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Abstract In this paper a novel Tensor-Based Image

Segmentation Algorithm (TBISA) is presented, which is

dedicated for segmentation of colour images. A purpose of

TBISA is to distinguish specific objects based on their

characteristics, i.e. shape, colour, texture, or a mixture of

these features. All of those information are available in

colour channel data. Nonetheless, performing image anal-

ysis on the pixel level using RGB values, does not allow to

access information on texture which is hidden in relation

between neighbouring pixels. Therefore, to take full

advantage of all available information, we propose to

incorporate the Structural Tensors as a feature extraction

method. It forms enriched feature set which, apart from

colour and intensity, conveys also information of texture.

This set is next processed by different classification algo-

rithms for image segmentation. Quality of TBISA is

evaluated in a series of experiments carried on benchmark

images. Obtained results prove that the proposed method

allows accurate and fast image segmentation.

Keywords Image segmentation � Structural tensor �
Machine learning � Image classification � Feature extraction

1 Introduction

Image segmentation belongs to the one of the most

important problems of Computer Vision (CV). Its purpose

is to split an image into regions which correspond to

specific areas or objects observed in a scene. Naturally,

these objects need to be defined by their characteristic

appearance in shape, colour, texture, or a mixture of these

features. Many methods for image segmentation have been

proposed for the recent years [14, 25]. These can be divi-

ded into specific groups, based on a chosen approach or

mathematical tools used for this purpose. The simplest

approaches rely on a global or adaptive image thresholding

with parameters usually determined from the intensity

histograms. In the case of colour images, histograms con-

structed in the HSI or perceptual colour spaces frequently

show better performance than the segmentation based on

bare RGB channels [8]. Following this idea, an example of

colour image segmentation for road signs detection was

proposed in the paper by Cyganek [7]. In this method fuzzy

rules were defined on colour channels in the HSI colour

space.

The other approach is based on detection of disconti-

nuities. This group includes line and edge detection-based

methods, in which regions are naturally defined as image

areas constraint by such discontinuities. Although very

appealing, the method is difficult in practice due to edge

detection and linking problems. Conceptually similar

approach is applied in the method of active contours snakes

originally proposed by Kass and Witkin [18].

On the other hand, the region growing methods attempt

to group pixels into subregions based on some criteria,

usually starting from some ‘‘seed’’ points [15]. The regions

grow as far as the included pixels are similar to these

‘‘seeds’’. A version of this approach relies on region
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splitting and merging. In this approach, an image is initially

divided into a number of regions which are then merged

based on some similarity criteria. An example is a method

based on quadtree construction [20].

Segmentation by morphological watershed also found

broad interest among segmentation methods [4]. The basic

idea consists in representing an image as a 3D topo-

graphical structure spanned by the spatial coordinates

x–y versus the signal intensity values. Then, the segmen-

tation problem is defined analogously to water flow in such

a space. To avoid problems with noise, the method is

usually augmented with so called markers which are con-

nected components which belong to the segmented image.

Then, watershed is applied with the assumption of the

markers being the only allowable regional minima [26].

The other broad group of methods is based on classifier

construction. In this approach, given seed points or

models, a single classifier, or an ensemble of classifiers is

trained to recognise regions which are similar to the seed

models. There are many methods that fall into this group.

In this paper we also follow this approach, and propose a

method of 2D colour image segmentation by different

types of classifiers trained with features obtained with the

extended and compact versions of the structural tensor

(ST). These two tensors were originally proposed by Luis-

Garca et al. also to the task of image segmentation [11].

These methods relied on energy functional operating in

the Riemannian manifold space which allows for tensor

processing. However, such approach requires a numerical

iterative solution which requires significant computations.

In this paper we show that type of low level feature

detection, connected with specific classifiers, also leads to

accurate colour image segmentation but with much faster

response compared to the energy-based approaches. The

success of the presented approach relies on many factors

from which the most important are discriminative tensor

features, conveying information on products of colour

signals and their first derivatives, but also modern clas-

sifiers with good generalisation properties, as will be

discussed.

In this paper we present novel Tensor-Based Image

Segmentation Algorithm (TBISA). The main motivation

for designing TBISA was taking full advantage from all the

information conveyed in the image, i.e. colour and texture.

Therefore we decided to implement our segmentation

algorithm in two stages, where the first one consists of

feature extraction based on structural tensor. Additional

objectives were: (a.) to compare usefulness of different

representation of the tensors (i.e. extended, and compacted)

for segmentation, and (b.) to study impact of several factors

such as feature normalisation, selection, and reduction

techniques; classification methods, and other parameters

onto segmentation accuracy.

The paper is organised as follows. In the next section we

provide details on structural tensors extraction methods

from RGB images as they are basis for object detection

applied in TBISA. Section 3 consists of presentation of

TBISA classification framework, some details of imple-

mentation and discussion of parameters which affect the

algorithm performance. Experimental evaluation of the

algorithm is presented in Sect. 4 along with extensive

discussion on the results, factors which affect accuracy and

peculiarities of the algorithm. The last Sect. 5 consists of

final conclusions and proposition of further works.

2 Extended and compact structural tensors
for feature extraction

In this section the Structural Tensor, as well as its vari-

ants—the Extended and Compact Structural Tensors—are

presented. In our framework, these are used for low-level

feature extraction.

