,

regardless of the scanning window position and size. The

features we study are statistical moments formulated in

their 3D variant. We present a comparison of detection

results for different sizes and parameterizations of feature

sets. All results are obtained from a prototype GPR system

of our original construction in terms of both hardware and

software.

Keywords Ground Penetrating Radar � Landmine

detection � Fast features extraction � 3D statistical

moments � Multiple integral images

1 Introduction

In the last decade GPR technology has emerged as a

popular research topic. Fields, where GPR applications are

being considered or already successfully present, are quite

miscellaneous: construction industry, archeology, sedi-

mentology, military technology—to mention a few

[11, 21, 24].

It is worth explaining that there are three main types of

GPR images (radargrams). The simplest variant is an

A-scan, being a single GPR profile defined over the time

axis only (directed inwards the ground). A linear collection

of A-scans along some direction forms a B-scan. A col-

lection of A-scans over a certain area, which also can be

treated as a linear collection of B-scans, forms a C-scan,

i.e., a three-dimensional image, with coordinates system

typically defined as across track � along track � time. The

time axis can be intuitively associated with the depth.

In general, any buried objects, which are non-transpar-

ent to GPR waves, produce in C-scans the patterns being

combinations of hyperboloids (resembling bowl-like

shapes). For metal landmines at least two strong hyper-

boloids are usually visible, related to top and bottom sur-

faces of the mine casing. On the other hand, plastic mines

are typically less clearly visible in the image. They produce

thinner and more subtle shapes in radargrams. Sometimes,

more details of a mine and its casing can be seen (rendered

as smaller hyperboloids), but this depends on several

aspects like: antenna system, GPR bandwidth, C-scan

resolution, soil type and humidity, mine sizes and ground

clutter. Figure 1 presents two examples of C-scans gener-

ated by our GPR system and detections of antitank (AT)

landmines in them.

As regards algorithmic approaches to mine detection

task met in the literature, one should look at them keeping
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in mind a distinction between two stages: (1) features

extraction and (2) learning and classification algorithms.

As regards the latter, quite many state-of-the-art methods

have been tried out, e.g., Naive Bayes and LVQ in [6],

neural networks in [10], least squares curve fitting in

[9, 26], HMMs in [14, 17, 26] or ensemble classifiers in

[12, 22]. Yet, it seems, in general, that the final success is

less dependent on the choice of learning algorithm and

more dependent on the quality of images and features

extracted from them.

It is worth to mention that the process of features

extraction for GPR applications is often accompanied by

auxiliary techniques, such as hyperbola or ellipse detection.

In order to reduce hyperboloids to hyperbolas or ellipses,

the C-scans must be preprocessed and suitable B-scans or

time slices must be selected out. For example, Milisavl-

jević et al. [16] detected hyperbolas via Hough transform.

Zhu and Collins [26] used polynomial curve fitting. Later,

hyperbola characteristics or polynomial coefficients served

as features for machine learning. In [26], authors measured

also (as additional features) the intensities of diagonal and

antidiagonal edges of hyperbolas. As regards the features

that can be extracted from ellipses in time slices, Yarovoy

et al. [25] measured e.g., horizontal position (from ellipse

center), dielectric permittivity of the ground (from the

increase in ellipse size), depth of burial (from time delay

and calculated ground permittivity).

1.1 Motivation and contribution

The main motivation for our research was to work

directly on C-scans and thereby to focus on features

describing three-dimensional shapes. Obviously, a dense

scanning/detection procedure carried out over a 3D image

of high resolution is computationally expensive, because

for every position of the scanning window calculations

related to features extraction and classification must be

performed.

In this paper we make an attempt to apply statistical

moments as features. Various applications of 2D statistical

moments are known from computer vision—quite many of

them met in the field of optical and handwritten character

recognition, see e.g., [1, 4], but also in a general object

detection setting [7, 13]. We want to check the applica-

bility of 3D statistical moments to landmine detection.

The main contribution of the paper is an idea to speed up

the extraction of moments for each image window by

means of multiple integral images, calculated once, prior to

the detection procedure. One may come across publications

where a similar idea is applied in 2D cases, especially in

the context of variance or covariance calculations [19, 20].

Yet for some reasons, statistical moments of still higher

orders, supported by integral images, can hardly be met,

although the technique can be extended in a straightfor-

ward manner. We derive suitable formulas in the paper.
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Fig. 1 Two examples of landmine detections in our GPR system: metal AT mine (top row), plastic AT mine (bottom row). The scene with the

plastic mine contains additionally a metal box with cables, serving as a distraction object for the detector
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1.2 Organization of this paper

The rest of this paper is organized as follows. Section 2

pertains to computational aspects of statistical moments in

the context of detection tasks. In Sect. 2.1 we shortly review

the so-called central statistical moments and define their 3D

variant suitable for our images. Section 2.2 demonstrates the

main contribution of the paper, namely, the technique to

extract the moments fast—in constant time. Sections 2.3 and

2.4 discuss some technical details related to the contribution,

such as: preparation of integral images and generation of

features by windows partitioning, respectively. Section 3 is

the experimental section. It describes an application of the

proposed method to landmine detection based on GPR, in

particular: the hardware of our prototype radar, measure-

ments collected from different scene variations, feature

spaces and data sets, and the machine learning setup. Finally,

the section discusses results of tests (10-fold cross-valida-

tion) with the focus on: error rates, ROC1 curves and time

performance. Section 4 summarizes the paper.

Additionally, we encourage the reader to study Appen-

dix 1, in which we compare our results against the ones

obtained on the same learning material by a benchmark

method due to Torrione et al. [22].

