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Abstract Car make and model recognition (CMMR) has

become an important part of intelligent transport systems.

Information provided by CMMR can be utilized when

license plate numbers cannot be identified or fake number

plates are used. CMMR can also be used when a certain

model of a vehicle is required to be automatically identified

by cameras. The majority of existing CMMR methods are

designed to be used only in daytime when most of the car

features can be easily seen. Few methods have been

developed to cope with limited lighting conditions at night

where many vehicle features cannot be detected. The aim

of this work was to identify car make and model at night by

using available rear view features. This paper presents a

one-class classifier ensemble designed to identify a par-

ticular car model of interest from other models. The

combination of salient geographical and shape features of

taillights and license plates from the rear view is extracted

and used in the recognition process. The majority vote

from support vector machine, decision tree, and k-nearest

neighbors is applied to verify a target model in the clas-

sification process. The experiments on 421 car makes and

models captured under limited lighting conditions at night

show the classification accuracy rate at about 93 %.

Keywords Car make and model recognition � Night � One-
class classifier ensemble

1 Introduction

During the past decade, car make and model recognition

(CMMR) has been an interesting research topic in intelli-

gent transport systems (ITS). CMMR could be a robust

method to significantly improve the accuracy and relia-

bility of car identification. More information can be drawn

from a CMMR system in terms of manufacturers, models,

shapes, and colors, etc., to help specify cars. This leads to

more accurate results, rather than using only a license plate.

In addition, CMMR can assist the police to detect sus-

pected or blacklisted cars, or unknown license plates, via

CCTV cameras in surveillance systems.

Many techniques have been presented in the past dec-

ade. The majority of the techniques are feature based. Low-

level features such as edge contour, geographical parame-

ters, and corner features are used in the process as well as

high-level features, for example, scale invariant feature

transform (SIFT), speeded up robust features (SURF),

pyramid histogram of gradient (PHOG), and Gabor fea-

tures. In some techniques, both low-level and high-level

features are combined. In addition, not only are many kinds

of feature used to classify CMM, but also several classifiers

have been explored in order to increase the recognition

rate.

The majority of previous studies have developed solu-

tions to the problem during daytime when most vehicle

features are visible. However, there are a few methods

designed to identify car makes and models at night.

However, the accuracies of those methods are rather low.

This paper presents a new CMMR method for scenes

under limited lighting conditions or at night. The proposed

method uses new feature selection methods and a one-class

classifier ensemble to recognize a vehicle of interest. At

night or under limited lighting conditions, cars’ front
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headlights tend to be on. Due to brightness and glare of

headlights, most important features captured using the front

view are, therefore, blurred or incomplete resulting in

serious recognition inaccuracy. Therefore, in this work, the

authors propose that a vehicle’s features, to be used in the

CMMR process, should be captured from the rear view

where features are less prone to brightness and glare.

Moreover, the distinctive shapes of a vehicle’s back lights

and the license plate position contain information which

can be utilized in the recognition process. A genetic

algorithm is then applied to select the most optimal subset

of features for the recognition process. To increase the

vehicle identification accuracy, the majority vote of three

classifiers is employed to classify the captured salient

features.

The following section describes related work including

background knowledge, past research techniques, and

contributions. The proposed system architecture and

methodology are presented in Sect. 3. The experiments and

results are shown in Sect. 4, followed by the conclusions in

the last section.

2 Related work and contributions

2.1 Related work

Over the past decade, many studies have been proposed for

CMMR. In previous techniques, feature-based approaches

have been commonly used, such as geographical feature

[1], edge-based feature [2, 3], histogram of gradient (HoG)

feature [4, 5] contour point feature [6], curvelet transform

feature [7], and contourlet transform feature [8, 9]. In

addition, some works used combinations of two features in

order to gain better results, for example, integration of

wavelet and contourlet features [10], and combination of

PHOG and Gabor features [11].