2.1 Structural tensor for low features detection

Given a 2D image I, a structural tensor T can be computed

at a point p0 and considering its compact nearest neigh-

bourhood R(p 0), as follows [3]:

T p0ð Þ ¼ GR p0ð Þ DDT
� �

; ð1Þ

where GR p0ð Þ is an averaging operator in a region R, centred

at a point p0, and D denotes an image gradient vector at

each point p of R, i.e. p 2 R(p0). The gradient D, computed

at a certain point p of I, is defined as follows:

D pð Þ ¼

ô

ôx
I pð Þ

ô

ôy
I pð Þ

2

6664

3

7775
¼

Ix pð Þ
Iy pð Þ

� �
; ð2Þ

where Ix(p) and Iy(p) are discrete spatial derivatives of I at

a point p, in the x and y directions, respectively. In the

simplest approach GR p0ð Þ is a discrete binomial or Gaussian

filter [9, 19]. However, for more precise computations

GR p0ð Þ is realized with an anisotropic filter, as will be

discussed.

Based on the above, it is easy to observe that T(p0) is a

symmetric positive 2D matrix which elements describe

averaged values of the gradient components in a certain

neighbourhood defined around a point p0. Thus, the

structural tensor T conveys information on signal changes

not only at a single point p0, but also in its nearest

neighbourhood. It can be also interpreted as a measure of a

concordance of orientations of local gradients in R [19].

Let us also observe, that if T is computed at each point p of
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I, then each T(p) convey information on overlapping

regions around each p. Therefore it contains information on

image texture and local curvature. Therefore, the ST is

similar to the Harris measure for corner detection [16].

However, to simultaneously convey information on image

colour, ST needs further to be augmented with colour

components, as will be described. It is interesting to note,

that T can be computed. Inserting (2) into (1), the following

is obtained:

T ¼ GR

Ix

Iy

� �
Ix Iy½ �

� �

¼ GR

IxIx IxIy

IyIx IyIy

� �� �

¼
Txx Txy

Tyx Tyy

� �
;

ð3Þ

where for simplification, the point p was omitted since

averaging by the filter GR is over a set of points in R, as

previously described.

2.2 Extended structural tensor

As already mentioned, ST provides valuable information

on structure of local regions in a 2D image. Nevertheless,

in many applications it is desirable to use intensity or

colour and structural tensor together. For instance, properly

weighted components of ST and image intensity were

proposed by Cyganek for stereo matching [8]. An exten-

sion, which in a uniform way joins components of ST and

intensity/colour values, was proposed by Luis-Garcı́a et al.

and then used for image segmentation based on energy

optimisation method [11]. In this method, a two-dimen-

sional gradient vector D is simply extended to a three-

dimensional vector E, as follows

ET pð Þ ¼ DT pð Þ I pð Þ
� 	T ¼ Ix Iy I½ �T : ð4Þ

Inserting (4) into (1) with E substituted for D, the nonlinear

extended structural tensor (EST) is obtained, as follows

TE ¼ GR EET
� �

¼ GR

Ix

Iy

I

2

64

3

75 Ix Iy I½ �

0

B@

1

CA

¼ GR

I2
x IxIy IxI

IyIx I2
y IyI

IxI IyI I2

2

64

3

75

0

B@

1

CA:

ð5Þ

Let us observe that EST contains averaged components of

the gradient, alongside average squared intensity signal, as

well as mixed products of the gradient components and

intensity. As will be shown, these define well

discriminative features for image segmentation and other

tasks, such as matching or tracking.

In the case of colour images, each pixel has three

component, that is: I(p) = [IR, IG, IB]T . In this case (4) can

be extended to account for the colour components, as

follows:

FT pð Þ ¼ DT pð Þ I pð Þ
� 	T ¼ Îx Îy IR IG IB

� 	T
;

ð6Þ

where

Î ¼ 1

3
IR þ IG þ IBð Þ; ð7Þ

and Îx (p) and Îy (p) are discrete spatial derivatives of Î at a

point p, in the x and y directions, respectively.

Subsequently, inserting (6) into (1) the EST for colour

images is obtained. Again, it is a positive definite symmet-

rical matrix, which contains 15 independent components. In

general, for a vector with n components, there is 1
2
n nþ 1ð Þ

independent components in the outer product matrix.

2.3 Compact structural tensor

Although EST built with the vector in (6) provides ample

information on local structures, in the case of colour ima-

ges the number of independent components, which is 15,

can be prohibitive for some applications. For this reason

Luis-Garcı́a et al. propose first to apply the PCA transfor-

mation of F in (6), and then to use only the two most

important components to construct the EST based on (1).

More precisely, for each vector F its PCA subspace pro-

jected version ~F is computed, as follows

~F ¼ A F � Fð Þ ¼ ~F1
~F2

� 	T
; ð8Þ

where A is the PCA transformation matrix, �F is the mean

of all vectors F, and ~F1 and ~F2 are the first two principal

components of F.

In consequence, the nonlinear Compact Structural

Tensor TC (CST) is obtained which contains only three

independent components, that is, the same as the ST in (3).

CST is computed inserting (4) into (1) with ~F substituted

for D, as follows:

TC ¼ GR
~F~F

T

 �

¼ GR

~F1
~F1

~F1
~F2

~F1
~F2

~F2
~F2

" # !