2 Statistical moments and integral images

2.1 3D statistical moments

A good intuition on statistical moments (working as image

features in recognition or detection tasks) can be gained by

thinking first of moments for continuous probability dis-

tributions. For the 2D case the central continuous moments

weighted by a density function f are

lp;q ¼
Z1

�1

Z1

�1

x� l1;0
� �p

y� l0;1
� �q

f ðx; yÞ dx dy; ð1Þ

where p, q define the moment order variable-wise, and here

pþ q� 2; the moments of order one are

l1;0 ¼
Z1

�1

Z1

�1

xf ðx; yÞ dx dy; ð2Þ

l0;1 ¼
Z1

�1

Z1

�1

yf ðx; yÞ dx dy: ð3Þ

As regards moments for images, the integrals are replaced

by sums weighted by pixel intensities (instead of a density).

In the setting of our landmine problem, we firstly need

to account for the 3D case we have, and secondly we need

to define moments for image windows (cuboids) not the

whole images. Thus, we shall define 3D normalized central

moments independent of the window position and size.

Let i denote the 3D image function (a C-scan). The point

value i(x, y, t) represents the image intensity over coordi-

nates (x, y) for the time moment t. For a window spanning

from ðx1; y1; t1Þ to ðx2; y2; t2Þ we define the moments of

interest as follows

lp;q;r
x1;y1;t1

x2;y2;t2

¼
X

x1�x�x2

X
y1�y�y2

X
t1�t�t2

x�x1

x2�x1

�l1;0;0

x1;y1;t1

x2;y2;t2

0
BB@

1
CCA

p

y�y1

y2�y1

�l0;1;0

x1;y1;t1

x2;y2;t2

0
BB@

1
CCA

q

t� t1

t2� t1
�l0;0;1

x1;y1;t1

x2;y2;t2

0
BB@

1
CCA

r

�iðx;y;tÞ=S;

ð4Þ

where S¼
P

x1�x�x2

P
y1�y�y2

P
t1�t�t2

iðx;y;tÞ, and the

moments of order one are

l1;0;0 ¼
X

x1 � x� x2

X
y1 � y� y2

X
t1 � t� t2

x� x1

x2 � x1

� iðx; y; tÞ
S

; ð5Þ

l0;1;0 ¼
X

x1 � x� x2

X
y1 � y� y2

X
t1 � t� t2

y� y1

y2 � y1

� iðx; y; tÞ
S

; ð6Þ

l0;0;1 ¼
X

x1 � x� x2

X
y1 � y� y2

X
t1 � t� t2

t � t1

t2 � t1
� iðx; y; tÞ

S
: ð7Þ

We remark that the aforementioned normalization is rela-

ted to the presence of terms ðx� x1Þ=ðx2 � x1Þ (similarly

for y, t), due to which our moments take values in the

½�1; 1� interval.

2.2 Calculations of moments via integral images

Let us now reformulate the moments in terms of integral

images and their growths. First, we define a general 3D

integral image iip;q;r (of order pþ qþ r) as

iip;q;rðx; y; tÞ ¼
X

1� j� x

X
1� k� y

X
1� l� t

xpyqtriðx; y; tÞ: ð8Þ

We give an induction algorithm to calculate iip;q;r in the

next subsection.

Next, it is useful to define the growth operation for

integral images. Growths shall later serve as an economic

way (constant time) to calculate sums of suitable moment-

related terms weighted by pixel intensities in image win-

dows. In the 3D case, growths can be expressed using only 8

elements of the integral image. For a window spanning from

ðx1; y1; t1Þ to ðx2; y2; t2Þ the growth can be defined e.g., as1 Receiver Operating Characteristics.
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Dx1;y1;t1

x2;y2;t2

ðiiÞ¼ iiðx2;y2;t2Þ� iiðx1�1;y2;t2Þ

� iiðx2;y1�1;t2Þþ iiðx1�1;y1�1;t2Þ

�
�
iiðx2;y2;t1�1Þ� iiðx1�1;y2;t1�1Þ

� iiðx2;y1�1;t1�1Þþ iiðx1�1;y1�1;t1�1Þ
�
;

ð9Þ

where ii stands for some integral image.

The following proposition constitutes the main algo-

rithmic contribution of the paper.

Proposition 1 Given a maximum order N � 0 of moments,

suppose the set of integral images fiip;q;rg, 0� p; q; r�N,

defined as in (8), has been calculated prior to the detection

procedure. Then, for any cuboid in the image, spanning

from ðx1; y1; t1Þto ðx2; y2; t2Þ, each of its statistical moments
can be extracted in constant time—O(1)—regardless of the

number of pixels within the cuboid, as follows:

lp;q;r
x1;y1;t1

x2;y2;t2

¼ 1

Dx1;y1;t1

x2;y2;t2

ðii0;0;0Þðx2�x1Þpðy2�y1Þqðt2� t1Þr

�
Xp
j¼0

Xq
k¼0

Xr

l¼0

ð�1Þpþqþr�j�k�l p

j

� �
q

k

� �
r

l

� �

� x1þl1;0;0

x1;y1;t1

x2;y2;t2

ðx2�x1Þ

0
BB@

1
CCA

p�j

� y1þl0;1;0

x1;y1;t1

x2;y2;t2

ðy2�y1Þ

0
BB@

1
CCA

q�k

� t1þl0;0;1

x1;y1;t1

x2;y2;t2

ðt2� t1Þ

0
BB@

1
CCA

r�l

�
X

x1�x�x2

X
y1�y�y2

X
t1� t�t2

xjyktliðx;y;tÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D
x1;y1;t1

x2;y2;t2

ðiij;k;lÞ

:

ð10Þ

Proof The proof is in fact a straightforward derivation

from formula (4). First, the means (moments of order one),

that are present under powers, should be multiplied by

suitable unity terms: l1;0;0
� � x2�x1

x2�x1
, l0;1;0

� � y2�y1

y2�y1
, l0;0;1

� � t2�t1
t2�t1

.