Other feature-based methods (called sub-feature based),

such as SIFT [12] and SURF [13, 14], are insensitive to

changes in object scales. They have demonstrated inex-

pensive computation time and high accuracy rate for object

recognition. A variety of classifiers have also been pro-

posed to class those features such as k-nearest neighbor

(kNN) [15], support vector machines (SVM) [16], neural

networks [17], Bayesian method [18], and ensemble

methods [11].

Baran et al. [13] presented a new recognition technique

to deal with real-time and non-real-time situations. SURF

features and SVM are implemented to identify car models

in real time. The accuracy rate of the recognition was

reported at 91.7 %. To increase the accuracy, they used the

combination of edge histogram, SIFT, and SURF features

to recognize CMM in off-line conditions. They reported the

accuracy rate of recognition at 97.2 %. Another method

was proposed by Zhang [11]. He presented the cascade

classifier ensembles which consist of two main stages. The

first is the ensemble of four classifiers: SVM, kNN, random

forest, and multiple-layer perceptrons (MLP) accepting

Gabor features and PHOG features. The outputs of the first

stage are accepted class and rejected class. The rejected

class from the previous process is sent for re-verification in

the second process. The second stage is implemented by

rotation forest (RF) of MLPs as components to predict the

unclassified subject. This method is reported with 98 %

accuracy rate over 21 classes. Last, Kafai and Bhanu [19]

presented a novel method in MMR using dynamic Baye-

sian networks. They use geographical parameters of the car

rear view, such as taillight shape, angle between taillight

and license plate and region of interest. The recognition

result was better than kNN, LDA, and SVM.

As mentioned earlier, CMMR offers valuable enhance-

ment to support additional information in car identification

systems. Even though the recognition rates of existing

methods are impressive with more than 90 % accuracy,

there are some serious drawbacks. Most algorithms only

work well under good lighting conditions, where most

vehicle features are visible, and without occlusions. As

stated in [20], most CMMR systems have difficulties in

limited lighting conditions, e.g., at night, and when all

vehicles’ features are not fully visible in the scene. In those

conditions, cameras cannot clearly capture the full

appearance of vehicles. Vehicles’ shapes, colors, headlight

shapes, grills, and logos may not correctly or fully appear

in the captured images or video resulting in recognition

inaccuracy.

To date, car model classification in limited lighting

remains challenging and requires more research to deter-

mine a better solution. Therefore, this work aims to present

a novel method to address the problem.

A number of works have presented solutions to vehicle

recognition in nighttime lighting conditions, for example,

driver assistance systems (DAS) [21–24] and vehicle type,

such as car, bus and truck classification at night [25, 26].

However, none of the works could fully perform CMMR

effectively. Under limited lighting conditions, accurate

image recognition is challenging due to the reduced num-

ber of visible features. Kim et al. [22] presented a multi-

level threshold to detect the head and tail spotlights for

DAS and applied the SVM classifier to distinguish the

characteristics of spotlights, such as the area and the dis-

tance between each blob. Moreover, time-to-collision

(TTC) is implemented in [23] to estimate the time before

car chasing after detecting the spotlight. Furthermore, rear

lamp detection and tracking by standard low-cost camera

were proposed in [24]. The author of the work optimized

the camera configuration for rear taillight detection and
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used Kalman filtering to track the rear lamp pair. In addi-

tion, several works dealt with vehicle recognition at night

by discriminating vehicle types. Gritsch et al. [25] pro-

posed a vehicle classification system at night using smart

eye traffic data sensor (TDS) for vehicle headlight detec-

tion and used a distance parameter between the headlight

pair to categorize the car-like and truck-like. The results

show that the classification error rate at night under dry and

wet road conditions is less than 6 %. Moreover, the

headlight diameter, headlight distance, and area of wind-

screen were employed to distinguish the vehicle class [26].

Most of the previous works are only used to localize the

car and recognize the vehicle type, but they do not classify

car make and model. This paper, therefore, presents a new

method which applies feature-based pattern recognition to

recognize car models at night or under limited lighting

conditions.