: ð9Þ

However, an effect of PCA is reduction of the number of

independent components from 15 to only 3. Such com-

pression in some image regions sometimes can lead to high

loss of important information. One solution to this is to

check the eigenvalues in the PCA and set a threshold on

percentage of the total variance. This way the adaptive
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compact structure tensor can be obtained [11]. Neverthe-

less, as is shown by our experiments, PCA not only adds

compression to the EST but also allows extraction of the

inherent information free of noise. The latter property is

appears very desirable to the proposed segmentation

method and leads to higher generalisation properties of the

classifiers.

2.4 Anisotropic filtering for tensor computations

In computation of the ST, EST, and CST, very important is

the choice of a proper averaging operator GR. As already

mentioned, if speed is an issue, then a simple binomial or

Gaussian filters of proper scale can be used. However, they

are isotropic filters which do not account for local prop-

erties of the filtered regions. Therefore, a nonlinear aniso-

tropic approach was proposed [5]. In our computational

framework we also use a nonlinear anisotropic filter,

originally proposed by Perona and Malik [21]. To filter an

image I, the following nonlinear heat equation is used

otIðp; tÞ ¼ div c Dt pð Þk kð Þ � Dt pð Þð Þ; ð10Þ

where Dt pð Þ denotes image gradient (2) at the point p and

time stamp t, and c is a nonlinear control function which as

its argument accepts a module of Dt pð Þ. For large gradient

argument its role is to stop smoothing in this direction to

avoid the smearing effect at the edge boundaries. Many

variants of the function c were proposed in the literature. In

our experiments we use the Tukey bi-weight function,

given as follows [23]:

cðxÞ ¼
1

2
1 � x2

r2

� �2

; jxj � r

0 otherwise:

8
<

:
ð11Þ

It exhibits superiority in leaving untouched strong signals.

For r in the above, the following robust scale is computed

as suggested in [23]

r ¼ 1:4826 � med rI � med rIk kð Þk kð Þ; ð12Þ

where med(.) denotes the median function. The drawback

of the above anisotropic signal filtering is an iterative

procedure in which does not lead to an easy parallel

implementation either. In our serial software framework a

number of 10–30 iterations was always sufficient, however.

Figure 1 depicts an exemplary colour image (a) and the

three components of its CST (b)–(d). A number of itera-

tions of the anisotropic filtering was 15 in this case.

For visualisation, channels of the EST and CST in

Fig. 1, respectively, were normalised to the range 0.255 for

each component plane independently. However, when

selecting features for classification, each feature vector is

normalised to its unit norm. This led to the best results in

our experiments, as will be discussed.

Fig. 1 An exemplary colour image (a) and the three components of its CST (b)–(d)
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3 TBISA classification framework

The main purpose of proposed TBISA algorithm is to

locate image regions or objects that belongs to given class

against background.

As alluded to previously, because regions or objects for

detection are known in advance, it is reasonable to focus on

a range of algorithms trained in a supervised manner. In

other words, an expert is assumed, who provides exemplary

objects or pixels which belonging to a given object class

[2]. In classical approach to pattern recognition, a proce-

dure consists of three main phases:

1. Data acquisition,

2. Data preprocessing,

3. Classification.

We assume that the input images are already recorded in a

common colour representation. Therefore, in the following

sections we focus data preprocessing and different methods

of feature representation implemented in TBISA.

3.1 Data preprocessing

According to commonly used nomenclature the prepro-

cessing phase can be called feature extraction. This term

refers to any actions which aim at extraction of features

(attributes) which are the most valuable for the subsequent

classification step.

Regardless of image internal representation (a picture

format), the most natural information is conveyed by three

colour values per pixel (red, green, and blue). However, at

a single pixel position, despite three colour values, their

discriminative power (i.e. usefulness for classification) is

usually poor. This happens because of limited dynamic

value, as well as noise and distortions. Nonetheless, as

already mentioned, information gathered in local neigh-

bourhoods (small regions) around each pixel dramatically

improves conveyed content of information. For this pur-

pose in Sect. 2, it was shown that exploitation information

represented by the structural tensors can significantly

improve performance of many image processing algo-

rithms. This is due to availability of additional information

on textures of objects presented in a picture due to con-

nection of the colour signal, as well as their first derivatives

in local pixel neighbourhoods. Thus, the main procedure in

preprocessing phase of TBISA is extraction of the extended

structural tensor from original pictures.

Apart from computation of the EST, we propose to use

two additional procedures which aim at reduction of the

tensor size. However, its purpose is not only compression

of data, but also because feature reduction can significantly

increase performance. This is due to eliminating noised or

irrelevant data and focusing on the components with the

highest energy content (variation). In this respect, we

decided to implement and test two procedures:

1. Principle Component Analysis (PCA) algorithm [17],

2. Feature Selection (FS) algorithm [10].

3.1.1 PCA-based reduction

PCA reduces size of original extended structural tensors by

combination of their constituents and obtaining set of five

principal components. This number of components is a

parameter of the algorithm and was set to five based on

experiments. However, other values of the principal com-

ponents can be also used.

3.1.2 Feature selection

Feature selection procedure browses extended tensor con-

stituents looking for their best subset, i.e. these components

which allow to obtain the highest accuracy. We decided to

test two techniques:

– exhaustive search—an algorithm which guarantees

selecting optimal subset of features but it is time

consuming, and

– feature selection based on genetic algorithm—very

effective heuristic method which allows to significantly

reduce processing time.