This allows to extract the denominators and form the

normalizing constant 1= ðx2 � x1Þpðy2 � y1Þqðt2 � t1Þrð Þ in

front of the summation. Then, the powers are expanded by

means of the binomial theorem, grouping the terms into the

ones dependent on the current pixel index (x, y, t), namely

the terms: xjyktl, and the ones independent of it. Finally, by

changing the order of summations one arrives at the

equivalent formula (10). The underbrace indicates how the

expensive summation over all pixels in the cuboid is

replaced by the constant-time computation (cheap) of the

growth of a suitable integral image: D x1; y1; t1
x2; y2; t2

ðiij;k;lÞ. Note

also that the required normalizer S is calculated by the

growth of the zero-order integral image

S ¼ D x1; y1; t1
x2; y2; t2

ðii0;0;0Þ. h

For the sake of strictness, we should remark that though

the calculations involved in (10) are constant time with

respect to the number of pixels in a cuboid, they are

polynomial with respect to the given moment order, rep-

resented by p, q, r. More precisely, the total number of

operations is proportional to ðpþ 1Þðqþ 1Þðr þ 1Þ times

seven additions (or subtractions) involved in the growth

operator D x1; y1; t1
x2; y2; t2

ðiij;k;lÞ as defined in (9).

2.3 Derivation of integral images: induction

The algorithm 1, presented below, is a form of induction

and calculates any wanted 3D integral image iip;r;q from (8)

in a single image pass; i.e., in OðnxnyntÞ time, where nx �
ny � nt represents the resolution of a C-scan. Therefore, if

one imposes for the moments a maximal order N variable-

wise, i.e., 0� p; q; r�N, then there are ðN þ 1Þ3
integral

images to be calculated, and the overall cost becomes

O ðN þ 1Þ3
nxnynt

� �
.

Algorithm 1 Integral image induction.
1: create three arrays: iip,q,rnx×ny×nt , j jny×nt , kknt .
2: for x= 1, . . . ,nx do
3: for y= 1, . . . ,ny do
4: for t = 1, . . . ,nt do
5: a := i(x,y, t)xpyqtr
6: if t > 1 then
7: s := kk(t −1)+a
8: else
9: s := a
10: end if
11: kk(t) := s
12: if y> 1 then
13: s := s+ j j(y−1, t)
14: end if
15: j j(y, t) := s
16: if x > 1 then
17: s := s+ iip,q,r(x−1,y, t)
18: end if
19: iip,q,r(x,y, t) := s
20: end for
21: end for
22: end for
23: return iip,q,r
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2.4 Introducing more features by partitioning image

windows

Up to now, we have formulated (for simplicity) the

moments as being extracted from whole 3D windows.

Given N as the maximal order, this approach implies that

the total number of features is ðN þ 1Þ3
. Unfortunately,

that is also the number of integral images to be calculated,

which for a larger N may constitute a considerable time

cost. Recall that the calculation (10) of a single moment,

though independent of the number of pixels, scales with

p, q, r values. On the other hand, in practice we would like

to have many features for learning and the final description

of objects, e.g., of order 103 or 104—as it is common in

computer vision applications (for example in face detec-

tors). To resolve this problem we propose a simple oper-

ation of window partitioning.

Imagine a 3D window is partitioned into a regular m�
m� m grid of cuboids (later on in our GPR experiments,

we try out m ¼ 3 and m ¼ 5). The moments from now on

shall be extracted from each cuboid. This will allow us to

have a greater number of features, namely:

n ¼ m3ðN þ 1Þ3; ð11Þ

while keeping N (and implied extraction costs) fairly small.

An illustration of the partitioning operation is shown in

Fig. 2. Looking back at formula (10), one should under-

stand that from now on that, with the partitioning applied,

the coordinates x1; y1; t1 and x2; y2; t2 represent suit-

able bounding coordinates for a single cuboid within the

grid (not for the whole 3D window).

3 Measurements, experiments and results

3.1 GPR system and laboratory test stand

In our research project we have constructed a mobile GPR

platform shown in Figs. 3 and 4. The platform contains the

antenna system and a standard VNA (Agilent E5071C,

inside the black case) as the core of the GPR. Successive

B-scans are performed by the platform perpendicularly to

its movement. The motion of the platform is remotely

controlled by a joystick. Raw data from the scanning are

transferred to a host computer through WiFi. The host is a

standard PC with a server configuration (Xeon 2.4 GHz

2 � 8-core, 64-bit 24 GB RAM, 2 TB of disk space), also

equipped with an nVidia Tesla Quadro 6000 for extra

computing power and graphics acceleration.

Stepped frequency continuous wave modulation was

performed using sequentially generated commands of

S-Parameters measurement transmitted to the VNA for any

next frequency. Typically, for SFCW radars [18], the

amplitude/phase responses are gathered for each discrete

frequency transmitted. An appropriate number of these

frequencies, covering an effective bandwidth, is needed to

achieve required resolution for an A-scan. In our case the

effective bandwidth was 12.7 GHz and was limited by the

antenna system.

We use our own original antenna system. The trans-

mitting antenna is a form of the Vivaldi type [2], and the

receiving antenna has the shielded loop form [3]. The

Vivaldi antenna gives good efficiency and directivity

having a big enough aperture to cover a sufficient area with

homogeneous lighting of microwaves. The loop antenna

acts as a point field sensor with small internal ringing.

plastic AT mine
before burial

image window centered on mine
with partitioning grid marked on it

Fig. 2 Illustration of the partitioning grid for m ¼ 5

Fig. 3 Mobile GPR platform on in-door laboratory test stand

Fig. 4 Out-door test lane and exemplary B-scans of a mine along

track collected over gravel
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All the software for control, communication, learning

and detection has been implemented by us in the C# pro-

gramming language.

3.2 Measurements and scene variations

For convenience reasons, the main series of measurements

meant to constitute the learning material was performed in

in-door conditions over a container (of area � 1 m2) filled

with a garden type of soil. Nevertheless, we should remark

that our GPR vehicle has also been tested in out-door

conditions, performing scans over four types of soil: peat,

garden, sand, gravel. In all cases we managed to obtain

suitably clear images, see an example in Fig. 4.