2.2 Contributions

The main contributions of this paper are as follows:

• This is the first proposed method to concentrate fully on

recognizing car make and model under limited lighting

conditions at night.

• This study presents the robust salient features at night

to recognize car models.

• This study proposes the new use of a one-class

classifier ensemble method of three traditional classi-

fiers to recognize the target car model from any other

models, which can improve classification accuracy.

3 Methodology

The aim of this research is to recognize a particular CMM,

such as suspected or blacklisted CMM in monitoring sys-

tems, such as surveillance or traffic law enforcement sys-

tems. This proposed method is designed to recognize a

specific CMM of interest, which will be a feasible strategy

to implement in real applications of law enforcement sys-

tems. For example, in method implementation, if suspected

car model (target car model) is reported, the method can be

used to automatically identify the same type of CMM in

CCTV cameras, instead of using humans to check all

CCTVs. A one-class classification (OCC) method seems to

be more appropriate than multi-class classification in this

problem. OCC is a binary classification method where only

data from one class are of interest or available [27]. This

class is called the target class. The other class, which is

called the outlier class, can be sampled very sparsely or can

be totally absent. It has been proven that classification

accuracy can be improved by using an ensemble of

classifiers [28]. In this research, an ensemble of three

classifiers, one-class SVM (OCSVM), decision tree (DT)

and kNN, is employed in the classification stage. We

choose three diverse classifiers which differ in their deci-

sion making and can complement each other to increase

classification accuracy. As mentioned earlier, OCC strat-

egy is employed in this research. The SVM technique

commonly classifies data into two classes and, therefore, is

an appropriate classifier for this problem. Other classifiers,

kNN and DT, are not exactly used for OCC problems, but

they can be adapted. kNN is the traditional classifier, which

reports a high classification rate [29]. For DT, although it

does not report a high recognition accuracy, it can fulfill

with fast prediction. DT and kNN are unstable classifiers

appropriate for the ensemble method [30]. The majority

vote of those classifiers is used to identify the vehicle of

interest.

The proposed system architecture is shown in Fig. 1.

The system consists of two processes: training and classi-

fication. As shown in Fig. 1, in the training process, target

and other car model images are input to the feature

extraction process which extracts features of interest. This

process includes a number of steps such as license plate

(LP) detection, taillight (TL) detection, and feature

extraction. After that, a feature subset selection is applied

in order to determine the optimal feature set for this par-

ticular target model. Last, the classifier is specifically

trained from parameters of obtained training data to iden-

tify this particular car model, and the final result is the

trained target car model which is utilized in classification

process. In the classification process, which is done in real

time, a stream of images from CCTV containing different

car models is considered. Each car image is performed the

similar steps as in training process: feature extraction,

feature selection, and classification. First, predefined fea-

tures are extracted from subject image. Then, optimized

features of particular target car model are used to classify

with trained target car model. The classification result can

be the target or other car model.

3.1 Feature extraction

Vehicle images can be captured from many different

viewing angles. However, at night or under limited lighting

conditions, front headlights are significantly bright and, as

a result, blur all other potential useful features of a vehicle.

Therefore, in this study, it is proposed that the rear view of

a vehicle will be used as the main viewing angle. In a rear

view, TLs and LP are the most salient appearances at night.

From our studies, in general, each car model tends to have

unique taillight shapes, sizes, and the distances between

TLs and LP. In addition, the angle between TLs and LP is

generally unique for each car model. These features were
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used to classify vehicle types such as car, truck, and SUV

with high accuracy [19].

3.1.1 License plate detection

The aim of this stage is to obtain a set of reference points to

determine the vehicle’s features. This is achieved by

detecting the location of a license plate in the scene in

order to find the LP size and shape which can be used to

normalize taillight features. The published papers on LP

detection can be categorized into six main techniques [31]:

boundary or edge feature based, LP global information

based, texture feature based, color feature based, character

feature based, and combined two or more features based.