Comparison of all aforementioned feature extracting

methods would be interesting because they exhibit differ-

ent characteristics. PCA uses all constituents to calculate

principle components. On the one hand, resulting feature

set consists of all available information, although, impor-

tance of original features are controlled by weights

assigned to them. On the second hand, irrelevant or noised

constituents, even when reduced, still can negatively spoil

new attributes. Contrary to PCA, feature selection methods

should eliminate such irrelevant attributes and select only

the most valuable ones. Because it is hard to firmly rec-

ommend one of those techniques, we suggest to select them

based on experimental evaluation, as will be discussed.

3.1.3 Feature normalisation

Regardless of the chosen method for feature extraction, it is

suggested to standardise values of attributes which form

feature vector describing each local neighbourhood. It is

because of structural tensor constituents vary in ranges,

which are even hard to estimate. Mixing constituents with
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different ranges can be problematic for many classification

algorithms, because, they usually tend to put more attention

to features with higher variation and values regardless their

real information content. Therefore, attributes with smaller

values and variances have significantly reduced impact

onto final decision of a classifier. Simple remedy for this

phenomenon is feature normalisation. It can be performed

in two different manners:

1. normalisation of tensor constituents matrixes for entire

picture,

2. normalisation of each of the vectors obtained by

stacking EST components.

In the first option, each matrix which represents particular

tensor constituents for entire image, are treated separately.

It is scaled to fit in a range between 0 and 1. Next, all

normalised matrixes are stacked together and feature vec-

tor, which represent given pixel, is extracted by cross-

cutting all the matrixes and selecting vector of values

which corresponds to given pixel.

In the second approach, feature vector is formed in

advanced from original (not normalised) constituents

matrixes and then each such local vector is normalised to

norm one.

3.2 Classification/segmentation

Extracted in the first phase features are subsequently pas-

sed to segmentation algorithm. It aims at pixel labelling,

i.e. assigning pixels to regions which belongs to classes

identified in advance by expert.

Depending on a purpose for which segmentation is

performed, number of classes can vary. For instance, in

face recognition tasks the objective is to extract position of

a face against all other objects regardless their number and

meanings. Therefore, in this case one class can be firmly

defined (i.e. a face) and one-class classifiers such as Sup-

port Vector Machine [6] can be successfully used. Alter-

natively, classical multiple-class classifiers can be applied

with two classes defined, i.e. a face and a background. Of

course the second class will present higher diversity

because it represent variety of objects visible on the pic-

ture. It is hard to convincingly predict how background

diversity affects system performance and whether a back-

ground decomposition onto two or more different object

types helps or not. On the one hand, such a decomposition

allows to define more homogenous objects which can be

more easily memorised and identified by classification

algorithms. On the other hand, it is not quarantined, that

background decomposition brings any advantage to sepa-

ration main object from background classes. Situation can

become even worse when additional detection error appear

between background classes.

Similar issues can be encountered when we need to

identify more than one type of object against the background.

It is natural, that in all discussed cases set of classes has

to be extended what makes application of single one-class

classifiers impossible.

In our solution we decided to use multiple-class classi-

fiers to perform pixel-based segmentation. Not having got

any intuition on which classifiers would be the most suit-

able for that purpose, we decided to implement several

classical algorithms trained in a supervised manner. All of

them represents different approaches. More details on

selected classifiers are provided in Sect. 4.

3.3 Training procedure

As it was stated in Sect. 3.2, we decided to use classifier

trained following a supervised technique. It means, that a

learning set, which is used for classifiers training, should

consist of a pair of variables which represent feature vector

and corresponding real class label [13]. In our case, a

feature vector consists of tensor information on a pixel and

its neighbourhood. A class label indicates an object (or

objects) or a background.

The question regarding a learning set size is open. On

the one hand, it seems to be clear, that the larger the size,

the more representative the set and the higher the classifi-

cation accuracy. On the other hand, all samples in the set

have to be labelled by expert. Labelling is time consuming

procedure which involves computer–human interaction.

Therefore, a smaller size is recommended as a trade-off

between the method accuracy and the time consumed for

labelling the samples.

The other question is which pixels shall be selected to

gather the most representative samples in learning set.

There are two possible procedures.

1. Uniform distributed pixels are selected from the

picture and subsequently expert is requested to label

them. This can be successfully applied when the object

size is large enough to collect representative object

samples and form relatively balanced learning set, i.e.

such where fraction of samples related to classes are

almost equal. Naturally, this is also procedure recom-

mended for algorithm testing on benchmark pictures,

and we will use this procedure in our experiments.

2. Expert selects samples (markers) arbitrarily. Defiantly,

this procedure is recommended for real situation as an

expert can assess a picture complexity, objects and

background homogeneity and size. Considering all

those information expert makes the most suitable

selection.

For our purposes we decided to implement the first option

as we use for tests benchmark datasets with predefined
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classes. Collected training set is next used for classifier

training in a classical manner, i.e. it is presented (usually

repeatedly) to a classifier until a respective stopping cri-

terion is meet.

3.4 Pixel-based segmentation

Segmentation with TBISA is based on pixel analysis. It

means, that entire picture is processed pixel by pixel and a

label returned by a classification algorithm is assigned to

each of pixel separately. Any relationships between

neighbouring pixels are considered by calculating struc-

tural tensors, therefore, there is no additional analysis on

relation between neighbouring pixels.