The objects of interest were two AT landmines: a metal

one (TM-62M, height 128 mm, diameter 320 mm) and a

plastic one (PT-Mi-Ba III, height 110 mm, diameter

330 mm). In the measurements we have also included

negative objects, such as: metal cans and boxes, a large

metal box with cables, a large round metal disk, a long

metal shaft, a wooden box and building bricks. They were

meant as disruptions and potential sources of mistakes for

the detector. Examples of scanned scenes are depicted in

Fig. 5.

The elevation of the antenna over the ground varied

from 10 to 15 cm. As regards mine placements in the

scenes, we varied their depths of burial from � 0 cm (flash

buried) up to 15 cm and their inclination angles approxi-

mately in the range 0	 
 45	 in different directions. Mines

lying flat or almost flat (0	 
 15	) were however the most

frequent in the collected material (as it is their natural way

of placement).

We should mention that additionally we have experi-

mented with different variations related to the surface of

the ground after the objects were buried. Most of the scans

were taken with the surface naturally shaped, but we have

included also two other extremes: some scenes with the

surface flattened down unnaturally with a shovel, and some

scenes with unnaturally uneven surface with multiple

holes, knolls or canyon-like shapes. Some of these varia-

tions are shown in the most bottom row of Fig. 5. It is

known in GPR studies that strong surface variations may

cause significant changes in the image (especially for high

resolutions), propagating onto deeper time slices. Some of

such image changes might even be mistaken for an actual

object in an extreme case.

3.3 Experimental setup, data sets, learning

algorithm

As the learning material collected was a set of 210 C-scans

with a physical resolution of 1 cm (distance between two

closest A-scans) and image resolution of 92 � 91 � 512

(area of about 1 m2). The whole material (210 scans)

consisted of three groups: 70 scans with the metal mine

(and possibly other objects), 70 scans with the plastic mine

(and possibly other objects), 70 scans with non-mine

objects only.

After some preliminary experimentations, we have

decided to thoroughly test four sets of features (3D statis-

tical moments), implied by the following

parameterizations:

A. N ¼ 2, m ¼ 3 (total no. of features: n ¼ 729),

B. N ¼ 3, m ¼ 3 (total no. of features: n ¼ 1728),

C. N ¼ 2, m ¼ 5 (total no. of features: n ¼ 3375),

D. N ¼ 3, m ¼ 5 (total no. of features: n ¼ 8000).

We shall use the A, B, C, D naming of the feature sets

when reporting the results.

A 10-fold cross-validation scheme was introduced. In

every fold a testing pack consisted of: 7 metal mine scans,

7 plastic mine scans and 7 non-mine scans. Training packs

were suitably 9 times larger, each containing 189 scans.

Before the actual learning, each training pack was pro-

cessed in a batch manner (images traversed with a scanning

3D window) and transformed to a data set consisting of

multiple examples of positive and negative windows. The

scanning window was of dimensions:

wx ¼ 67 � wy ¼ 67 � wt ¼ 39, and the traversal procedureFig. 5 Examples of scanned scenes before burial and variations on

soil surface (bottom row)
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was of full density, i.e., with one pixel shifts for the win-

dow dx ¼ dy ¼ dt ¼ 1. Additionally, the window was

allowed to move partially outside the image for x, y vari-

ables, so that hyperbolic patterns of mines located near

image borders could be sampled more appropriately (more

centrally). Such overlaps onto the margins were set up to

be equal at most 15% of the scanning window widths.

Positive windows were memorized on the basis of positive

object coordinates in the images, which we kept registered

in an auxiliary file. Beforehand, the process of marking

(determining) these coordinates was done visually by a

human after each C-scan was taken (supervised learning).

We have introduced a 2-pixel tolerance around a target for

each x, y, t variable when memorizing positive windows.

For negative window examples we had to use undersam-

pling due to their great number. Please note that the

majority of negative windows are repeated examples of the

ground background, similar among each other; therefore,

there is no need to memorize all of them. Such proceedings

resulted in generation of large training sets with approxi-

mately 10 000 positive and 90 000 negative window

examples for each cross-validation fold.2

The large number of learning examples and large feature

spaces (up to 8000 features) made our machine learning

settings similar to the ones known for example from training

of face or body detectors. Therefore, we limited our selection

of a learning algorithm only to boosting methods with sev-

eral simple weak learners. It is known that boosting is well

suited for large-scale data. Its properties like stagewise

progression and mathematical connections to logistic

regression make boosting strongly resistant to overfitting [8].

After initial experimentations with such algorithms as:

AdaBoost ? decision stumps, AdaBoost ? bins, RealBoost

? normal approximations, RealBoost ? bins, RealBoost ?

decision trees, we have finally decided for that last variant.

Observed error rates and ROC characteristics indicated that

the RealBoost with decision trees was suited best for the

characteristics of our GPR data. We have implemented

shallow trees with at most 4 terminal nodes, trained by

means of the well-known Gini index as the impurity cri-

terion [8, 15, 23]. The final ensembles (for each CV fold)

consisted of 600 weak classifiers.3 This potentially made

the ensemble use at most 1800 features, since each 4-ter-

minal tree involves three inequality tests. In practice we

have observed that about 1500 distinct features were pre-

sent in an ensemble after the learning was finished.

To speed up the boosting procedure itself, we have also

implemented the weight trimming technique described in

[8]. After this modification the learning times for the most

numerous features set D (8000 features) were � 2:0 h per

fold, as opposed to � 35 h without weight trimming.

3.4 Results

For each set of features we have trained two separate

detectors, one aimed to detect only the metal mine—let us

refer to it in short as the ‘‘metal detector’’—and the sec-

ond aimed to detect only the plastic mine—the ‘‘plastic

detector’’.4 At the testing stage, both detectors have been

run separately on every test image.

Detailed results of cross-validation are gathered in Table 1.

In the table, cells reporting percentages of correct positive

detections are marked with a ‘‘sensitivity’’ label, while cells

reporting percentages of incorrect positive detections are

marked with a ‘‘FAR’’ label (false alarm rate). We distinguish

two types of false alarms: (1) proper false alarms—e.g., when

a plastic mine or a non-mine object is detected incorrectly as a

metal mine (or vice versa), (2) side false alarms—e.g., when

some window in the image gets detected as a positive one,

however it is not correctly focused on a positive object but

rather on its side traces or deeper time slices (‘‘echos’’ of a

mine). The second type can be regarded as non-dangerous false

alarms, since they accompany the actual correct detections.