During daytime, texture and color feature-based meth-

ods produce high detection rates because most features are

clearly presented in the scene. At night, the number and

quality of features are greatly reduced due to low illumi-

nation. Moreover, color features are interfered with and

changed due to the lighting conditions in the area and

reflections from other vehicle’s lights.

The method proposed in this paper employs the LP

detection technique developed in [32]. The technique

detects an LP by using edge features, which is a simple,

fast, and straightforward algorithm [31]. From the experi-

mental results using a database of 722 images, a high

detection rate of 95.43 % can be achieved. Moreover, the

technique demonstrates robustness in coping with various

illumination conditions. The algorithm is based on the state

of the art of LP detection, including LP candidate extrac-

tion and LP verification process. In LP candidate extrac-

tion, the method uses edge-based technique which

implements on grayscale image. Then, vertical edges are

extracted by applying the Sobel’s vertical edge detection

algorithm where, basically, an LP has more symmetric

vertical edges than other areas. After that, mathematical

morphological operations, using LP size and structure

constraints, are employed to merge vertical edges and

identify LP candidate regions. Next, candidates are pre-

served by using an LP aspect ratio (between two and six).

Last, to verify an LP position, the standard deviation of

gray-level distribution is applied in the regions and the

intensity region with largest standard deviation is identified

as an LP position [32]. The images in Fig. 2 show an

example of the steps in the license plate detection

algorithm.

3.1.2 Taillight detection

TL localization methods are presented in many studies,

such as DAS and vehicle classification [25]. In this paper,

the authors’ algorithm [33], with accuracy of 95.35 %, is

used to localize TL positions. The algorithm is based on the

method proposed in [34], which consists of two processes:

TL candidate extraction and TL verification. First, in

candidate extraction process, color-based method is used to

extract TL color pixels. Basically, TL color is white in the

center and surrounded by red color [34]. With the TL color,

HSV color space, which is reported more appropriate to TL

color than RGB color, is used in this research [34]. In

color-based technique, TL color thresholds are imple-

mented in order to filter out TL color pixels. Then, small
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Fig. 1 Overview of the proposed CMM recognition system
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regions (noise) are removed in order to preserve potential

candidates.

Next, in TL verification process, symmetry of each

candidate TL pair is used to decide the real TLs. The

obtained candidate regions are multi-paired to simulate TL

pair of a vehicle. Then, symmetry of each pair is measured

by calculating symmetry score of alignment of pairs, aspect

ratio of shapes, and size of candidate pairs. The taillight

positions are subsequently verified by considering the most

symmetry score [33]. Figure 3 shows an example of the

images of taillight detection process where C symbols

represent TL candidates.

3.1.3 Feature extraction

Once a vehicle’s LP and TLs are identified, a number of

important features, such as dimensions, distances and

angles between the LP and TLs, can be derived, as shown

in Fig. 4. In Fig. 4, H, W, and C denote TLs and LP height,

width, and center point, respectively, and numbers 1, 2, and

3 represent left TL, right TL, and LP, consecutively.

Those features are divided into two types: geographical

features and TL shape features. Geographical features are

measured parameters of taillights and a license plate such

as width, height, and distance. There are 12 geographical

features as follows.

• Aspect ratio of left TL

• Aspect ratio of right TL

• Aspect ratio of left TL width and LP width

• Aspect ratio of left TL height and LP height

• Aspect ratio of right TL width and LP width

• Aspect ratio of right TL height and LP height

• Angle of left TL and LP

• Angle of right TL and LP

• Aspect ratio of distance of TLs and LP width

• Aspect ratio of distance left TL to LP and LP height

• Aspect ratio of distance right TL to LP and LP height

• Aspect ratio of distance of TLs and average of TL

width

The aspect ratio features are used because they are

normalized features and do not depend on the vehicle’s size

in the image.