4 Experiments

In this section, we present an assessment of the quality of

the proposed TBISA algorithm. There are many parameters

and factors which affect performance of the algorithms. All

of them were presented and discussed in previous sections

(Sects. 2–3). In many cases, we emphasised, that it was

difficult or impossible to form any reliable recommenda-

tion for choosing the parameter values which guarantee

gaining the highest performance. Therefore, we decided to

evaluate them in series of experiments carried on bench-

mark pictures. The following objectives were defined for

experiments:

1. to examine a usefulness and effectiveness of different

types of classification algorithms when applied image

segmentation in TBISA framework;

2. to estimate the relationship between number of objects

types (classes) and detection accuracy;

3. to examine impact of normalisation methods onto

detection accuracy;

4. to assess importance of learning set size;

5. to assess a value of information represented by

structural tensor comparing to colour and intensity

carried on by RGB channels, i.e. to assess the quality

of TBISA concept and its performance;

6. to compare alternative feature reduction methods while

applied for reducing size of extended tensor in TBISA.

4.1 Experimental framework

Experimental framework consists of two main modules,

namely, data preprocessing module named DeRecLib, and

image segmentation module. DeRecLib system is a

framework developed originally by author in C?? and

compiled using Microsoft Visual Studio 2013. It is used to

perform all preprocessing tasks described in Sect. 3.1 in

particular structural tensors extraction. Image segmentation

module was designed using KNIME (an open source data

mining framework [24] available at1). WEKA2 classifiers

embedded in KNIME were used for performing pixel-

based classification. Both modules of the system were

connected using file import and export procedures.

Benchmark images For an evaluation purposes we used

benchmark images which were published on The Berkley

Computer Vision Group website.3 Table 1 presents all of

them along with masks for two and three class detection

problems. The masks were defined by authors based on

original segmentation contour images published on the

source page. All pictures have the same size (481�321)

and are stored in JPG format.

Training and testing procedure Learning set was

extracted from original picture using random drawing of a

number of pixels, as already described in Sect. 3.3. Real

labels were read from mask images presented in Table 1.

Accuracy was estimated over entire images, i.e. all of the

pixels were classified and compared with their original

labels. It means, that the pixels which belongs to the

learning set were also used for testing. Nonetheless, con-

sidering large size of the picture (15,4401 pixels) we

assumed that sharing less than 100 samples in learning and

testing sets cannot significantly spoil results. To reduce

variation of results caused by randomness of pixel selection

and some classifiers (such as neural network), all tests were

repeated five times. All results presented in subsequent

sections consists of average accuracy calculated on those

five repetitions.

4.2 Experiment 1: classification algorithms

Five classical classification algorithms were tested in order

to evaluate their usefulness in application to image seg-

mentation (objective #1). Their selection was made for the

sake of creating diversified (in terms of decision-making

model, and training procedure) pool of classifiers which

have different characteristic. Their parameters were set

according to authors experience and preliminary tests made

on selected images.

– k-Near Neighbours (k-NN) [1], a minimal distance

classifier with 3 neighbours. The number of neighbour

was found in preliminary tests on selected images.

– Multiple layer perceptron (NN) [2], a classical multi-

layer perceptron trained with standard back-propaga-

tion algorithm with number of neurons in layers

calculated as follow. In the input layer it was equal to

1 https://www.knime.org/.
2 http://www.cs.waikato.ac.nz/ml/weka/.
3 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/group

ing/resources.html.
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Table 1 Benchmark pictures and class masks used in experiments

Name Image 2 class mask 3 class mask

35058

41033

66053

69040

134052

161062

326038
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number of features, in output layer equal to number of

classes, and in a hidden layers calculated according to

the following formula (#attributes? number of classes)/

2. Learning rate and momentum parameters were set to

0.3 and 0.2, respectively.

– Naive Bayes classifier (NB) [13], a classical model

which assumes feature independence and normal

density distribution of feature set constituents.

– Random Tree (RT), algorithm which creates a tree with

K randomly selected attributes at each node. There was

no post-pruning and no tree size limit. K was set

according to log2ð#attributes)?1).

– Support Vector Machine (SVM) [22], trained with

sequential minimal optimisation procedure using poly-

nomial kernel. Multi-class problems were solved using

pairwise classification.

Observations and discussion

Tables 2, 3, and 4 present accuracy of five classifiers using

three different attributes, i.e. colour and intensity extracted

from RGB channels, compact structural tensor calculated

using PCA (PCA-CST), and extended structural tensor

(EST), respectively. The highest accuracy was highlighted

with bold numbers. Analysis of results is difficult due to the

following several reasons.

1. No one classifier can be indicated as the one which got

the best results for all of the picture and for all three

attribute representations. Example. For RGB attributes

NN obtained the highest accuracy only for four

images. The next one SVM won twice and k-NN

was the best for one picture. For PCA-CST tensor NN

classifiers won also four times, but in the case of tests

with EST the best result was gained by RT classifier

four times.

2. A differences among classifier accuracies varies from

picture to picture. That makes difficult to assess if a

difference in quality between classifiers are signifi-

cantly or not. For example, in Table 4 the experiment

with EST for the picture 69040 presents a difference

between the best NN (99.28 %) and the next one SVM

(93.65 %) that is larger than 5.5 % points. Even bigger

is a distance between NN and the worst NB (65.78 %).

It is more than 33 % points. In this case there is no

doubt that an NN outperformed competitors. But, the

first position of NN is not so certain in experiment for

image 326038 with PCA-CST where the difference to

worst k-NN is about 0.02 % point.