In Fig. 6 we show a comparison of ROC curves for

different sets of features, averaged over all CV folds. The

curves are calculated at the windows level of detail,

i.e., each window example is treated as a separate object

under detection. In the plot, ranges for both sensitivity and

FAR axes were purposely narrowed down to show better

the differences between the curves. In the plot legend we

also report the AUC5 measures. AUC0:1 represents the

normalized area obtained up to the FAR of 0.1—this

indicates how fast the curve grows in its initial stage (a

property important in detection tasks6). The AUC notation

2 A 2-pixel tolerance sidewise (along each coordinate) was intro-

duced for the scanning window with respect to a positive target. That

is, a single landmine target was typically represented in the training

set by a cluster of 125 slightly shifted windows.
3 The finally selected number of weak classifiers (600) was evolved

experimentally, based on observing ROC curves and their AUC

measures. The tempo of improvement in AUC measures was

negligible after that point, and it made little sense to add more weak

classifiers.

4 Such an approach was dictated by substantially different responses

(traces) produced in radagrams by metal and plastic AT mines, see

example in Fig. 1. By analogy, a combined single ‘‘face or hand’’

detector would be prone to perform worse than individual ‘‘face-

only’’ or ‘‘hand-only’’ detectors.
5 Area under the ROC curve.
6 The operating decision threshold of any detector is typically set up

to be high (resides in the initial part of an ROC) in order to reduce the

number of windows switched on falsely. Obviously, this reduces also

the sensitivity, but since a cluster of multiple windows (125 in our

case) represents a single mine target, it is sufficient that the procedure

detects at least one window in a cluster. When multiple windows

lying in close vicinity are detected, they are grouped to be displayed

as a single one (a typical postprocessing step in computer vision).
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Table 1 Cross-validation results for different sets of features

Metal detector Plastic detector

Object type Detected as

metal mine

Additional side

false alarms

Object type Detected as

plastic mine

Additional side

false alarms

Features set A ðn ¼ 729Þ
Metal mine 67=70 1/70 Metal mine 9 / 70 3 / 70

95:71% 1:43% 12:86% 4:29%

(Sensitivity) (FAR) (FAR) (FAR)

Plastic mine 1 / 70 0 / 70 Plastic mine 60=70 0 / 70

1:43% 0:00% 85:71% 0:00%

(FAR) (FAR) (Sensitivity) (FAR)

Other 13 / 70 0 / 70 Other 5 / 70 2 / 70

18:57% 0:00% 7:14% 2:86%

(FAR) (FAR) (FAR) (FAR)

Total FAR: 15=210 � 7:14% Total FAR: 19=210 � 9:05%

Features set B (n ¼ 1728)

Metal mine 66=70 1 / 70 Metal mine 8 / 70 2 / 70

94:29% 1:43% 11:43% 2:86%

(Sensitivity) (FAR) (FAR) (FAR)

Plastic mine 1 / 70 0 / 70 Plastic mine 63=70 0 / 70

1:43% 0:00% 90:00% 0:00%

(FAR) (FAR) (Sensitivity) (FAR)

Other 10 / 70 0 / 70 Other 7 / 70 1 / 70

14:29% 0:00% 10:00% 1:43%

(FAR) (FAR) (FAR) (FAR)

Total FAR: 12=210 � 5:71% Total FAR: 18=210 � 8:57%

Features set C (n ¼ 3375)

Metal mine 67=70 0 / 70 Metal mine 4 / 70 0 / 70

95:71% 0:00% 5:71% 0:00%

(Sensitivity) (FAR) (FAR) (FAR)

Plastic mine 1 / 70 0 / 70 Plastic mine 64=70 0 / 70

1:43% 0:00% 91:43% 0:00%

(FAR) (FAR) (Sensitivity) (FAR)

Other 4 / 70 0 / 70 Other 6 / 70 1 / 70

5:71% 0:00% 8:57% 1:43%

(FAR) (FAR) (FAR) (FAR)

Total FAR: 5=210 � 2:38% Total FAR: 11=210 � 5:24%

Features set D (n ¼ 8000)

Metal mine 68=70 0 / 70 Metal mine 5 / 70 0 / 70

97:14% 0:00% 7:14% 0:00%

(Sensitivity) (FAR) (FAR) (FAR)

Plastic mine 1 / 70 0 / 70 Plastic mine 65=70 0 / 70

1:43% 0:00% 92:86% 0:00%

(FAR) (FAR) (Sensitivity) (FAR)

Other 5 / 70 0 / 70 Other 7 / 70 1 / 70

7:14% 0:00% 10:00% 1:43%

(FAR) (FAR) (FAR) (FAR)

Total FAR: 6=210 � 2:86% Total FAR: 13=210 � 6:19%
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without a subindex stands for the area over the whole [0, 1]

range of FAR.

To comment on the results the following remarks can be

given. Overall, the results of ‘‘metal detectors’’ are

noticeably better than of ‘‘plastic detectors.’’ This is intu-

itive—responses of plastic mines produce more subtle and

weaker traces in images. Also as expected, more numerous

sets of features C, D performed much better than A, B sets.

In the case of ‘‘metal detectors,’’ this difference is visible

mainly in FAR values (the sensitivities remained close to

equal). For ‘‘plastic detectors,’’ the difference can be seen

both in sensitivity and FAR.

For the largest features set D the results were as follows.