To determine the TL shape features, the grid method

[35] is implemented to capture the TL’s shape. Experi-

mentally, several grid blocks, such as 5 9 5 (25 features),

6 9 6 (36 features), and 8 9 8 (64 features), are applied to

extract TL shape. Empirically, an 8 9 8 grid provides the

best classification accuracy. However, the bigger the grid

is, the more computational time required. Figure 5 shows

steps of grid method description for the taillight shape.

3.1.4 Feature set

In real video images, TL and LP detection can be affected

by many factors, such as a reflection on LP or TL, or they

are obscured by other objects in the scene. Not all features

can be detected. Therefore, to make the method robust

enough to deal with missing features, different training sets

Fig. 2 License plate detection steps
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containing different features affected by different factors

are studied.

To do this, we divide detected features into four dif-

ferent cases or sets:

• First set (full features detected)

• Second set (one TL and LP detected)

• Third set (TLs detected)

• Fourth set (only one TL detected)

The first set represents the case when all features are

detected, Fig. 6a. In this case, all taillights and a license

plate are found and the entire 140 features (12 geographical

features and 128 taillight grid features) can be determined.

This type of set should provide the best accuracy.

In the second set, Fig. 6b, apart from LP, only one TL is

detected. The features found therefore are five geographical

features, such as a, c, d, g, and j (if left TL detected) and 64

taillight shape features.

The third set where only TLs are detected is shown in

Fig. 6c. In this case, there are three geographical features

(a, b, and l) and 128 TL shape features.

In the last set, only one TL is detected. It has a TL aspect

ratio value and shape features totaling 65 features, Fig. 6d.

3.1.5 Feature selection

A vehicle may have a certain group of eminent features

derived from TLs and LP which make it clearly distin-

guished from others. Therefore, to improve classification

accuracy, a feature selection method is applied to find the

Fig. 3 Images of taillight detection algorithm

Fig. 4 Detecting license plate and taillights. H, W, and C denote TLs

and LP height, width, and center point, respectively, and numbers 1,

2, and 3 represent left TL, right TL, and LP, consecutively

Fig. 5 Grid feature description of the left taillight shape
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best (optimized) feature subset. Not only can feature

selection enhance the predictor performance, but also it can

reduce computation time [36]. Many feature subset selec-

tion techniques are available, such as principle component

analysis (PCA), particle swarm optimization (PSO), and

genetic algorithm (GA). In this work, GA is chosen

because, according to the experiments, it is likely to offer

the optimum or near-optimum results. In addition, GA was

reported to work well for problems with a large number of

features [37] which seems to be suitable for the research

where 140 features used are proposed in CMMR technique.

The basic technique of GA is designed to mimic the

process in the natural evolution strategies of human for

survival which follows Charles Darwin’s principle of

‘survival of the fittest.’

GA simulates this principle mechanism by targeting

optimal solutions in a complex search space. The new

populations of each generation are iteratively created by

GA through genetic operations such as selection, crossover,

and mutation. Two parents with high relative fitness in the

initial generation are chosen in the selection process.

Crossover is performed by randomly exchanging parts of

selected chromosomes, and mutation presents rare chang-

ing of chromosomes. Each population of chromosomes is

usually encoded by binary, integer, or real numbers. The

length of a chromosome is equal to the dimension of fea-

ture. For the binary chromosome employed in this work,

each binary value in the chromosome presents one corre-

sponding to the same indexed feature in the feature set.

Features are selected if the chromosome value is ‘1.’

Otherwise, the features are not selected if it is ‘0.’ For

example, if the generated chromosome is {1 0 1 0 1 0 1 1},

which is 8-bit length, the feature subset consists of features

{f1, f3, f5, f7, f8}.

The fitness function of GA is the objective function of

the optimization problem. In our case, we define a fitness

function to increase the classification accuracy by finding

the optimal feature subset that generates the least classifi-

cation error. Figure 7 shows the feature subset selection

algorithm using GA method implemented in the training

process. In this work, we define fitness function as follows:

Fitness c�ð Þ ¼ min
i2P

Err Predict modeltrain;c; datatest;c
� �� �

ð1Þ

where c is a chromosome and c* is the optimum chromo-

some by GA operations.