3. Comparison of results obtained for different attribute

representations allows to see some other facts. The

variance between classifiers is much smaller in case of

PCA-CST comparing to EST and RGB representa-

tions. In experiment with PCA-CST the difference

between accuracy never exceeds 4.6 % points (see the

worst case of 134052 picture), comparing to 33 %

points for EST (see picture 69040), and 17 % points

for RGB (see picture 69040).

Table 2 Accuracy of classifiers on benchmark pictures for feature set

consisted of RGB channels

Picture Classifiers

k-NN NN NB SVM RT

326038 0.8776 0.8886 0.8801 0.8820 0.8250

35058 0.9742 0.9802 0.9738 0.9742 0.9724

41033 0.8532 0.8516 0.8378 0.8546 0.8020

66053 0.9007 0.9076 0.8801 0.8022 0.8712

161062 0.9180 0.7769 0.7625 0.8091 0.8886

69040 0.8648 0.8739 0.7023 0.8741 0.8221

134052 0.8174 0.8395 0.8378 0.8226 0.7984

Rank 2.6429 1.8571 3.7143 2.5000 4.2857

Table 3 Accuracy of classifiers on benchmark pictures for feature set

consisted of PCA-CST

Picture Classifiers

k-NN NN NB SVM RT

326038 0.9919 0.9919 0.9921 0.9919 0.9919

35058 0.9994 0.9994 0.9994 0.9994 0.9994

41033 0.9878 0.9793 0.9721 0.9651 0.9749

66053 0.9840 0.9912 0.9842 0.9840 0.9718

161062 0.9882 0.9883 0.9884 0.9882 0.9769

69040 0.9872 0.9876 0.9597 0.9498 0.9893

134052 0.9818 0.9896 0.9435 0.9610 0.9714

Rank 2.1429 2.5714 2.5714 3.2857 2.8571

Table 4 Accuracy of classifiers on benchmark pictures for feature set

consisted of EST

Picture Classifiers

k-NN NN NB SVM RT

326038 0.8776 0.9249 0.9058 0.9153 0.9322

35058 0.9742 0.9938 0.9742 0.9912 0.9841

41033 0.8803 0.9163 0.9171 0.8903 0.9419

66053 0.8712 0.9124 0.7210 0.8098 0.9459

161062 0.9444 0.9967 0.9335 0.9797 0.9397

69040 0.8660 0.9929 0.6578 0.9366 0.9123

134052 0.8498 0.9492 0.9305 0.8978 0.9732

Rank 4.2857 1.7143 4.0000 3.0714 1.9286
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Because of these problems, we decided to calculate

Friedman [12] rank position for the classifiers in the three

tests separately. The average ranks are shown at the bottom

lines of the Tables 2, 3, and 4. The highest accuracy in a

row is in bold. Analysis of the ranks allows to draw fol-

lowing conclusions.

In two cases (i.e. for RGB, and ETS) NN got the highest

rank (1.86 and 1.71, respectively). For PCA-CST k-NN

was slightly better. Those observations help us only in

limited degree. Still, we cannot point out one best classi-

fiers which can be convincingly recommended to be used

in our system. Nonetheless, for sake of simplifying analysis

of further tests, we decide to select NN and focus on its

performance.

4.3 Experiment 2: number of classes

The second objective for experiments was to assess how

number of classes affects accuracy of segmentation. As it

was discussed in Sect. 3.2, it cannot be simply deducted

whether decomposition of background into two or more

separated classes brings any advantage. Therefore we

decided to carried on tests on selected images by defining

for them 2 or 3 classes. The first class was always reserved

for main object type, while the second and optionally the

third one for background. See masks defined for pictures

66053, 134052, and 161062 presented in Table 1.

Observations and discussion

Table 5 shows accuracy of segmentation obtained by NN

which uses three different representation methods for 2 and

3-class detection problems. The following observation and

conclusion can be made.

1. The first observation is that in almost all cases

accuracy of segmentation is higher for tasks with two

classes. In seems to prove classical rule that says that a

complexity of recognition problem increases along

with a number of classes. Nonetheless, it is worthy to

focus on results obtained for different pictures to

understand them more profoundly.

2. The highest difference can be noticed for 66053

image represented by RGB. For this picture, we

defined two background classes, one for a fence and

second for a ground (see Table 1). Both of them have

similar colour and intensity. Therefore, it is quite

difficult to distinguish between those two classes what

leads in turn to reducing accuracy from 90.7 to

62.8 %. Additionally, a border between two back-

ground classes are blurred, which leads in turn to

vanishing any texture details. Therefore, structural

tensor-based classifiers also have a problem with

proper detection, although, the differences between 2

and 3 class tasks are much smaller.

3. Almost the same observation can be made for image

134052, and 161062. As in previous case. The colour

of two background classes are quite similar and a

border between the two is blurred. Therefore, results

obtained are also similar, although the differences

between 2 and 3 class tasks are a little bit smaller.

4. In case of image 161062 one surprising observation

can be made. Accuracy of NN for RGB was elevated

by more than 13 % points after background decompo-

sition into two separate classes. In this case it is

difficult to find a convincing explanation, however.

Final conclusion is as follows: increasing number of classes

affects detection accuracy in the same way regardless of

the attribute representation. i.e. accuracy decreases coun-

ter-proportional to the number of classes. Therefore in

subsequent experiments we will focus on a two-class

decision problem only.