The ‘‘metal detector’’ yielded a sensitivity of 68=70 �
97:14% and in total 6=210 � 2:86% false alarms. The

‘‘plastic detector’’ yielded the sensitivity of

65=70 � 92:86% and 13=210 � 6:19% false alarms. As

regards the reasons for misdetections, they were mainly

caused by mines placed with a significant inclination angle

(close to 45	). As regards the false alarms, their most fre-

quent sources were: the large metal disk (see the fourth row

in Fig. 5)—similar in size and shape to actual mines. Also,

a few false alarms occurred due to certain particular

arrangements of other objects, generating some resem-

blance to mines in the image. It is also fair to comment that

the material collected by us did not contain ‘‘empty square

meters’’ as it is often the case in out-door test lanes. By that

we mean square meters with no objects in the scans, just

the soil clutter. In our experiments, every scan (every

square meter) contained some object buried. Therefore, the

calculated false alarm rates should be regarded as overly

pessimistic and would be smaller in more realistic condi-

tions with fewer disruptive objects.

Thinking for a moment of the recognition task (rather

than detection) the results can be assessed as satisfactory.

The ‘‘metal detector’ mistook only once (1 / 70) a plastic

mine for a metal one, while the ‘‘plastic detector’’ was

slightly worse in this aspect—4 / 70, 5 / 70 mistakes,

respectively, for C and D sets of features.

3.5 Time performance of dense detection procedure

Table 2 summarizes the time performance of our detectors

measured on our CPU (Xeon 2:4 GHz 2 � 8 core). In the

table we report times both without and with parallelization.

We should remark that at the detection stage images

were scanned less densely (jumps of the window set to

dt ¼ 1, dx ¼ dy ¼ 2) than it was at the data acquisition

stage (dt ¼ dx ¼ dy ¼ 1). Moreover, we have restricted the

analysis only to a subinterval of time slices, for

t ¼ 381; . . .; 480, related to potential mine locations (sub-

surface or flash buried) with some overhead. Therefore,

unnecessary slices have been discarded. Despite these

reductions, our scanning loop should still be regarded as

computationally expensive, close to an exhaustive C-scan

traversal. The loop involved an analysis of approximately

34 000 windows (3D) and for each window the extraction

of features and the classification calculations (by 600

boosted decision trees) were performed. For the richest

features set D, the duration times of the overall detection

procedure were on average 13:7 s long per a C-scan. Given

the number of windows analyzed (�3:4 � 104), this yields

the mean time of analysis for a single window of

approximately 0:40 ms, which in our opinion is a satis-

factorily fast result.

The parallelization led to an about 7 times speed up with

respect to sequential calculation. The parallelized elements

were: calculation of multiple integral images and the main

scanning loop (coarse-grained). Yet, it is fair to add that

parallelization, as such, plays a minor role in the algo-

rithmic sense, and the crucial element is integral images.

We remind they allow for extraction of each statistical

moment in constant time, without the need to iterate over

all pixels in each 3D window [(formulas (9), (10)].

It is possible to give an estimate on time performance if

the calculations were to be carried out without integral

images. In that case the computational complexity is

O
�
ðnx � wx þ 1Þðny � wy þ 1Þðnt � wt þ 1Þ

� nf ðwxwywtcfe=p þ cd=f Þ
�
;

ð12Þ

where ðnx � wx þ 1Þðny � wy þ 1Þðnt � wt þ 1Þ accounts

for the maximum number of window positions, nf is the

number of features to be extracted, cfe=p represents the cost

of the extraction per single pixel and cd=f represents the

cost of detection (classification) procedure per single fea-

ture. Now, even with an optimistic setup of cfe=p ¼ 10�9s

and cd=f ¼ 10�9s and for 3:2 � 104 windows one may check

that the total time of detection procedure for a single

C-scan becomes7 approximately 8 900 s, thus almost 2.5

hours. Even after parallelization this time is inacceptable in

practice. Please note that owing to integral images one

simply avoids in (12) the term wxwywt which is propor-

tional to the number of pixels.

4 Summary

We have reported experimental results obtained by our

prototype GPR system for automatic landmine detection. In

this paper, we have focused more on computational aspects

7 Window widths set to wx ¼ wy ¼ 67, wt ¼ 39 and the number of

extracted features nf ¼ 1500 as we had on average with 600

4-terminal trees.
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of the application rather than the hardware ones. A par-

ticular attention has been given to fast extraction of

features

As the key contribution we regard the technique based

on multiple integral images allowing for constant-time

calculation of 3D statistical moments. The technique is

general and may be applied in computer vision applications

(detection tasks) other than ours.

As regards our specific GPR experiments, the technique

is helpful in two places. Firstly, at the data acquisition stage,

it allows us to generate very large sets of features to learn

from. In other words, the learning algorithm is given a rich

multitude of features and can look for a relevant subset

among them—i.e., such features that describe best the

hyperboloids related to mines. Secondly, at the detection

stage, we perform a dense traversal of a C-scan (analyzing

over 34 000 windows per � 1 m2) and the constant-time

extraction of each statistical moment allows us to carry out

the procedure within a reasonable time. Note that we pur-

posely perform no auxiliary operations like: preliminary

segmentation, hyperbola detection or prescreening.

The future research direction for us is a more through

experimental work. Up to now our results are promising,

but it is fair to remark they have been obtained on a fairly

small GPR material and with only two types of antitank

mines. We have strived to make this material more difficult

by introducing many disruptive objects. The future exper-

iments should include more mine types (antipersonnel

mines in particular), more soil types and various weather/

humidity conditions.
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Appendix: Benchmark based on HOG descriptor

In this section we report results obtained on our GPR data

by a selected benchmark method. It is a recent method,

published in 2014 in IEEE Trans. on Geoscience and

Remote Sensing by Torrione et al. [22]. At the features

extraction stage the authors of [22] apply the histogram of

oriented gradients (HOG). As the learning algorithm they

apply the random forest (RF), originally due to Breiman

[5]. Results reported in [22] come from a large US test site

of � 200;000 m2 area. The data included 2960 target

encounters (mine or other explosives) over 740 unique

targets (vehicle was driven four times over the same roads).

Reported were: � 95% sensitivity, � 0:0048FA=m2 FAR,

indicating the high effectiveness of the method. We first

describe briefly after [12, 22] how HOG features are

extracted; then, we report the results obtained on our data.