P is the whole population. Datatest,c and modeltrain,c are

test and trained model of feature subset indexing by

chromosome c. Err is the error rate of selected subset

testing. Predict is a function of the proposed research to

classify new car model data, Datatest,c, with the trained car

model, modeltrain,c.

3.2 Classification

In this stage, we have proposed using a one-class classifier

ensemble to recognize the target or the CMM of interest in

the images. The ensemble consists of three classifiers:

OCSVM, DT, and kNN. Majority vote is used to verify the

Fig. 6 Example of rear view

feature detection sets. a Full

features detected. b One TL and

LP detected. c TLs detected.

d One TL detected
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final decision of classification. Figure 8 shows the pro-

posed one-class classifier ensemble.

OCSVM is a one-class classification method using

SVM. It constructs a hyper-sphere around the positive

class data that surrounds almost all points in the dataset

with the minimum radius. The hyper-sphere can be

adjusted to be more flexible by implementing kernel

functions [27]. To classify testing data, SVM score

function is applied and calculated Xtest features with all

feature points m in the feature space. The highest score

will be considered to be the predicted class. SVM score

function can be calculated as defined in (2) where c is the

predesigned classes.

SVMpred max
c2�1;þ1

Xm

i¼1

aiy
cK Xi;Xtest

� �
þ b ð2Þ

 Feature sets

Feature subset selection

Training with feature subset

Fitness evaluation

Termination 
condition ?

Population 
0 1 0 1 0 1 0 1 0 1 

1 1 0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 0 0 

1 1 0 1 0 1 0 1 0 0 

.. 

. .

GA peration

Optimized feature subset

Optimized feature subset 
selection processYes

No

Fig. 7 System architecture of

optimized feature selection base

on GA

Pruned decision tree 

Optimized OCSVM 

3-NN 

5-NN 

7-NN 

Majority
voting 

Majority 
voting 

Trained 
model 

Other car images 

Target car images 

New car model Classification Target model 
Other model 

Training process 

Testing process 

Fig. 8 Proposed one-class

classifier ensemble
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Decision trees are trees that classify instances by sorting

them based on feature values. Each node in aDT represents a

feature in an instance to be classified, and each branch rep-

resents a value that node can assume. Instances are classified

starting at the root node and sorted based on their feature

values [30]. Maximum probability of testing features with

trained class features is used to classify test data as follows:

DTpred ¼ max
c2�1;þ1

pðXcjtÞ ð3Þ

where p(Xc|t) is the feature probability value of predefined

class c at node t.

kNN is the instance-based learning which classifies the

test data by comparison with the kNN training database on

a distance function [30]. In this work, we use the Euclidean

function to measure distance. The predicted class of test

data is defined in (4), where c is the predesigned classes

and k is a number of neighbors.

NNpred ¼ min
c2�1;þ1

dist

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xc � Xtestð Þ2

q� �
ð4Þ

kNNpred ¼
1

k
kNNpred

where Xc and Xtest mean predefined classes and test fea-

tures. Minimum distance between test data and predefined

classes data is used to verify prediction of this method.

Majority vote is employed to predict the final decision

of the three classifiers as follows:

U ¼ 1

3
ðSVMpred þ kNNpred þ DTpredÞ

� �
ð5Þ

Final prediction ¼ �1; U\0:5
þ1; U� 0:5

�

where U is the numerical value which is calculated from

the three classifier predictions.

From [29], the classification accuracy of SVM technique

can be improved by tuning appropriate parameters.

Therefore, this research proposes to use radial basis func-

tion (RBF) kernel, and the optimized parameters will be

selected for OCSVM. The aim of pruning DTs is to prevent

the risk of over-fitting and poor generalization to a new

sample. When the tree is over-fitted, it may reduce the

classification accuracy. Pruning DTs is therefore used in

this research. We propose to use the majority vote of three,

five, and seven nearest neighbors in order to crop the

variance data and to emphasize the final prediction.