4.4 Experiment 3: normalisation methods

According to discussion provided in Sect. 3.1 we imple-

mented two procedures for feature Vector Normalisation

(objective #3.):

– Layer Normalisation (LN)—scaling values of layer (i.e.

RGB channels or tensor constituents) to the range

between 0 and 1,

– Feature Vector Normalisation (VN)—normalisation of

the length of feature vector to standard value 1.

Observations and discussion

Segmentation accuracy of NN for three types of attribute

representation and two different methods of their normal-

isation are presented in Table 6. Authors did not make any

assumption regarding prospective quality of both methods,

Table 5 Accuracy of NN for 2 and 3-class detection problems

Attribute Picture Class count

2 3

RGB 66053 0.9076 0.6179

161062 0.7769 0.9113

134052 0.8395 0.7825

PCA-CST 66053 0.9912 0.9299

161062 0.9883 0.9619

134052 0.9896 0.9612

EST 66053 0.9124 0.7734

161062 0.9967 0.9342

134052 0.9492 0.8688
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therefore selecting one of them shall be based on its

performance.

1. For both structural tensor representations (PCA-CST,

and EST) higher accuracy was always gained after

attribute vector normalisation (VN).

2. For RGB representation in four out of seven pictures

better results gave LN.

3. Aforementioned difference in quality of both methods

for RGB and tensor-based representation can be caused

by nature of both of them. RGB channels consist of

data naturally standardised, because they always fall in

range from 0 to 255. LN changes them very little while

VN can affect values of particular constituents signif-

icantly preserving only relations between them.

4. It has to be noted that the difference between both

normalisation methods for RGB is relatively small

comparing to normalisation of tensor data.

5. As was discussed in Sect. 3.1.3 ST constituents feature

large variations, therefore, VN allows to focus on a

relation between constituents values instead of their

values. Results shows, that this approach works very

well and is more effective that LN of tensor

constituents.

In next tests we will presents results for VN techniques

only.

4.5 Experiment 4: learning set size

In order to evaluate impact of learning set size onto

accuracy (objective #4), we decided to perform test on

selected pictures three different learning set lengths: 10, 50,

90. The first option is the most desired for real-world

application where human expert is requested to label

selected samples. 50 samples make this procedure longer

but still practical. 90 samples is a limit where human expert

contribution became problematic because of time required.

In this test we put two other questions:

– Is there any optimal set size, i.e. such, which allows to

get ‘‘acceptable’’ segmentation accuracy and its further

increasing brings very small improvement, not accept-

able due to labelling costs?

– Does the set size affect segmentation accuracy in the

same way regardless of feature vector content? In other

words, do we need the same number of samples for

effective training classifier based on EST, PCA-CST,

and RGB?

Observations and discussion

Table 7 presents segmentation accuracy obtained by NN

for each image based on different attribute representation

for different learning set size. Conclusion are as follows:

1. In almost all cases accuracy increases along with

increasing learning set size. There are only few

exceptions (i.e. image 35058 classified on PCA-CST

and EST tensors, images 66053, 161062, and 134052

classified on PCA-CST, and image 69040 classified on

RGB) where the best accuracy was gained with

learning set consisting of 50 samples.

2. This is not surprising as the larger learning set is more

representative what in turn leads to elevating possibil-

ity of creating more accurate classifiers featuring

higher generalisation ability.

3. The difference between learning set which consists of

10 and 50 samples are much higher than between 50

and 90. As it was discussed, it is desired to limit

number of samples to absolute minimum because

sample labelling is costly. Therefore we decide to form

learning set with 50 samples only.

4. Authors would like to underline here, that they do not

want to suggest that this is the optimal size for all the

tasks and picture. It depends on image size, content

and complexity of predefined classes. Therefore the

size has to be always adjusted in preliminary tests for a

Table 6 Accuracy of NN for different normalisation methods and

attributes set content

Attribute Picture Normalisation method

LN VN

RGB 326038 0.8817 0.8886

35058 0.9802 0.9802

41033 0.8577 0.8516

66053 0.9124 0.9076

161062 0.8527 0.7769

69040 0.8723 0.8739

134052 0.8382 0.8395

PCA-CST 326038 0.8765 0.9919

35058 0.9834 0.9994

41033 0.7331 0.9793

66053 0.8534 0.9912

161062 0.8264 0.9883

69040 0.8488 0.9876

134052 0.8460 0.9896

EST 326038 0.8785 0.9249

35058 0.9713 0.9938

41033 0.8508 0.9163

66053 0.8728 0.9124

161062 0.8671 0.9967

69040 0.8423 0.9929

134052 0.8757 0.9492

Task with two classes
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new images or at least for a set of images featuring

similar content.

5. Observed and discussed tendency is the same for all

attribute representations. It means, that there is no

significant differences between them regardless of

differences in number of attributes.

4.6 Experiment 5: feature vector representation,

and feature reduction methods

The most important novelty of the proposed TBISA algo-

rithm is exploitation of the structural tensor. As it was

discussed in Sect. 2, in image segmentation tasks, struc-

tural tensor conveys information not only on colour and

intensity, but also on object texture. The effectiveness of

system based on structural tensor (objective #5) shall be

estimated in a comparative test. We decided to test three

representations of feature set.

1. colour and intensity representation based on RGB,

2. extended structural tensor (EST),

3. compact structural tensor based on PCA reduction

(PCA-CST).