We programmed the benchmark in C# and integrated it

with our software.

HOG features

HOG features are 2D features based on gradient angle

distributions. The authors of [22] work with C-scans but

extract HOG features from B-scans, both across and along

track. For brevity, we give formulas only for the across

track case (x� t). The y� t case is analogical.

Let i(x, t) denote a B-scan under analysis. First, the

image is convolved with gradient estimation filters:

hx ¼ ð�1; 0; 1Þ, ht ¼ ð�1; 0; 1ÞT . Let gx ¼ i � hx, gt ¼ i �
ht represent gradient images. The gradient magnitude at

each pixel (j, k) is

Gðj; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx2ðj; kÞ þ gt2ðj; kÞ

p
: ð13Þ
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Fig. 6 Comparison of ROC curves (averaged over 10 CV folds) for

different sets of features and both types of detectors. The sensitivity

and FAR are calculated on the windows level of detail
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Now, for each pixel one should calculate the dominant

angle hðj; kÞ of the gradient. In [22], the authors discuss

two possibilities for the angle range: ½0; p� or ½0; 2pÞ. The

choice boils down to whether one wants to take the ori-

entation of the gradient vector into account or neglect it.

The true gradient points from a darker toward a lighter

image region, thus using the full ½0; 2pÞ angle range. Often

though, it is of little importance if an object is darker than

the background or vice versa. The authors of [22] choose to

follow this simplification and calculate the angle as

hðj; kÞ ¼ atan gtðj; kÞ=gxðj; kÞð Þ. This yields the angle

within ð�p=2; p=2Þ, by the definition of the atan function,

but can be shifted to ð0; pÞ for convenience.

For the purpose of comparison, in our experiments we

decided to test both possibilities for the angle range. In the

case of full ½0; 2pÞ range, the angle hðj; kÞ is calculated via

the atan2 function, commonly available in mathematical

libraries.

As remarked in [22], although individual hðj; kÞ and

G(j, k) can be highly variable (even for similar images),

their aggregate statistics over certain image regions (further

on referred to as cells) provide robust descriptors of those

regions. Consider a discretization of angles into nh bins of

equal width. Imagine that each pixel (j, k) votes for the bin

its angle hðj; kÞ belongs to, with the magnitude of vote

proportional to G(j, k). Then, the normalized sums of votes

provide the mentioned statistics.

Let the border angles of bins be defined as:

/l ¼ lp=nh; ð14Þ

/l ¼ l2p=nh � p=nh; ð15Þ

respectively, for the cases of ½0; p� and ½0; 2pÞ ranges. In the

second case we make the middle of the first bin (from /0 to

/1) coincide with the horizontal axis and take into account

the radial looping (e.g., the �p=nh angle corresponds to

2p� p=nh). The vote matrix of dimensionality nx � nt �
nh is:

Vðj; k; lÞ ¼
Gðj; kÞ; if /l�1 � hðj; kÞ\/l;

0; otherwise:



ð16Þ

Aggregation of votes over a particular cell c is done by

summations for each bin index l ¼ 1; . . .; nh:

H1ðc; lÞ ¼
X

ðj;kÞ2c Vðj; k; lÞ: ð17Þ

Finally, HOG values for each cell c are derived from H1

values via normalization taken over the set N(c) of cells

being immediate neighbors of c (a.k.a. a block of cells):

Table 2 Time performance for different feature sets (Xeon 2:4 GHz 2 � 8 core)

C-scan resolution with margins: 112 � 111 � 512; window resolution: 67 � 67 � 39; window jumps: dt ¼ 1, dx ¼ dy ¼ 2 time slices analyzed:

t ¼ 381; . . .; 480; no. of windows analyzed: � 3:4 � 104

Sequential computation Parallelized computation

Features set A (n ¼ 729)

27 Integral images calculation time 0:74 s 0.16 s

Detection procedure mean time 30:8 s 4.3 s

Detection procedure mean time per window 0:91 ms 0.13 ms

Detection procedure mean time per window per classifier’s feature 0:61ls 0:09 ls

Features set B (n ¼ 1728)

64 Integral images calculation time 1:87 s 0.31 s

Detection procedure mean time 74:6 s 11.1 s

Detection procedure mean time per window 2:19 ms 0.33ms

Detection procedure mean time per window per classifier’s feature 1:46ls 0:20 ls

Features set C (n ¼ 3375)

27 Integral images calculation time 0:74 s 0.18 s

Detection procedure mean time 57:9 s 8.5 s

Detection procedure mean time per window 1:7 ms 0:25 ms

Detection procedure mean time per window per classifier’s feature 1:13ls 0:17 ls

Features set D (n ¼ 8000)

64 Integral images calculation time 1:83 s 0.35 s

Detection procedure mean time 96:1 s 13.7 s

Detection procedure mean time per window 2:83 ms 0.40 ms

Detection procedure mean time per window per classifier’s feature 1:89ls 0:27 ls
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Hðc; lÞ ¼ H1ðc; lÞ
.X

cq2NðcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kH1ðcqÞk2

2 þ �2

q
; ð18Þ

where H1ðcÞ ¼ H1ðc; 1Þ; . . .;H1ðc; nhÞð Þ. The goal of nor-

malization is to introduce robustness to local ambient

changes.

As in [22], we impose a regular 4 � 3 grid of cells from

which to extract the features (4 locations for the spatial axis

x or y and 3 for the time axis). Overlapping regions of

3 � 3 cells constitute blocks for the normalization (18).

Since the extraction is repeated for B-scans (crossing the

middle of the scanning window) both across and along

track, the total number of features is twice the grid size

times the number bins: n ¼ 2 � 4 � 3 � nh. In other words, the

full vector of HOG features is a concatenation of H(c, l)

values for all cells, all bins and two B-scan orientations. In

tests we imposed: nh ¼ 9 for the ½0; p� angle range (as it is

the case in [22]) resulting in n ¼ 216 features; nh ¼ 36 for

the ½0; 2pÞ angle range, resulting in n ¼ 864 features. We

shall refer to these two cases as ‘‘variant I’’ and ‘‘variant

II,’’ respectively. In Figs. 7 and 8 we visualize HOG fea-

tures for the two variants. Analogical visualizations can be

found in [22].