4 Experimental results

We collected video data of the rear view of passing cars.

The videos were taken in a city area at night. Then all

image frames were extracted and resized from

1080 9 1920 to 480 9 640. As mentioned in the LP

detection step, the edge-based method is applied to localize

LP position. In the method, many threshold values (e.g., LP

dimensions) are employed to create LP candidate regions.

Image resizing is needed on the image to incorporate those

predefined thresholds. At this proof-of-concept stage, all

cars in the scenes were manually labeled with their make

and model. The dataset contains 421 car models, given in

Table 1, with a total of 766 images, and example car

images can be seen in Fig. 9. This dataset consists of two

types of car models: target car model and other model.

There are 100 target car models used to train and then

classify against other models. Each target car model con-

tains at least 4 images (samples), and there is one image per

other car model.

The classifiers are implemented in MATLAB version

R2013a. Tenfold cross-validation was used to confirm the

experiment results in each model. For GA operations, 500

generations are used to search for optimum feature subset,

and fivefold cross-validation is utilized to verify each

subset. The classification accuracies of 100 target models

of the proposed method are given in Table 2. Each target

model was tested against 420 other models by using tenfold

cross-validation; four feature sets were evaluated sepa-

rately. In Table 2, the average accuracy was accounted at

93.8 %, and the target car model, Mini countryman, was

reported with the highest classification accuracy at 97.2 %,

and the second highest was Renault Megane mk2 with

accuracy at 97.1 %. From the observation, those car

models have very unique appearances (on the presented

features). In addition, the classification accuracies of the

four feature sets were reported at 93.7, 94.0, 93.6, and

93.8 %, respectively. In Sect. 3.1, the number of features

in each feature subset was discussed. The first set has 140

features, which is the largest feature number of all feature

subsets. Although the first set has the highest number of

Table 1 Car models dataset

Car make # model/# image Car make # model/# image

Vauxhall 14/93 Peugeot 4/16

Ford 11/46 Renault 5/21

Volkswagen 14/57 Seat 4/16

Audi 10/40 Land Rover 1/4

Toyota 7/28 Honda 4/16

Fiat 3/12 Mini 1/4

Nissan 4/16 Skoda 2/8

BMW 5/20 Colt 1/4

Mercedes 5/20 Alfa Romeo 1/4

Citroen 4/17 Other model 321/324

Total 421/766
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features, the prediction rate of the set was not reported with

the highest classification accuracy. From observation, the

classification accuracy depends on the discriminant fea-

tures used rather than a number of features. Moreover,

using many features may have redundant features that lead

to decrease accuracy and increase time consumed.

In Table 3, previous works including the proposed

research are summarized with details related to vehicle

Fig. 9 Example car images in rear view
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Table 2 Classification

accuracy results
Car make and models Accuracy (%) Car make and models Accuracy (%)