Extended structural tensor consists of 15 constituents. In

Sect. 3.1, we discussed the possibility to apply an alter-

native to PCA feature reduction methods. Therefore we

decided to implement two of them.

– feature selection from extended structural tensor using

genetic algorithms (GA-FS-EST),

– feature selection from extended structural tensor

exhaustive search (ES-FS-EST).

Observations and discussion

Results of NN classifier for different attribute representa-

tion and feature reduction methods are presented in

Table 8.

1. The first and the most important fact is that NN which

utilises colour and intensity representation stored in

RGB channels achieved the weakest accuracy. It never

outperformed system which uses any kind of structural

tensor. The difference is significant as application of

EST allows to increase accuracy by almost 7 % points

on average (over all tested pictures), and application of

PCA-CST increases this difference to more than 11 %

points on average. While RGB-based classification

allows to detect properly about 86 % of pixels on

average, the same detection based on extended and

compact tensors gives 93 and 98 %, respectively.

2. Above observations allows to draw the following

conclusion. Structural tensors consists of information

on colour, intensity, and (contrary to RGB) also

information on texture. In real situations, objects on

images vary not only in terms of colour but texture too.

Glance of eye on tested images allows to confirm this

Table 7 Accuracy of NN for different learning set size attributes set

content

Picture Attribute Learningset size

10 50 90

326038 RGB 0.8824 0.8886 0.8903

PCA-CST 0.9919 0.9919 0.9936

EST 0.9231 0.9249 0.9385

35058 RGB 0.9742 0.9802 0.9900

PCA-CST 0.9994 0.9994 0.9994

EST 0.9742 0.9938 0.9935

41033 RGB 0.8373 0.8516 0.8784

PCA-CST 0.9589 0.9793 0.9882

EST 0.8298 0.9163 0.9325

66053 RGB 0.8628 0.9076 0.9149

PCA-CST 0.9840 0.9912 0.9882

EST 0.8420 0.9124 0.9228

161062 RGB 0.7670 0.7769 0.7858

PCA-CST 0.9882 0.9883 0.9882

EST 0.8903 0.9967 0.9971

69040 RGB 0.8519 0.8739 0.8694

PCA-CST 0.9325 0.9876 0.9896

EST 0.8828 0.9929 0.9972

134052 RGB 0.7843 0.8395 0.8515

PCA-CST 0.9610 0.9896 0.9884

EST 0.8725 0.9492 0.9853

Task with two classes and VN used for feature normalisation

Table 8 Accuracy of NN for different feature set content and feature

reduction methods

Image Feature set representation

RGB PCA-CST EST GA-FS-EST ES-FS-EST

326038 0.8871 0.9925 0.9288 0.9925 0.9925

35058 0.9815 0.9994 0.9872 0.9880 0.9880

41033 0.8558 0.9755 0.8929 0.9832 0.9832

66053 0.8951 0.9878 0.8924 0.9152 0.9152

161062 0.7765 0.9882 0.9614 0.9969 0.9969

69040 0.8650 0.9699 0.9576 0.9916 0.9916

134052 0.8251 0.9797 0.9357 0.9629 0.9629

Rank 4.8570 1.8571 3.8571 1.6429 1.6429

Task with two classes, VN used for feature normalisation and 50

samples in learning set
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characteristic. Therefore, utilising this information for

object detection improved performance.

3. It has to be also noticed, that in average PCA-CST

outperform EST in all cases, and average difference

between them is almost 5 % point.

4. PCA reduction methods applied in compact tensor

combine extended tensor constituents extracting the

first five principal components. Therefore, it can be

considered as a kind of filter which reduces an

importance of less important constituents. It is com-

monly known, that most of classification algorithms

are not resistant to such noised, redundant and

irrelevant attributes. Their presence in attribute sets

leads to decreasing classification accuracy.

5. As it can be seen, PCA reduction effectively counter-

acted against this problem. Although this method does

not eliminate irrelevant constituents completely, we

shall compare it with two other feature selection

methods.

6. Results obtained by GA-FS-EST, and ES-FS-EST are

absolutely the same. Naturally, we implemented

genetic-based selection due to practical reasons as

the exhaustive search cannot be used for large attribute

sets because its high computational complexity.

Nonetheless, 15 constituents is small enough to

perform both tests. Results justify utilisation of

genetic-based version in further works.

7. Both feature selection methods obtained almost the

same results comparing to PCA-CST. It can be seen,

that the first position is shared between them in 50–50

ratio. Therefore we decided to calculate Fridman

average ranks of the methods which are presented in

the bottom line.

8. According to ranks there is a tie, the first place take

GA-FS-EST, and ES-FS-EST. That confirm, that it is

more effective to completely remove any irrelevant

attributes, as it took place in feature selection methods.

5 Conclusions

In the paper we presented novel Tensor-Based Image

Segmentation Algorithm (TBISA). Its main novelty relies

on utilising not only information on colour and intensity of

pixels but also about their texture in local pixel neigh-

bourhoods. This information is conveyed by different

versions of the structural tensor, which is extracted from

RGB channels in the first phase of the algorithm. Details of

tensor extracting methods and classification framework

were also presented. Special focus was put onto factors

which can affect system performance. A quality of the

system was evaluated in series of extensive experiments.

The researched results proved that structural tensor-based

detection system can outperform classical detection

method based on colour and intensity attributes only. Last

but not least, the method is very fast and allows for real-

time operation.
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