Benchmark results and discussion

Training of the detectors (in each CV fold) was carried out

by the RF algorithm, with 100 trees as proposed in [22].

The trees in RF are not restricted by maximum depth

(contrarily to our approach). Tables 3 and 4 summarize the

CV results.

Overall, the results indicate an inferior performance of the

HOG?RF approach on our GPR data compared to the

approach based on 3D statistical moments (3D SM, for brev-

ity). To fix the attention we shall compare HOG?RF against

3D SM with the richest set of features D (Table 1, bottom).

As regards the ‘‘metal detector’’ case, the results were

noticeably worse: 66/70 sensitivity for HOG?RF variant II

(vs 68/70 for 3D SM) with 19/210 as the total FAR (vs

6/210 for 3D SM). As regards the ‘‘plastic detector’’ case

the results were clearly worse: 55/70 sensitivity for

HOG?RF variant II (vs 65 / 70) with 26/210 as the total

FAR (vs 13/210). In particular, the HOG?RF ‘‘plastic

detector’’ turned out to be susceptible to numerous side

false alarms.

One should not conclude from the results that the HOG-

based approach is in itself inferior to the approach based on

statistical moments. Rather, it is our GPR data that is

demanding due to: numerous disruptive objects, scenes

arranged to be difficult (some of with the purpose to gen-

erate a response resembling a mine) and lack of empty

scenes with no objects, just the soil. Possibly, the HOG-

based approach with the setup as was tested uses too few

features while learning to cope with these data—n ¼ 216

or n ¼ 864 as opposed to e.g., n ¼ 8000 in our richest

setup. It is thinkable that extraction of much more HOG

features from a greater number of B-scans (not only 2

middle ones), thus covering more of the 3D window, would

(a) (b) (c)

(d) (e) (f)

Fig. 7 Sample visualizations of HOG features over B-scans across

track with nh ¼ 9 angle bins and angles restricted to ½0; p�. a Metal

AT mine. b Plastic AT mine. c Soil clutter. d Metal box. e Metal disk.

f Looks like mine

(a) (b) (c)

(d) (e) (f)

Fig. 8 Sample visualizations of HOG features over B-scans across

track with nh ¼ 36 bins and angles restricted to ½0; 2pÞ (true

gradients). a Metal AT mine. b Plastic AT mine. c Soil clutter.

d Metal box. e Metal disk. f Looks like mine
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improve the results. Obviously, this would also increase

time costs (at least without integral imaging). Secondly,

one should realize that using more B-scans means in fact

taking more advantage of the 3D information and brings

the two approaches conceptually closer.

Table 5 reports on time performance for HOG detec-

tors. It demonstrates that though variant I (with 216 fea-

tures) is faster than our 3D SM approach, the variant II is

already much slower, and still uses barely 864 features as

opposed to about 1500 used in our approach at detection

stage.

In this context, it has not escaped our attention that the

HOG-based approach can also be speeded up by integral

images. For nh bins one would have to introduce 2nh
integral images cumulating votes (2 accounts for two

B-scan orientations). The formulas below demonstrate the

idea for the across track case:

iilðx; tÞ ¼
X

1� j� x

X
1� k� t

Vðj; k; lÞ; l ¼ 1; . . .; nh: ð19Þ

H1ðc; lÞ ¼ iil x2ðcÞ; t2ðcÞð Þ � iil x1ðcÞ�1; t2ðcÞð Þ
� iil x2ðcÞ; t1ðcÞ�1ð Þ þ iil x1ðcÞ�1; t2ðcÞ�1ð Þ;

ð20Þ

Table 3 10-fold cross-validation results for HOG?RF (variant I)

Metal detector Plastic detector

Object type Detected as metal mine Additional side false alarms Object type Detected as plastic mine Additional side false alarms

Metal mine 64=70 1/70 Metal mine 1/70 1/70

91:43% 1:43% 1:43% 1:43%

(Sensitivity) (FAR) (FAR) (FAR)

Plastic mine 2/70 0/70 Plastic mine 54=70 11/70

2:86% 0:00% 77:14% 15:71%

(FAR) (FAR) (Sensitivity) (FAR)

Other 19/70 1/70 Other 8/70 4/70

27:14% 1:43% 11:43% 5:71%

(FAR) (FAR) (FAR) (FAR)

Total FAR: 23=210 � 10:95% Total FAR: 25=210 � 11:90%

Table 4 10-fold cross-validation results for HOG?RF (variant II)

Metal detector Plastic detector

Object type Detected as metal mine Additional side false alarms Object type Detected as plastic mine Additional side false alarms

Metal mine 66=70 0/70 Metal mine 1/70 3/70

94:29% 0:00% 1:43% 4:29%

(Sensitivity) (FAR) (FAR) (FAR)

Plastic mine 2/70 0/70 Plastic mine 55=70 9/70

2:86% 0:00% 78:57% 12:86%

(FAR) (FAR) (Sensitivity) (FAR)

Other 17/70 0/70 Other 11/70 2/70

24:29% 0:00% 15:71% 2:86%

(FAR) (FAR) (FAR) (FAR)

Total FAR: 19=210 � 9:05% Total FAR: 26=210 � 12:38%

Table 5 Time performance of HOG?RF detectors

Parallelized variant I Parallelized variant II

Detection procedure mean time 4:7 s 21:2 s

Detection procedure mean time per window 0:14 s 0.62 s

Detection procedure mean time per window per classifier’s feature 0:64 ls 0:72 ls
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where x1ðcÞ; t1ðcÞð Þ and x2ðcÞ; t2ðcÞð Þ represent the coor-

dinates the cell c spans from and to. Preliminary tests

indicated that this idea reduces the total time (variant II)

from 21.2 to 2.9 s and the mean time per window � feature

to 0:10 ls.
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