Vauxhall astra mk4 91.8 Volkswagen passat b6 93.0

Vauxhall astra mk5 92.3 Volkswagen golf mk4 93.6

Vauxhall astra mk6 93.0 Volkswagen golf mk5 93.8

Vauxhall corsa c 92.3 Volkswagen golf mk6 93.6

Vauxhall corsa d 93.3 Volkswagen new beetle 93.4

Vauxhall adam 95.2 Volkswagen passat b5 95.4

Vauxhall zafira 93.2 Volkswagen passat b7 92.5

Vauxhall vectra 93.4 Volkswagen passat cc 93.1

Vauxhall astra gtc 94.4 Volkswagen polo gti mk4 93.0

Vauxhall corsa b 95.4 Volkswagen polo gti mk6 94.2

Vauxhall insignia 91.8 Volkswagen polo mk4 94.3

Vauxhall mokka 91.9 Volkswagen touran 93.4

Vauxahll tigra 92.2 Volkswagen up 93.5

Vauxhall cascada 93.5 Volkswagen transport t5 93.6

Ford fiesta mk6 93.5 Audi a3 8v 94.3

Ford focus mk2 93.3 Audi a4 b7 94.1

Ford c-max mk1 91.8 Audi a1 95.5

Ford fiesta st 93.8 Audi a3 8p 95.3

Ford fiesta mk5 94.1 Audi q7 94.9

Ford focus mk1 93.1 Audi s5 93.0

Ford focus st 93.5 Audi a4 b6 93.5

Ford ka 93.0 Audi s6 92.9

Ford mondeo mk3 93.2 Audi a3 3rd gen 95.3

Ford transit connect 92.8 Audi a2 93.7

Ford galaxy 94.4 Citroen c3 1st gen 93.9

Alfa romeo mito qv 93.9 Citroen c5 dc 94.5

Nissan micra k12 92.2 Peugeot 206 96.5

Nissan qashqai j10 93.5 Peugeot 206 gti 96.4

Nissan juke 94.5 Peugeot 207 gt 95.6

Nissan micra tempest 96.8 Peugeot 207 94.2

Toyota avensis t250 93.6 Renault scenic conquest 95.5

Toyota echo 1st gen 91.9 Renault clio2 95.2

Toyota prius 3rd gen xp30 90.6 Renault clio4 95.5

Toyota yaris xp90 92.2 Renault megane coupe cabrio 97.0

Toyota yaris xp130 92.7 Renault megane mk2 97.1

Toyota corolla 9th gen 94.0 Seat ibiza mk2 96.8

Toyota venza v6 94.3 Seat ibiza mk3 96.8

Bmw 1s e87 94.9 Seat ibiza mk4 91.4

Bmw 3s e92 93.4 Seat ibiza mk4 st 89.9

Bmw 5s f10 94.3 Land rover range rover 91.9

Bmw m5 f10 94.5 Honda crv rd4 93.1

Bmw 5s e60 94.4 Honda crv rm1 93.8

Fiat grande punto 95.0 Honda jazz 1st gen 94.6

Fiat 500 94.9 Honda civic mk8 91.9

Fiat punto 94.2 Skoda octavia combi 91.2

Mercedes a140 90.8 Skoda octavia 1u 93.3

Mercedes c-class w202 91.8 Colt tx4 94.9

Mercedes c-class w203 93.3 Mini countryman 97.2

Mercedes c-class w204 93.5 Citroen xsara picasso 93.5

Mercedes e-class coupe 92.8 Citroen c3 picasso 95.6

Average accuracy (%) 93.8
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view, types of classification, number of model, environ-

ment, and classification performance. As analyzed previous

CMMR techniques, they have been presented for daytime

condition in which various car appearances can be used and

classification accuracies were reported very high, more

than 90 %, while a few appearances can be used for car

recognition at night. The classification accuracy of the

proposed method, 93.8 %, is a bit lower than daytime

techniques as shown in Table 3. However, with the limi-

tation of car appearance at night, the classification accuracy

of the car appearances gained from the technique used in

this study is satisfied. In addition, the performance of this

method is experimentally improved by using GA for fea-

ture selection.

5 Conclusion

CMMR is an important topic for developing intelligence

transport systems such as surveillance or traffic law

enforcement systems. However, it is a difficult task for

computer vision techniques to achieve when the recogni-

tion is performed under limited lighting conditions due to

some missing features. We propose a method to recognize

CMM at night by using the salient features of the car rear

view. The new combination of geographical and taillight

shape features can effectively help to recognize a CMM

with high accuracy. The proposed method is robust and can

deal with many missing features. The experiments show

that the average correct recognition of all the feature sets is

about 93.8 %. However, the experiments were tested on

100 CMMs. It is possible that prediction accuracy could be

changed by increasing the number of CMMs in dataset.

Future work will involve finding more robust features or

distinguishable features with respect to improving classi-

fication accuracy. Another problem to be considered is the

case when only TLs are detected and TL shapes are not

unique (e.g., circular).
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